Straightforward Approach for Electrochemical Deposition and Modification of Conductive Polythiophene Thin Films for Bioreceptor Immobilization †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrodes and Equipment
2.2. Electrochemical Procedures
2.3. Electrode Cleaning
3. Results
3.1. Covalent Binding of Carboxylated Linker
3.2. Electropolymerization of Carboxylated Monomer 3-Thiopheneacetic Acid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wong, A.; dos Santos, A.M.; Fatibello-Filho, O. Simultaneous determination of paracetamol and levofloxacin using a glassy carbon electrode modified with carbon black, silver nanoparticles and PEDOT:PSS film. Sens. Actuators B Chem. 2018, 255, 2264–2273. [Google Scholar] [CrossRef]
- Zanardi, C.; Terzi, F.; Seeber, R. Polythiophenes and polythiophene-based composites in amperometric sensing. Anal. Bioanal. Chem. 2012, 405, 509–531. [Google Scholar] [CrossRef]
- Lin, P.-H.; Li, B.-R. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 2019, 145, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.-M.; Thapliyal, N.; Hussain, K.K.; Goyal, R.N.; Shim, Y.-B. Conducting polymer-based electrochemical biosensors for neurotransmitters: A review. Biosens. Bioelectron. 2018, 102, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Voccia, D.; Sosnowska, M.; Bettazzi, F.; Roscigno, G.; Fratini, E.; De Franciscis, V.; Condorelli, G.; Chitta, R.; D’Souza, F.; Kutner, W.; et al. Direct determination of small RNAs using a biotinylated polythiophene impedimetric genosensor. Biosens. Bioelectron. 2017, 87, 1012–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosnowska, M.; Pieta, P.; Sharma, P.S.; Chitta, R.; Kc, C.B.; Bandi, V.; D’Souza, F.; Kutner, W. Piezomicrogravimetric and Impedimetric Oligonucleotide Biosensors Using Conducting Polymers of Biotinylated Bis(2,2′-bithien-5-yl)methane as Recognition Units. Anal. Chem. 2013, 85, 7454–7461. [Google Scholar] [CrossRef]
- Kengne-Momo, R.P.; Lagarde, F.; Daniel, P.; Pilard, J.F.; Durand, M.J.; Thouand, G. Polythiophene Synthesis Coupled to Quartz Crystal Microbalance and Raman Spectroscopy for Detecting Bacteria. Biointerphases 2012, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Spires, J.B.; Peng, H.; Williams, D.; Travas-Sejdic, J. An improved terthiophene conducting polymer for DNA-sensing. Electrochimica Acta 2011, 58, 134–141. [Google Scholar] [CrossRef]
- Guler, E.; Akbulut, H.; Bozokalfa, G.; Demir, B.; Eyrilmez, G.O.; Yavuz, M.; Demirkol, D.O.; Coskunol, H.; Endo, T.; Yamada, S.; et al. Bioapplications of Polythiophene-g-Polyphenylalanine-Covered Surfaces. Macromol. Chem. Phys. 2015, 216, 1868–1878. [Google Scholar] [CrossRef]
- Spychalska, K.; Zając, D.; Cabaj, J. Electrochemical biosensor for detection of 17β-estradiol using semi-conducting polymer and horseradish peroxidase. RSC Adv. 2020, 10, 9079–9087. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Cho, M.; Lee, Y. Ultrasensitive Detection of Amyloid-beta Using Cellular Prion Protein on the Highly Conductive Au Nanoparticles-Poly(3,4-ethylene dioxythiophene)-Poly(thiophene-3-acetic acid) Composite Electrode. Anal. Chem. 2019, 91, 11259–11265. [Google Scholar] [CrossRef] [PubMed]
- Abasıyanık, M.F.; Şenel, M. Immobilization of glucose oxidase on reagentless ferrocene-containing polythiophene derivative and its glucose sensing application. J. Electroanal. Chem. 2010, 639, 21–26. [Google Scholar] [CrossRef]
- Fusco, G.; Göbel, G.; Zanoni, R.; Bracciale, M.P.; Favero, G.; Mazzei, F.; Lisdat, F. Aqueous polythiophene electrosynthesis: A new route to an efficient electrode coupling of PQQ-dependent glucose dehydrogenase for sensing and bioenergetic applications. Biosens. Bioelectron. 2018, 112, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Zejli, H.; Goud, K.Y.; Marty, J.L. Label free aptasensor for ochratoxin A detection using polythiophene-3-carboxylic acid. Talanta 2018, 185, 513–519. [Google Scholar] [CrossRef]
- Kang, S.K.; Kim, J.-H.; An, J.; Lee, E.K.; Cha, J.; Lim, G.; Park, Y.S.; Chung, D.J. Synthesis of Polythiophene Derivatives and Their Application for Electrochemical DNA Sensor. Polym. J. 2004, 36, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Koßmehl, G.; Welzel, H.P.; Engelmann, G.; Hunnius, W.D.; Plieth, W.; Zhu, H. Reactive groups on polymer coated electrodes, 7. New electrogenerated electroactive polythiophenes with different protected carboxyl groups. Macromol. Chem. Phys. 1998, 199, 525–533. [Google Scholar] [CrossRef]
- Welzel, H.P.; Kossmehl, G.; Stein, H.J.; Schneider, J.; Plieth, W. Reactive groups on polymer covered electrodes—I. Electrochemical copolymerization of thiophene-3-acetic acid with 3-methylthiophene. Electrochim. Acta 1995, 40, 577–584. [Google Scholar] [CrossRef]
- Oberhaus, F.V.; Frense, D. Starter kit for electrochemical sensors based on polythiophene thin films—Synthesis of high-quality films and protocol for fast and gentle electrode regeneration. In Proceedings of the 8th International Electronic Conference on Sensors and Applications, Online, 1–15 November 2021; Volume 10, p. 53. [Google Scholar]
- Oberhaus, F.V.; Frense, D. Unravelling the catalysis of thiophene electropolymerization for improved film properties in a reproducible manner—Turning our backs on boron trifluoride diethyl etherate. In Proceedings of the 2nd International Electronic Conference on Applied Sciences, Online, 15–31 October 2021. [Google Scholar]
- Oberhaus, F.V.; Frense, D. Catalysing electropolymerization: High-quality polythiophene films for electrochemical sensors by the utilization of fluorine based Lewis acid catalysts. Electrochim. Acta 2021, 402, 139536. [Google Scholar] [CrossRef]
- Oberhaus, F.V.; Frense, D. Fast, simple, and gentle method for removal of polythiophene and other conductive polymer films from gold electrodes. J. Electroanal. Chem. 2021, 895, 115466. [Google Scholar] [CrossRef]
- Barbier, B.; Pinson, J.; Desarmot, G.; Sanchez, M. Electrochemical bonding of amines to carbon fiber surfaces toward improved carbonepoxy composites. J. Electrochem. Soc. 1990, 137, 1757–1764. [Google Scholar] [CrossRef] [Green Version]
- Deinhammer, R.S.; Ho, M.; Anderegg, J.W.; Porter, M.D. Electrochemical oxidation of amine-containing compounds: A route to the surface modification of glassy carbon electrodes. Langmuir 1994, 10, 1306–1313. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, X.; Wang, E.; Dong, S. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Biosens. Bioelectron. 2005, 21, 337–345. [Google Scholar] [CrossRef]
- Ghanem, M.A.; Chrétien, J.-M.; Pinczewska, A.; Kilburn, J.D.; Bartlett, P.N. Covalent modification of glassy carbon surface with organic redox probes through diamine linkers using electrochemical and solid-phase synthesis methodologies. J. Mater. Chem. 2008, 18, 4917–4927. [Google Scholar] [CrossRef]
- Chen, W.; Xue, G. Low potential electrochemical syntheses of heteroaromatic conducting polymers in a novel solvent system based on trifluroborate–ethyl ether. Prog. Polym. Sci. 2005, 30, 783–811. [Google Scholar] [CrossRef]
- Zhang, J.; Song, G.; Qiu, L.; Feng, Y.; Chen, J.; Yan, J.; Liu, L.; Huang, X.; Cui, Y.; Sun, Y.; et al. Highly Conducting Polythiophene Thin Films with Less Ordered Microstructure Displaying Excellent Thermoelectric Performance. Macromol. Rapid Commun. 2018, 39, e1800283. [Google Scholar] [CrossRef] [PubMed]
- Randles, J.E.B. Kinetics of rapid electrode reactions. Discuss. Faraday Soc. 1947, 1, 11–19. [Google Scholar] [CrossRef]
- Ershler, B. Investigation of electrode reactions by the method of charging-curves and with the aid of alternating currents. Discuss. Faraday Soc. 1947, 1, 269–277. [Google Scholar] [CrossRef]
2.5 mM | 5 mM | 10 mM | 25 mM | 50 mM |
---|---|---|---|---|
196.2 Ω | 76.7 Ω | 71.9 Ω | 131.0 Ω | >1000 Ω |
±90.7% | ±13.9% | ±8.7% | ±7.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oberhaus, F.V.; Frense, D. Straightforward Approach for Electrochemical Deposition and Modification of Conductive Polythiophene Thin Films for Bioreceptor Immobilization. Mater. Proc. 2022, 9, 11. https://doi.org/10.3390/materproc2022009011
Oberhaus FV, Frense D. Straightforward Approach for Electrochemical Deposition and Modification of Conductive Polythiophene Thin Films for Bioreceptor Immobilization. Materials Proceedings. 2022; 9(1):11. https://doi.org/10.3390/materproc2022009011
Chicago/Turabian StyleOberhaus, Franziska Verena, and Dieter Frense. 2022. "Straightforward Approach for Electrochemical Deposition and Modification of Conductive Polythiophene Thin Films for Bioreceptor Immobilization" Materials Proceedings 9, no. 1: 11. https://doi.org/10.3390/materproc2022009011
APA StyleOberhaus, F. V., & Frense, D. (2022). Straightforward Approach for Electrochemical Deposition and Modification of Conductive Polythiophene Thin Films for Bioreceptor Immobilization. Materials Proceedings, 9(1), 11. https://doi.org/10.3390/materproc2022009011