The Tula Industrial Area Field Experiment: Quantitative Measurements of Formaldehyde, Sulfur Dioxide, and Nitrogen Dioxide Emissions Using Mobile Differential Optical Absorption Spectroscopy Instruments
Abstract
:1. Introduction
1.1. The Tula Industrial Area
1.2. Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), and Formaldehyde (HCHO) Emissions and Their Relevance
2. Methodology
2.1. Mobile Mini-DOAS Measurements
2.2. Wind Data
2.3. Tula Monitoring Network
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramos-Gutiérrez, L.J.; Montenegro-Fragoso, M. La generación de energía eléctrica en México. Technol. Cienc. Agua 2012, 3, 197–211. [Google Scholar]
- Data Mexico. Tula de Allende. Available online: https://www.economia.gob.mx/datamexico/es/profile/geo/tula-de-allende#population (accessed on 6 August 2024).
- Air Quality, Energy and Health. Available online: https://www.who.int/teams/environment-climate-change-and-health/air-quality-energy-and-health/health-impacts/exposure-air-pollution (accessed on 6 August 2024).
- Álvarez de la Borda, J. Crónica del Petróleo en México de 1863 a Nuestros Días; Petróleos Mexicanos: Mexico City, Mexico, 2006. [Google Scholar]
- Petróleos Mexicanos [PEMEX] Anuario Estadístico. Petróleos Mexicanos. 2020. Available online: https://www.pemex.com/ri/Publicaciones/Anuario%20Estadistico%20Archivos/Anuario-Estadistico_2020.pdf (accessed on 28 February 2023).
- Almanza, V.H.; Molina, L.T.; Sosa, G. Soot and SO2 contribution to the supersites in the MILAGRO campaign from elevated flares in the Tula Refinery. Atmos. Chem. Phys. 2012, 12, 10583–10599. [Google Scholar] [CrossRef]
- Iniciativa Climática de México [ICM] Estudio Sobre la Influencia de la Central Termoeléctrica de Tula, Hidalgo, en la Calidad del Aire Regional. Iniciativa Climática de México. Available online: https://www.iniciativaclimatica.org/wp-content/uploads/2021/05/Termoele%CC%81ctrica-Tula_190521-3-1.pdf (accessed on 28 February 2023).
- Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología y Cambio Climático, Comisión Ambiental de la Megalópolis [SEMARNAT, INECC, CAME] Calidad del Aire en la Cuenca Atmosférica de Tula. Secretaría de Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología y Cambio Climático, Comisión Ambiental de la Megalópolis. Available online: https://www.gob.mx/cms/uploads/attachment/file/571616/Calidad_del_Aire_Cuenca_Atm_de_Tula-FINAL.pdf (accessed on 28 February 2023).
- Sosa, G.; Vega, E.; González-Avalos, E.; Mora, V.; López-Veneroni, D. Air pollutant characterization in Tula industrial corridor, Central Mexico, during the MILAGRO study. Biomed. Res. Int. 2013, 2013, 521728. [Google Scholar] [CrossRef] [PubMed]
- Falcón Benítez, A. Análisis de la Repotenciación de la Central Termoeléctrica Francisco Pérez Ríos, de la CFE, con Tecnología IGCC. Master’s Thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico, 2013. [Google Scholar]
- Rodolfo Sosa, E.; Elizabeth, V.; Ann, W.; Mónica, J.; Gilberto Fuentes, G.; Elías Granados, H.; Ana Luisa Alarcón, J.; María del Carmen Torres, B.; Pablo Sánchez, A.; Sergio Rosas, A.; et al. Reduction of atmospheric emissions due to switching from fuel oil to natural gas at a power plant in a critical area in Central Mexico. J. Air Waste Manag. Assoc. 2020, 70, 1043–1059. [Google Scholar] [CrossRef] [PubMed]
- Finlaysson-Pitts, B.J.; Pitts, J.N. Chemistry of the Upper and Lower Atmosphere. Theory, Experiments and Applications; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Rivera Cárdenas, C.; Daniel, A.M. How does nature regulate atmospheric composition?: Formaldehyde removal from air. In Proceedings of the SPIE 11586, Bioinspiration, Biomimetics, and Bioreplication XI, Online, 22 March 2021; Volume 1158609. [Google Scholar] [CrossRef]
- Damgård Nielsen, G.; Thor Larsen, S.; Wolfkoff, P. Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch. Toxicol. 2017, 91, 35–61. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, M.; Matsuda, T.; Yagi, T. Genotoxicity of formaldehyde: Molecular basis of DNA damage and mutation. Front. Environ. Sci. 2014, 2, 1–8. [Google Scholar] [CrossRef]
- Zhang, Y.; Johansson, M.; Norgaard, D. Mobile DOAS Software, version 6.3.1, Optical Remote Sensing Group, Chalmers University of Technology: Gothemburg Sweden, 2021.
- Galle, B.; Oppenheimer, C.; Geyer, A.; McConigle, A.J.S.; Edmons, M.; Horrocks, L. A miniaturized ultraviolet spectrometer for remote sensing of SO2 fluxes: A new tool for volcano surveillance. J. Volcanol. Geotherm. Res. 2002, 119, 241–245. [Google Scholar] [CrossRef]
- Danckaert, T.; Fayt, C.; van Roozendael, M.; De Smedt, I.; Letocart, V.; Merlaud, A.; Pinardi, G. QDOAS Software User Manual, Version 3.2. September 2017; Belgian Institute for Space Aeronomy. Available online: https://uv-vis.aeronomie.be/software/QDOAS/QDOAS_manual.pdf (accessed on 28 February 2023).
- Vandaele, A.C.; Hermans, C.; Fally, S. Fourier transform measurements of SO2 absorption cross sections: II. Temperature dependence in the 29,000–44,000 cm−1 (227–345 nm) region. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 2115–2126. [Google Scholar] [CrossRef]
- Bogumil, K.; Orphal, J.; Homann, T.; Voigt, S.; Spietz, P.; Fleischmann, O.C.; Vogel, A.; Hartmann, M.; Bovensmann, H.; Frerick, J.; et al. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote sensing in the 230–2380 nm region. J. Photochem. Photobiol. A 2003, 157, 167–184. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Hermans, C.; Simon, P.; Carleer, M.; Colin, R.; Fally, S.; Mérienne, M.; Jenouvrier, A.; Coquart, B. Measurements of the NO2 absorption cross-section from 42,000 cm−1 to 10,000 cm−1 (238–1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transf. 1998, 59, 171–184. [Google Scholar] [CrossRef]
- Hermans, C.; Vandaele, A.C.; Fally, S.; Carleer, M.; Colin, R.; Coquart, B.; Jenouvrier, A.; Merienne, M.F. Absorption cross-section of the collision-induced bands of oxygen from the UV to the NIR. In Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere; Camy-Peyret, C., Vigasin, A.A., Eds.; NATO Science Series Springer: Dordrecht, The Netherlands, 2003; Volume 27, pp. 193–202. [Google Scholar] [CrossRef]
- Rothman, L.; Gordon, I.; Barber, R.; Dothe, H.; Gamache, R.; Goldman, A.; Perevalov, V.; Tashkun, S.; Tennyson, J. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2139–2150. [Google Scholar] [CrossRef]
- Meller, R.; Moortgat, G.K. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225–375 nm. J. Geophys. Res. 2000, 105, 7089–7101. [Google Scholar] [CrossRef]
- Thalman, R.; Volkamer, R. Temperature dependent absorption cross-sections of O2–O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure. Phys. Chem. Chem. Phys. 2013, 15, 15371–15381. [Google Scholar] [CrossRef] [PubMed]
- Serdyuchenko, A.; Gorshelev, V.; Weber, M.; Chehade, W.; Burrows, J.P. High spectral resolution ozone absorption cross-sections—Part 2: Temperature dependence. Atmos. Meas. Tech. 2014, 7, 625–636. [Google Scholar] [CrossRef]
- Fleischmann, O.C.; Hartmann, M.; Burrows, J.P.; Orphal, J. New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spectroscopy. J. Photochem. Photobiol. A 2004, 168, 117–132. [Google Scholar] [CrossRef]
- Air Resources Laboratory Archived Meteorology. National Oceanic and Atmospheric Administration. Available online: https://www.ready.noaa.gov/READYamet.php (accessed on 28 February 2023).
- Sistema Nacional de Información de la Calidad del Aire [SINAICA] Red de Monitoreo de Tula, Hidalgo. 2022. Available online: https://sinaica.inecc.gob.mx/ (accessed on 28 February 2023).
- Rivera, C.; Sosa, G.; Wöhrnschimmel, H.; de Foy, B.; Johansson, M.; Galle, B. Tula industrial complex (Mexico) emissions of SO2 and NO2 during the MCMA 2006 field campaign using a mobile mini-DOAS system. Atmos. Chem. Phys. 2009, 9, 6351–6361. [Google Scholar] [CrossRef]
- de Foy, B.; Krotkov, N.A.; Bei, N.; Herndon, S.C.; Huey, L.G.; Martínez, A.-P.; Ruiz-Suárez, L.G.; Wood, E.C.; Zavala, M.; Molina, L. Hit from both sides: Tracking industrial and volcanic plumes in Mexico City with surface measurements and OMI SO2 retrievals during the MILAGRO field campaign. Atmos. Chem. Phys. 2009, 9, 9599–9617. [Google Scholar] [CrossRef]
- Huang, J.-T. Sulfur dioxide (SO2) emissions and government spending on environmental protection in China—Evidence from spatial econometric analysis. J. Clean. Prod. 2018, 175, 431–441. [Google Scholar] [CrossRef]
- Li, C.; McLinden, C.; Fioletov, V.; Krotkov, N.; Carn, S.; Joiner, J.; Streets, D.; He, H.; Ren, X.; Li, X.; et al. India is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide. Sci. Rep. 2017, 7, 14304. [Google Scholar] [CrossRef] [PubMed]
Date | SO2 | NO2 | HCHO | ||||||
---|---|---|---|---|---|---|---|---|---|
Flux Emissions (t/d) | Stdev (t/d) | No. of Measurements | Flux Emissions (t/d) | Stdev (t/d) | No. of Measurements | Flux Emissions (t/d) | Stdev (t/d) | No. of Measurements | |
3 March 17 | 724.18 | 404.49 | 4 | 36.72 | 11.65 | 4 | --- | --- | --- |
10 March 17 | 616.42 | 205.54 | 4 | 31.50 | 19.14 | 3 | --- | --- | --- |
17 March 17 | 300.91 | 132.08 | 5 | 16.02 | 6.79 | 4 | --- | --- | --- |
24 March 17 | 327.15 | 225.83 | 7 | 29.09 | 8.52 | 7 | 7.21 | N/A | 1 |
7 April 17 | 88.46 | 48.77 | 7 | 15.70 | 9.26 | 7 | 2.17 | 1.15 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Cárdenas, C.I.; Arellano, T. The Tula Industrial Area Field Experiment: Quantitative Measurements of Formaldehyde, Sulfur Dioxide, and Nitrogen Dioxide Emissions Using Mobile Differential Optical Absorption Spectroscopy Instruments. Pollutants 2024, 4, 463-473. https://doi.org/10.3390/pollutants4040031
Rivera-Cárdenas CI, Arellano T. The Tula Industrial Area Field Experiment: Quantitative Measurements of Formaldehyde, Sulfur Dioxide, and Nitrogen Dioxide Emissions Using Mobile Differential Optical Absorption Spectroscopy Instruments. Pollutants. 2024; 4(4):463-473. https://doi.org/10.3390/pollutants4040031
Chicago/Turabian StyleRivera-Cárdenas, Claudia I., and Thiare Arellano. 2024. "The Tula Industrial Area Field Experiment: Quantitative Measurements of Formaldehyde, Sulfur Dioxide, and Nitrogen Dioxide Emissions Using Mobile Differential Optical Absorption Spectroscopy Instruments" Pollutants 4, no. 4: 463-473. https://doi.org/10.3390/pollutants4040031
APA StyleRivera-Cárdenas, C. I., & Arellano, T. (2024). The Tula Industrial Area Field Experiment: Quantitative Measurements of Formaldehyde, Sulfur Dioxide, and Nitrogen Dioxide Emissions Using Mobile Differential Optical Absorption Spectroscopy Instruments. Pollutants, 4(4), 463-473. https://doi.org/10.3390/pollutants4040031