A Delve into the Novel Field of Essential Oil-Based Silver Nanoparticles and Its Anti-Inflammatory Potential †
Abstract
:1. Introduction
2. Anti-Inflammatory Potential of Essential Oils
3. Nanotechnology
3.1. Metal Nanoparticles
3.2. Silver Nanoparticles
4. Anti-Inflammatory Potential of Silver Nanoparticles
5. Anti-Inflammatory Potential of Essential Oil-Mediated Silver Nanoparticles
6. Conclusions
7. Future Prospects
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nathan, C. Points of control in inflammation. Nature 2002, 420, 846–852. [Google Scholar] [CrossRef]
- Pahwa, R.; Goyal, A.; Bansal, P.; Jialal, I. Chronic Inflammation; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef]
- Mushtaq, S.; Abbasi, B.H.; Uzair, B.; Abbasi, R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018, 17, 420. [Google Scholar] [PubMed]
- Gupta, S. Prospects and perspectives of natural plant products in medicine. Indian J. Pharm. 1994, 26, 1–12. [Google Scholar]
- Alves, R.; Rosa, I.M. Biodiversity, traditional medicine and public health: Where do they meet? J. Ethnobiol. Ethnomed. 2007, 3, 1–9. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Byeon, J.C.; Ahn, J.B.; Jang, W.S.; Lee, S.-E.; Choi, J.-S.; Park, J.-S. Recent formulation approaches to oral delivery of herbal medicines. J. Pharm. Investig. 2019, 49, 17–26. [Google Scholar] [CrossRef]
- Hanif, M.A.; Nisar, S.; Khan, G.S.; Mushtaq, Z.; Zubair, M. Essential oils. In Essential Oil Research; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–17. [Google Scholar]
- Dagli, N.; Dagli, R.; Mahmoud, R.S.; Baroudi, K. Essential oils, their therapeutic properties, and implication in dentistry: A review. J. Int. Soc. Prev. Community Dent. 2015, 5, 335. [Google Scholar] [CrossRef] [PubMed]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef]
- Andrade, L.N.; Dos Reis Barreto de Oliveira, R.; De Sousa, D.P. A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules 2014, 19, 1459–1480. [Google Scholar]
- Zuzarte, M.; Alves-Silva, J.M.; Alves, M.; Cavaleiro, C.; Salgueiro, L.; Cruz, M.T. New insights on the anti-inflammatory potential and safety profile of Thymus carnosus and Thymus camphoratus essential oils and their main compounds. J. Ethnopharmacol. 2018, 225, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Pina, L.T.; Ferro, J.N.; Rabelo, T.K.; Oliveira, M.A.; Scotti, L.; Scotti, M.T.; Walker, C.I.B.; Barreto, E.O.; Quintans Júnior, L.J.; Guimarães, A.G. Alcoholic monoterpenes found in essential oil of aromatic spices reduce allergic inflammation by the modulation of inflammatory cytokines. Nat. Prod. Res. 2019, 33, 1773–1777. [Google Scholar] [CrossRef] [PubMed]
- Amorim, J.L.; Simas, D.L.R.; Pinheiro, M.M.G.; Moreno, D.S.A.; Alviano, C.S.; da Silva, A.J.R.; Dias Fernandes, P. Anti-inflammatory properties and chemical characterization of the essential oils of four citrus species. PLoS ONE 2016, 11, e0153643. [Google Scholar] [CrossRef] [PubMed]
- Khodabakhsh, P.; Shafaroodi, H.; Asgarpanah, J. Analgesic and anti-inflammatory activities of Citrus aurantium L. blossoms essential oil (neroli): Involvement of the nitric oxide/cyclic-guanosine monophosphate pathway. J. Nat. Med. 2015, 69, 324–331. [Google Scholar] [CrossRef]
- Geetha, V.; Chakravarthula, S.N. Chemical composition and anti-inflammatory activity of Boswellia ovalifoliolata essential oils from leaf and bark. J. For. Res. 2018, 29, 373–381. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. An introduction to nanotechnology. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 28, pp. 1–27. [Google Scholar]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019, 25, 112. [Google Scholar] [CrossRef]
- Hulla, J.; Sahu, S.; Hayes, A. Nanotechnology: History and future. Hum. Exp. Toxicol. 2015, 34, 1318–1321. [Google Scholar] [CrossRef]
- Ramsden, J. Nanotechnology: An Introduction; William Andrew: Oxford, UK, 2016. [Google Scholar]
- Sengul, A.B.; Asmatulu, E. Toxicity of metal and metal oxide nanoparticles: A review. Environ. Chem. Lett. 2020, 18, 1659–1683. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Ghule, N.W.; Bamer, A.H.; Kalaskar, M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019, 53, 101174. [Google Scholar] [CrossRef]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M. Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. Int. J. Nanomed. 2019, 14, 5087. [Google Scholar] [CrossRef] [PubMed]
- Shaik, M.R.; Khan, M.; Kuniyil, M.; Al-Warthan, A.; Alkhathlan, H.Z.; Siddiqui, M.R.H.; Shaik, J.P.; Ahamed, A.; Mahmood, A.; Khan, M. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 2018, 10, 913. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Umar, K.; Ibrahim, M.N.M. Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications–a review. Appl. Nanosci. 2020, 10, 1369–1378. [Google Scholar] [CrossRef]
- Garibo, D.; Borbón-Nuñez, H.A.; de León, J.N.D.; García Mendoza, E.; Estrada, I.; Toledano-Magaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A.G.; Blanco, A. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Burdușel, A.-C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, H.; Nakara, A.; Shanmugam, V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed. Pharmacother. 2019, 109, 2561–2572. [Google Scholar] [CrossRef]
- Rajput, S.; Kumar, D.; Agrawal, V. Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Rep. 2020, 39, 921–939. [Google Scholar] [CrossRef]
- Shanmugam, G.; Sundaramoorthy, A.; Shanmugam, N. Biosynthesis of Silver Nanoparticles from Leaf Extract of Salvia coccinea and Its Effects of Anti-inflammatory Potential in Human Monocytic THP-1 Cells. ACS Appl. Bio Mater. 2021, 4, 8433–8442. [Google Scholar] [CrossRef]
- Manikandan, R.; Manikandan, B.; Raman, T.; Arunagirinathan, K.; Prabhu, N.M.; Basu, M.J.; Perumal, M.; Palanisamy, S.; Munusamy, A. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 138, 120–129. [Google Scholar] [CrossRef]
- Vijayaraj, R.; Kumar, K.N.; Mani, P.; Senthil, J.; Kumar, G.D.; Jayaseelan, T. Green synthesis of silver nanoparticles from ethanolic seed extract of Acranythes aspera (Linn.) and its anti-inflammatory activities. Int. J. Pharm. 2016, 7, 42–48. [Google Scholar]
- Aafreen, M.M.; Anitha, R.; Preethi, R.C.; Rajeshkumar, S.; Lakshmi, T. Anti-inflammatory activity of silver nanoparticles prepared from ginger oil—An in vitro approach. Indian J. Public Health Res. Dev. 2019, 10, 145. [Google Scholar] [CrossRef]
- Jain, A.; Anitha, R.; Rajeshkumar, S. Anti inflammatory activity of Silver nanoparticles synthesised using Cumin oil. Res. J. Pharm. Technol. 2019, 12, 2790–2793. [Google Scholar] [CrossRef]
Sl. No | Name of the Plant | Part Used | Main Component | Experimental Model | Mechanism of Action | References |
---|---|---|---|---|---|---|
1 | Thymus carnosus, Thymus camphoratus | Flowering aerial parts | T. carnosus [Borneol (29%), Camphene (19.5%)] T. camphoratus [Borneol (20%), 1, 8-cineole (29%)] | RAW 264.7 and HepG2 cell lines | Inhibition of nitric oxide production; T. camphoratus inhibits COX-2 and iNOS | [13] |
2 | - | - | Citronellol, α-terpineol, carvacrol | OVA induction in male Swiss mice | Reduction in leucocyte migration and TNF-α levels, modulates COX, PGE2, and H1 receptors | [14] |
3 | Citrus limon, Citrus aurantifolia, Citrus limonia | Fruit peel | Limonene, β- pinene, γ-tripinene | In vivo anti-inflammatory tests: Hot plate test, Formalin test; Subcutaneous air pouch (SAP) model | Reduce increased levels of TNF-α, IL-1β, IFN- γ | [15] |
4 | Citratus aurantium L. | Fresh blossoms | Linalool | Inflammatory paw edema test, cotton plate-induced granuloma | Inhibition of expression of prostaglandin synthesis through the COX pathway, inhibits formation or release of nitric oxide | [16] |
5 | Boswellia ovalifoliolata | Leaves and bark | Bark [β-Farnesene, caryophyllene oxide, etc.]; Leaves [spathulenol, caryophyllene oxide] | In vitro test: albumin denaturation assay | - | [17] |
Sl No. | Biological Material Used | Characteristics of the Nanoparticles | Inflammation Model Used | Mechanism of Action | References |
---|---|---|---|---|---|
1 | Leaves of Atropa acuminata | Size: 5–20 nm; Shape: Spherical | In vitro model: Albumin denaturation assay, antiproteinase activity | - | [31] |
2 | Leaves of Salvia coccinea | Size: 24 nm; Shape: Spherical | THP-1 cell line | Inhibition of oxidative stress transcription factor NF-κB | [32] |
3 | Petals of Rosa indica | Size: 23.52–60.83 nm; Shape: Spherical | Rat peritoneal macrophages | Inhibition of the production of nitric oxide and superoxide | [33] |
4 | Seeds of Acranythes aspera Linn. | Size: 20–35 nm; Shape: Cuboidal, rectangular | Carrageenan-induced paw edema inflammation model in albino rat | Inhibition of paw edema | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pal, S.; Jha, S. A Delve into the Novel Field of Essential Oil-Based Silver Nanoparticles and Its Anti-Inflammatory Potential. Mater. Proc. 2022, 9, 3. https://doi.org/10.3390/materproc2022009003
Pal S, Jha S. A Delve into the Novel Field of Essential Oil-Based Silver Nanoparticles and Its Anti-Inflammatory Potential. Materials Proceedings. 2022; 9(1):3. https://doi.org/10.3390/materproc2022009003
Chicago/Turabian StylePal, Shreyashi, and Shivesh Jha. 2022. "A Delve into the Novel Field of Essential Oil-Based Silver Nanoparticles and Its Anti-Inflammatory Potential" Materials Proceedings 9, no. 1: 3. https://doi.org/10.3390/materproc2022009003
APA StylePal, S., & Jha, S. (2022). A Delve into the Novel Field of Essential Oil-Based Silver Nanoparticles and Its Anti-Inflammatory Potential. Materials Proceedings, 9(1), 3. https://doi.org/10.3390/materproc2022009003