Pollution Status, Source Apportionment, Ecological and Human Health Risks of Potentially (Eco)toxic Element-Laden Dusts from Urban Roads, Highways and Pedestrian Bridges in Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Spectroanalytical Procedure
2.4. Assessment of Dust Contamination and Toxicity Levels
2.5. Assessment of Potential Human Health Risks
2.6. Statistical Analysis
3. Results and Discussion
3.1. Distribution of Toxic Elements in the Samples
3.2. Source Apportionment
3.3. Environmental and Ecological Risk Assessment Results
3.4. Health Risks Assessment Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radoine, H.; Bajja, S.; Chenal, J.; Ahmed, Z. Impact of urbanization and economic growth on environmental quality in western africa: Do manufacturing activities and renewable energy matter? Front. Environ. Sci. 2022, 10, 1012007. [Google Scholar] [CrossRef]
- Li, C.; McLinden, C.; Fioletov, V.; Krotkov, N.; Carn, S.; Joiner, J.; Streets, D.; He, H.; Ren, X.; Li, Z.; et al. India Is Overtaking China as the World’s Largest Emitter of Anthropogenic Sulfur Dioxide. Sci. Rep. 2017, 7, 14304. [Google Scholar] [CrossRef] [Green Version]
- Abdul Jabbar, S.; Tul Qadar, L.; Ghafoor, S.; Rasheed, L.; Sarfraz, Z.; Sarfraz, A.; Sarfraz, M.; Felix, M.; Cherrez-Ojeda, I. Air Quality, Pollution and Sustainability Trends in South Asia: A Population-Based Study. Int. J. Environ. Res. Public Health 2022, 19, 7534. [Google Scholar] [CrossRef] [PubMed]
- Baguma, G.; Musasizi, A.; Twinomuhwezi, H.; Gonzaga, A.; Nakiguli, C.K.; Onen, P.; Angiro, C.; Okwir, A.; Opio, B.; Otema, T.; et al. Heavy Metal Contamination of Sediments from an Exoreic African Great Lakes’ Shores (Port Bell, Lake Victoria), Uganda. Pollutants 2022, 2, 407–421. [Google Scholar] [CrossRef]
- WHO. Air Pollution. 2021. Available online: https://www.who.int/health-topics/air-pollution (accessed on 2 October 2022).
- Shao, L.; Ge, S.; Jones, T.; Santosh, M.; Silva, L.F.O.; Cao, Y.; Oliveira, M.L.S.; Zhang, M.; BéruBé, K. The role of airborne particles and environmental considerations in the transmission of SARS-CoV-2. Geosci. Front. 2021, 12, 101189. [Google Scholar] [CrossRef]
- Khan, A.; Plana-Ripoll, O.; Antonsen, S.; Brandt, J.; Geels, C.; Landecker, H.; Sullivan, P.F.; Pedersen, C.B.; Rzhetsky, A. Environmental pollution is associated with increased risk of psychiatric disorders in the US and Denmark. PLoS Biol. 2019, 17, e3000353. [Google Scholar] [CrossRef] [Green Version]
- Weitekamp, C.A.; Hofmann, H.A. Effects of air pollution exposure on social behavior: A synthesis and call for research. Environ. Health 2021, 20, 72. [Google Scholar] [CrossRef]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 2 October 2022).
- Mohammed, F.S.; Crump, D. Characterization of Indoor/Outdoor Settled Dust and Air Pollutants in Damaturu, Nigeria. Int. J. Eng. Technol. 2013, 5, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Daellenbach, K.R.; Uzu, G.; Jiang, J.; Cassagnes, L.E.; Leni, Z.; Vlachou, A.; Stefenelli, G.; Canonaco, F.; Weber, S.; Segers, A.; et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020, 587, 414–419. [Google Scholar] [CrossRef]
- Xiao, K.; Yao, X.; Zhang, X.; Fu, N.; Shi, Q.; Meng, X.; Ren, X. Pollution Characteristics, Source Apportionment, and Health Risk Assessment of Potentially Toxic Elements (PTEs) in Road Dust Samples in Jiayuguan, Hexi Corridor, China. Toxics 2022, 10, 580. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, Q.; Wen, X.; Yang, M.; Chen, H.; Wu, Z.; Lin, X. Multivariate statistical analysis of heavy metals in foliage dust near pedestrian bridges in Guangzhou, South China in 2009. Environ. Earth Sci. 2013, 70, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Ra, K. Source apportionment and health risk assessment for potentially toxic elements in size-fractionated road dust in Busan Metropolitan City, Korea. Environ. Monit. Assess. 2022, 194, 350. [Google Scholar] [CrossRef] [PubMed]
- Li, H.H.; Chen, L.J.; Yu, L.; Guo, Z.B.; Shan, C.Q.; Lin, J.Q.; Gu, Y.G.; Yang, Z.B.; Yang, Y.X.; Shao, J.R.; et al. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci. Total Environ. 2017, 586, 1076–1084. [Google Scholar] [CrossRef]
- Wei, X.; Gao, B.; Wang, P.; Zhou, H.; Lu, J. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 112, 186–192. [Google Scholar] [CrossRef]
- Nazzal, Y.; Ghrefat, H.; Rosen, M.A. Heavy Metal Contamination of Roadside Dusts: A Case Study for Selected Highways of the Greater Toronto Area, Canada Involving Multivariate Geostatistics. Res. J. Environ. Sci. 2014, 8, 259–273. [Google Scholar] [CrossRef] [Green Version]
- Shahab, A.; Zhang, H.; Ullah, H.; Rashid, A.; Rad, S.; Li, J.; Xiao, H. Pollution characteristics and toxicity of potentially toxic elements in road dust of a tourist city, Guilin, China: Ecological and health risk assessment. Environ. Pollut. 2020, 266, 115419. [Google Scholar] [CrossRef]
- Cowan, N.; Blair, D.; Malcolm, H.; Graham, M. A survey of heavy metal contents of rural and urban roadside dusts: Comparisons at low, medium and high traffic sites in Central Scotland. Environ. Sci. Pollut. Res. Int. 2021, 28, 7365–7378. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Singh, G. Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India. Environ. Geochem. Health 2021, 43, 2081–2103. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Cao, D.; Huang, Y.; Chen, B.; Chen, Z.; Wang, R.; Dong, Q.; Wei, Q.; Liu, L. Zinc Intakes and Health Outcomes: An Umbrella Review. Front. Nutr. 2022, 9, 798078. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, M.; Mucci, L.A. Zinc Supplement Use and Risk of Aggressive Prostate Cancer: A 30-Year Follow-Up Study. Eur. J. Epidemiol. 2022, 37, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Eid, R.; Arab, N.T.; Greenwood, M.T. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. Biochim. Biophys. Acta Mol. Cell. Res. 2017, 1864, 399–430. [Google Scholar] [CrossRef] [PubMed]
- Ray, R.R. Adverse hematological effects of hexavalent chromium: An overview. Interdiscip. Toxicol. 2016, 9, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moskovchenko, D.; Pozhitkov, R.; Ukarkhanova, D. Geochemistry of street dust in Tyumen, Russia: Influence of traffic load. Environ. Sci. Pollut. Res. 2022, 29, 31180–31197. [Google Scholar] [CrossRef] [PubMed]
- Atiemo, S.M.; Ofosu, G.F.; Kuranchie-Mensah, H.; Osei Tutu, A.; Linda Palm, N.D.M.; Blankson, S.A. Levels and sources of heavy metal contamination in road dust in selected major highways of Accra, Ghana. Xray Spectrom. 2012, 41, 105–110. [Google Scholar] [CrossRef]
- Bampoe, E.; Cobbina, S.J.; Doke, D.A. Assessment of heavy metal levels and associated human health risk in dust from high and low traffic transport stations in the Tamale metropolis, in the northern region of Ghana. Int. J. Environ. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- City Population. Uganda (Eastern). Available online: https://www.citypopulation.de/en/uganda/admin/EAS__eastern/ (accessed on 12 November 2022).
- Nugent, P.; Soi, I. One-stop border posts in East Africa: State encounters of the fourth kind. J. East. Afr. Stud. 2020, 14, 433–454. [Google Scholar] [CrossRef]
- Fitzmaurice, M.; Hartmann, O. Border Crossing Monitoring along the Northern Corridor. The International Bank for Reconstruction and Development/The World Bank. 2013. Available online: https://www.ssatp.org/sites/ssatp/files/publications/SSATPWP96-border-crossing_1.pdf (accessed on 12 November 2022).
- Collins, T. East African Community Battles Trade Disruption. 2020. Available online: https://african.business/2020/08/trade-investment/east-african-community-battles-trade-disruption/ (accessed on 12 November 2022).
- Joshua. Places to visit in Eastern Uganda. 2022. Available online: https://toptenuganda.com/places-to-visit-in-eastern-uganda/ (accessed on 12 November 2022).
- Turyahabwe, R.; Asaba, J.; Mulabbi, A.; Osuna, C. Environmental and Socio-economic Impact Assessment of Stone Quarrying in Tororo District, Eastern Uganda. East Afr. J. Environ. Nat. Res. 2021, 4, 1–14. [Google Scholar] [CrossRef]
- Omollo, J. Tororo Locals Fault Cement Factory over Air Pollution. 2022. Available online: https://www.monitor.co.ug/uganda/news/national/tororo-locals-fault-cement-factory-over-air-pollution-4011252 (accessed on 12 November 2022).
- Hartston, W. Top 10 Facts about Thunder. 2014. Available online: https://www.express.co.uk/life-style/top10facts/480476/Top-10-facts-about-thunder (accessed on 10 July 2020).
- Guinness World Records. Most Thunder Days per Year. Available online: https://www.guinnessworldrecords.com/world-records/66531-most-thunder-days-per-year#:~:text=Thunder%2Ddays%20%2D%20world%20In%20Tororo,%2Dyear%20period%201967%2D76 (accessed on 12 November 2022).
- Atuyambe, L.M.; Ediau, M.; Orach, C.G.; Musenero, M.; Bazeyo, W. Land slide disaster in eastern Uganda: Rapid assessment of water, sanitation and hygiene situation in Bulucheke camp, Bududa district. Environ. Health 2011, 10, 38. [Google Scholar] [CrossRef]
- Broeckx, J.; Maertens, M.; Isabirye, M.; Vanmaercke, M.; Namazzi, B.; Deckers, J.; Tamale, J.; Jacobs, L.; Thiery, W.; Kervyn, M.; et al. Landslide susceptibility and mobilization rates in the Mount Elgon region, Uganda. Landslides 2019, 16, 571–584. [Google Scholar] [CrossRef]
- Opedes, H.; Mücher, S.; Baartman, J.E.M.; Nedala, S.; Mugagga, F. Land Cover Change Detection and Subsistence Farming Dynamics in the Fringes of Mount Elgon National Park, Uganda from 1978–2020. Remote Sens. 2022, 14, 2423. [Google Scholar] [CrossRef]
- Love Uganda Safaris. River Manafwa. 2022. Available online: https://www.loveugandasafaris.com/river-manafwa.html/ (accessed on 22 September 2022).
- Kabata-Pendias, A. Trace elements in soils and plants. In Trace Elements in Soils and Plants; Kabata-Pendias, A., Pendias, H.K., Eds.; Taylor & Francis: London, UK, 2011; Volume 548, p. 2010. [Google Scholar]
- Xiao, X.; Zhang, J.; Wang, H.; Han, X.; Ma, J.; Ma, Y.; Luan, H. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Sci. Total Environ. 2020, 713, 135292. [Google Scholar] [CrossRef] [PubMed]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Müller, G. Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflüsse. Chem.-Zeitung. 1981, 6, 157–164. [Google Scholar]
- Chen, C.; Kao, C.; Chen, C.; Dong, C. Distribution and accumulation of heavy metals in the sediments of Kaohsiung harbor, Taiwan. Chemosphere 2007, 66, 1431–1440. [Google Scholar] [CrossRef]
- Zhang, W.; Feng, H.; Chang, J.; Qu, J.; Xie, H.; Yu, L. Heavy metal contamination in surface sediments of Yangtze river intertidal zone: An assessment from different indexes. Environ. Pollut. 2009, 157, 1533–1543. [Google Scholar] [CrossRef]
- US EPA. Risk Assessment Guidance for Superfund, Vol. I: Human Health Evaluation Manual (EPA/540/1–89/002); Office of Solid Waste and Emergency Response: Washington, DC, USA, 1989.
- Wang, S.; Wang, L.; Huan, Y.; Wang, R.; Liang, T. Concentrations, spatial distribution, sources and environmental health risks of potentially toxic elements in urban road dust across China. Sci. Total Environ. 2022, 805, 150266. [Google Scholar] [CrossRef]
- Ali, M.U.; Liu, G.; Yousaf, B.; Abbas, Q.; Ullah, H.; Munir, M.; Fu, B. Pollution characteristics and human health risks of potentially (eco)toxic elements (PTEs) in road dust from metropolitan area of Hefei, China. Chemosphere 2017, 181, 111–121. [Google Scholar] [CrossRef]
- Kabir, M.H.; Kormoker, T.; Shammi, R.S.; Tusher, T.R.; Islam, M.S.; Khan, R.; Omor, M.Z.U.; Sarker, M.E.; Yeasmin, M.; Idris, A.M. A comprehensive assessment of heavy metal contamination in road dusts along a hectic national highway of Bangladesh: Spatial distribution, sources of contamination, ecological and human health risks. Toxin Rev. 2022, 41, 860–879. [Google Scholar] [CrossRef]
- Haney, I.j., Jr. Development of an inhalation unit risk factor for cadmium. Reg. Toxicol. Pharmacol. 2016, 77, 175–183. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Chromium(VI). CASRN 18540-29-9|DTXSID7023982. 2017. Available online: https://cfpub.epa.gov/ncea/iris2/chemicallanding.cfm?substance_nmbr=144 (accessed on 16 November 2022).
- Alidadi, H.; Tavakoly Sany, S.B.; Zarif Garaati Oftadeh, B.; Mohamad, T.; Shamszade, H.; Fakhari, M. Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in northeast Iran. Environ. Health Prevent. Med. 2019, 24, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nteziyaremye, P.; Omara, T. Bioaccumulation of priority trace metals in edible muscles of West African lungfish (Protopterus annectens Owen, 1839) from Nyabarongo River, Rwanda. Cogent Environ. Sci. 2020, 6, 1779557. [Google Scholar] [CrossRef]
- Suvetha, M.; Partheeban, E.C.; Anbazhagan, V.; Rajendran, R.; Bilal, A.P.; Sajad, A. Are we at risk because of road dust? An ecological and health risk assessment of heavy metals in a rapid growing city in South India. Environ. Adv. 2022, 7, 100165. [Google Scholar] [CrossRef]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.X.; Qiao, Q.; Appel, E.; Huang, B. Discriminating sources of anthropogenic heavy metals in urban street dusts using magnetic and chemical methods. J. Geochem. Explor. 2012, 119, 60–75. [Google Scholar] [CrossRef]
- Faiz, Y.; Tufail, M.; Javed, M.T.; Chaudhry, M.M.; Naila, S. Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad expressway Pakistan. Microchem. J. 2009, 92, 186–192. [Google Scholar] [CrossRef]
- Al-Taani, A.A.; Nazzal, Y.; Howari, F.M. Assessment of heavy metals in roadside dust along the Abu Dhabi–Al Ain National Highway, UAE. Environ. Earth Sci. 2019, 78, 411. [Google Scholar] [CrossRef]
- Žibret, G.; Rokavec, D. Household dust and street sediment as an indicator of recent heavy metals in atmospheric emissions: A case study on a previously heavily contaminated area. Environ. Earth Sci. 2010, 61, 443–453. [Google Scholar] [CrossRef]
- Chen, H.; Zhan, C.; Liu, S.; Zhang, J.; Liu, H.; Liu, Z.; Liu, T.; Liu, X.; Xiao, W. Pollution Characteristics and Human Health Risk Assessment of Heavy Metals in Street Dust from a Typical Industrial Zone in Wuhan City, Central China. Int. J. Environ. Res. Public Health 2022, 19, 10970. [Google Scholar] [CrossRef]
- Gope, M.; Masto, R.E.; George, J.; Hoque, R.R.; Balachandran, S. Bioavailability and health risk of some potentially toxic elements (Cd, Cu, Pb and Zn) in street dust of Asansol, India. Ecotoxicol. Environ. Saf. 2017, 138, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Luo, D.; Zhao, D.; Li, N.; Xiao, T.; Liu, J.; Wei, L.; Liu, Y.; Liu, L.; Liu, G. Distribution, Source and Risk Assessment of Heavy Metal(oid)s in Water, Sediments, and Corbicula Fluminea of Xijiang River, China. Int. J. Environ. Res. Public Health 2019, 16, 1823. [Google Scholar] [CrossRef] [Green Version]
- Algül, F.; Beyhan, M. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci. Rep. 2020, 10, 11782. [Google Scholar] [CrossRef] [PubMed]
- The Risk Assessment Information System. Chemical Toxicity Values. Available online: https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemtox (accessed on 3 December 2022).
- US EPA. Child-Specific Exposure Factors Handbook. EPA-600-P-00–002B. National Center for Environmental Assessment: Washington, DC, USA, 2001. [Google Scholar]
- US EPA. Child-Specific Exposure Factors Handbook. EPA-600-P-00–002B. National Center for Environmental Assessment: Washington, DC, USA, 2002. [Google Scholar]
- US EPA. Risk Assessment Guidance for Superfund: Volume III-part A. EPA540-R-02–002. Process for Conducting Probabilistic Risk Assessment: Washington, DC, USA, 2001. [Google Scholar]
- Li, X.D.; Poon, C.S.; Hui, P.S. Heavy metal contamination of urban soils and street dust in Hong Kong. Appl. Geochem. 2001, 16, 1361–1368. [Google Scholar] [CrossRef]
- Omara, T.; Karungi, S.; Kalukusu, R.; Nakabuye, B.; Kagoya, S.; Musau, B. Mercuric pollution of surface water, superficial sediments, Nile tilapia (Oreochromis nilotica Linnaeus 1758 [Cichlidae]) and yams (Dioscorea alata) in auriferous areas of Namukombe stream, Syanyonja, Busia, Uganda. PeerJ 2019, 7, e7919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Sampling Site Description | Coordinates | Samples Taken | Traffic Load |
---|---|---|---|---|
D1 | Bushika bridge crossing from Bubulo to Busiu | 0°56′56.904″ N 34°16′36.408″ E | 3 | Moderate traffic flow |
D2 | Roadside of Bushika bridge at the junction with Bududa–Manafwa road | 1°0′31.932″ N 34°19′53.22″ E | 3 | High traffic flow |
D3 | Zikoye–Bushika road but within the Bubulo bridge | 1°4′12.216″ N 34°20′6.6408″ E | 3 | Low traffic flow |
D4 | Junction of Zikoye–Bushika and Bududa–Manafwa roads of Bubulo bridge | 1°4′12.211″ N 34°20′6.6405″ E | 3 | Low traffic flow |
D5 | Manafwa town (Bududa–Manafwa highway) | 0°56′56.904″ N 34°16′36.408″ E | 3 | High vehicular traffic |
D6 | Bududa town (Bududa–Manafwa highway) | 1°0′31.932″ N 34°19′53.22″ E | 3 | High traffic flow |
D7 | Manafwa bridge (Mbale–Tororo highway) | 0°41′35.268″ N 34°10′51.6″ E | 3 | Bridge was under repair |
D8 | Mbale–Tororo highway | 1°08′20.0″ N 34°09′54.0″ E | 3 | Light traffic flow |
Location (Country) | Cu | Ni | Mn | Zn | Pb | Cd | Cr | References |
---|---|---|---|---|---|---|---|---|
Eastern Uganda | 11.4–23.2 | 0.20–23.20 | 465.0–2630.0 | 26.8–199.0 | 185.0–244.0 | 0.178–1.994 | 5.40–56.60 | This study |
Tamale metropolis (Ghana) | 44.7–67.6 | 11.5–18.5 | 423.2–581.6 | 165.7–254.4 | 16.7–17.7 | 21.0–28.8 | — | Bampoe et al. [29] |
Damaturu (Nigeria) | 8.16–68.40 | 5.75–14.99 | — | 0.83–1.15 | 15.43–89.72 | 4.22–15.66 | — | Mohammed and Crump [10] |
Accra (Ghana) | 29.01–76.53 | 6.46–15.88 | 235.93–379.63 | 124.52–371.66 | 33.64–117.45 | — | 123.75–220.37 | Atiemo et al. [28] |
Luanda (Angola) | 18.0–118.0 | 6.2–32.0 | 157.0–728.0 | 142.0–1412.0 | 74.0–1856.0 | 0.7–4.0 | 17.0–37.0 | Ferreira-Baptista et al. [21] |
Islamabad Expressway (Pakistan) | 30.0–80.0 | 10.0–30.0 | — | 64.3–169.0 | 60.0–150.0 | 4.5–6.8 | — | Faiz et al. [60] |
Dhanbad (India) | 169.0 | 2626.0 | 3458.0 | 230.0 | 63.0 | 394.0 | 3.23 | Nondal and Singh [20] |
Kushtia–Jhenaidah highway(Bangladesh) | 82.6 | 14.1 | — | 126.2 | 50.8 | 0.18 | 20.1 | Kabir et al. [52] |
Tiruchirappalli city (India) | 11.84 | — | — | 47.08 | 0.24 | — | 11.47 | Suvetha et al. [57] |
Edinburgh (United Kingdom) | 81.5–107.6 | — | — | 64.2–101.4 | 112–268 | 3.3–4.1 | — | Cowan et al. [19] |
Abu Dhabi–Al Ain National Highway (UAE) | — | 0.1–0.7 | 227.9–2765 | 37.4–398.6 | 20.1–123 | 0.3–0.7 | 19–1540 | Al-Taani et al. [61] |
Variables | Cu | Ni | Mn | Zn | Pb | Cd | Cr |
---|---|---|---|---|---|---|---|
Cu | 1 | ||||||
Ni | 0.465 | 1 | |||||
Mn | 0.690 1 | 0.896 1,2 | 1 | ||||
Zn | 0.137 | 0.539 | 0.425 | 1 | |||
Pb | 0.277 | −0.034 | −0.050 | −0.059 | 1 | ||
Cd | 0.232 | 0.440 | 0.226 | 0.787 1 | 0.376 | 1 | |
Cr | 0.447 | 0.628 | 0.729 1 | −0.257 | −0.139 | −0.330 | 1 |
Variable | Principal Component | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
Cu | 0.398 | 0.104 | 0.424 |
Ni | 0.525 | 0.030 | −0.166 |
Mn | 0.533 | 0.171 | −0.059 |
Zn | 0.314 | −0.492 | −0.369 |
Pb | 0.048 | −0.252 | 0.805 |
Cd | 0.273 | −0.592 | 0.051 |
Cr | 0.326 | 0.550 | 0.041 |
Initial eigenvalues | 3.2028 | 1.9932 | 1.2000 |
Explained variance (%) | 45.8 | 28.5 | 17.1 |
Cumulative variance (%) | 45.8 | 74.2 | 91.4 |
Sampling Site | Cu | Ni | Mn | Zn | Pb | Cd | Cr | PLI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CF | Igeo | CF | Igeo | CF | Igeo | CF | Igeo | CF | Igeo | CF | Igeo | CF | Igeo | ||
D1 | 0.319 | −2.217 | 0.276 | −2.443 | 1.970 | 0.393 | 0.419 | −1.841 | 6.852 | 2.192 | 0.445 | −1.753 | 0.521 | −1.619 | 0.730 |
D2 | 0.293 | −2.356 | 0.007 | −7.765 | 1.182 | −0.344 | 0.538 | −1.481 | 8.685 | 2.539 | 0.550 | −1.448 | 0.161 | −3.217 | 0.373 |
D3 | 0.869 | −0.788 | 0.407 | −1.882 | 3.993 | 1.413 | 1.141 | −0.395 | 8.526 | 2.507 | 2.200 | 0.553 | 0.518 | −1.535 | 1.481 |
D4 | 0.437 | −1.779 | 0.621 | −1.273 | 3.214 | 1.099 | 3.109 | 1.0517 | 8.304 | 2.469 | 4.985 | 1.733 | 0.091 | −4.047 | 1.394 |
D5 | 0.596 | −1.331 | 0.800 | −0.907 | 4.606 | 1.619 | 0.794 | −0.918 | 8.993 | 2.584 | 2.200 | 1.733 | 0.951 | −0.657 | 1.647 |
D6 | 0.514 | −1.545 | 0.255 | −2.555 | 1.287 | −0.221 | 0.603 | −1.314 | 9.037 | 2.591 | 2.750 | 0.875 | 0.188 | −2.994 | 0.899 |
D7 | 0.375 | −1.999 | 0.103 | −3.858 | 0.814 | −0.879 | 0.497 | −1.594 | 9.023 | 2.589 | 2.750 | 0.875 | 0.148 | −3.342 | 0.665 |
D8 | 0.488 | −1.620 | 0.166 | −3.180 | 1.655 | 0.142 | 0.703 | −1.093 | 9.007 | 2.586 | 2.750 | 0.875 | 0.266 | −2.498 | 0.934 |
Sampling Site | PERI | Pollution Degree | |||||||
---|---|---|---|---|---|---|---|---|---|
Cu | Ni | Mn | Zn | Pb | Cd | Cr | |||
D1 | 1.595 | 1.380 | 1.970 | 0.419 | 34.260 | 13.350 | 1.042 | 54.016 | Low |
D2 | 1.465 | 0.035 | 1.182 | 0.538 | 43.425 | 16.500 | 0.322 | 63.467 | Low |
D3 | 4.345 | 2.035 | 3.993 | 1.141 | 42.630 | 66.000 | 1.036 | 121.180 | Moderate |
D4 | 2.185 | 3.105 | 3.214 | 3.109 | 41.520 | 149.550 | 0.182 | 202.865 | Considerable |
D5 | 2.980 | 4.000 | 4.606 | 0.794 | 44.965 | 66.000 | 1.902 | 125.427 | Moderate |
D6 | 2.570 | 1.275 | 1.287 | 0.603 | 45.185 | 82.500 | 0.376 | 133.796 | Moderate |
D7 | 1.875 | 0.515 | 0.814 | 0.497 | 45.115 | 82.500 | 0.296 | 131.612 | Moderate |
D8 | 2.440 | 0.830 | 1.655 | 0.703 | 45.035 | 82.500 | 0.532 | 133.695 | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opolot, M.; Omara, T.; Adaku, C.; Ntambi, E. Pollution Status, Source Apportionment, Ecological and Human Health Risks of Potentially (Eco)toxic Element-Laden Dusts from Urban Roads, Highways and Pedestrian Bridges in Uganda. Pollutants 2023, 3, 74-88. https://doi.org/10.3390/pollutants3010007
Opolot M, Omara T, Adaku C, Ntambi E. Pollution Status, Source Apportionment, Ecological and Human Health Risks of Potentially (Eco)toxic Element-Laden Dusts from Urban Roads, Highways and Pedestrian Bridges in Uganda. Pollutants. 2023; 3(1):74-88. https://doi.org/10.3390/pollutants3010007
Chicago/Turabian StyleOpolot, Mark, Timothy Omara, Christopher Adaku, and Emmanuel Ntambi. 2023. "Pollution Status, Source Apportionment, Ecological and Human Health Risks of Potentially (Eco)toxic Element-Laden Dusts from Urban Roads, Highways and Pedestrian Bridges in Uganda" Pollutants 3, no. 1: 74-88. https://doi.org/10.3390/pollutants3010007
APA StyleOpolot, M., Omara, T., Adaku, C., & Ntambi, E. (2023). Pollution Status, Source Apportionment, Ecological and Human Health Risks of Potentially (Eco)toxic Element-Laden Dusts from Urban Roads, Highways and Pedestrian Bridges in Uganda. Pollutants, 3(1), 74-88. https://doi.org/10.3390/pollutants3010007