Assessment of Growth and Physiological Responses of Lemna minor Exposed to 4-Aminodiphenylamine, a Tire Wear Compound
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Materials and Culture Conditions
2.3. Experiment Design
2.4. Plant Growth Determination
2.5. Physiological Markers Analysis
2.5.1. Photosynthetic Pigment Contents
2.5.2. Histological Analysis for Starch Accumulation
2.6. Statistical Analysis
3. Results
3.1. Effects of 4-ADPA on Plant Morphology
3.2. Effects of 4-ADPA on Growth Parameters
3.3. Effects of 4-ADPA on Photosynthetic Pigment Contents
3.4. Histological Evaluation of Starch Accumulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TWPs | Tire Wear Particles |
4-ADPA | 4-Aminodiphenylamine |
DMSO | Dimethyl Sulfoxide |
OECD | Organisation for Economic Co-operation and Development |
ANOVA | Analysis of Variance |
References
- Mayer, P.M.; Moran, K.D.; Miller, E.L.; Brander, S.M.; Harper, S.; Garcia-Jaramillo, M.; Carrasco-Navarro, V.; Ho, K.T.; Burgess, R.M.; Hampton, L.M.T.; et al. Where the rubber meets the road: Emerging environmental impacts of tire wear particles and their chemical cocktails. Sci. Total Environ. 2024, 927, 171153. [Google Scholar] [CrossRef] [PubMed]
- Olubusoye, B.S.; Cizdziel, J.V.; Bee, M.; Moore, M.T.; Pineda, M.; Yargeau, V.; Bennett, E.R. Toxic Tire Wear Compounds (6PPD-Q and 4-ADPA) Detected in Airborne Particulate Matter Along a Highway in Mississippi, USA. Bull. Environ. Contam. Toxicol. 2023, 111, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Johannessen, C.; Liggio, J.; Zhang, X.; Saini, A.; Harner, T. Composition and transformation chemistry of tire-wear derived organic chemicals and implications for air pollution. Atmospheric Pollut. Res. 2022, 13, 101533. [Google Scholar] [CrossRef]
- Liu, C.; Wan, S.; Cheng, Y.; Lv, Z.; Luo, S.; Liang, Y.; Xie, Y.; Leng, X.; Hu, M.; Zhang, B.; et al. Occurrence, sources, and human exposure assessment of amine-based rubber additives in dust from various micro-environments in South China. Sci. Total. Environ. 2024, 955, 177023. [Google Scholar] [CrossRef]
- Zou, K.; Yamamoto, A.; Yoshida, H. Direct C–N coupling of aniline to aminodiphenylamines with a platinum-loaded titanium oxide photocatalyst. Catal. Sci. Technol. 2025, 15, 1228–1237. [Google Scholar] [CrossRef]
- Kuntz, V.; Zahn, D.; Reemtsma, T. Quantification and occurrence of 39 tire-related chemicals in urban and rural aerosol from Saxony, Germany. Environ. Int. 2024, 194, 109189. [Google Scholar] [CrossRef]
- McMinn, M.H.; Hu, X.; Poisson, K.; Berger, P.; Pimentel, P.; Zhang, X.; Ashara, P.; Greenfield, E.L.; Eig, J.; Tian, Z. Emerging investigator series: In-depth chemical profiling of tire and artificial turf crumb rubber: Aging, transformation products, and transport pathways. Environ. Sci. Process. Impacts 2024, 26, 1703–1715. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, F.; Li, J.; Wan, X.; Ge, Y.; Liang, G.; Zhou, Y. P-phenylenediamine antioxidants and their quinone derivatives: A review of their environmental occurrence, accessibility, potential toxicity, and human exposure. Sci. Total Environ. 2024, 948, 174449. [Google Scholar] [CrossRef]
- Hua, X.; Feng, X.; Liang, G.; Chao, J.; Wang, D. Long-term exposure to tire-derived 6-PPD quinone causes intestinal toxicity by affecting functional state of intestinal barrier in Caenorhabditis elegans. Sci. Total. Environ. 2023, 861, 160591. [Google Scholar] [CrossRef]
- Chen, H.; Xie, M.; Li, W.; Tan, L.; Cai, X.; Shen, M.; Li, R. Detection of 6-PPD and 6-PPDQ in airborne particulates and assessment of their toxicity in lung cells. Chemosphere 2024, 364, 143205. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Lemna minor: Traditional uses, chemical constituents and pharmacological effects—A review. IOSR J. Pharm. 2019, 9, 6–11. [Google Scholar]
- Van Hoeck, A.; Horemans, N.; Monsieurs, P.; Cao, H.X.; Vandenhove, H.; Blust, R. The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechnological applications. Biotechnol. Biofuels 2015, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sosa, D.; Alves, F.M.; Prieto, M.A.; Pedrosa, M.C.; Heleno, S.A.; Barros, L.; Feliciano, M.; Carocho, M. Lemna minor: Unlocking the Value of This Duckweed for the Food and Feed Industry. Foods 2024, 13, 1435. [Google Scholar] [CrossRef]
- Gülçïn, I.; KïrEçcï, E.; Akkemïk, E.; Topal, F.; HïsAr, O. Antioxidant and Antimicrobial Activities of an Aquatic Plant: Duckweed (Lemna minor L.). Turk. J. Biol. 2010, 34, 175–188. [Google Scholar] [CrossRef]
- Zezulka, Š.; Kummerová, M.; Babula, P.; Váňová, L. Lemna minor exposed to fluoranthene: Growth, biochemical, physiological and histochemical changes. Aquat. Toxicol. 2013, 140, 37–47. [Google Scholar] [CrossRef]
- Radić, S.; Stipaničev, D.; Cvjetko, P.; Mikelić, I.L.; Rajčić, M.M.; Širac, S.; Pevalek-Kozlina, B.; Pavlica, M. Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism. Ecotoxicology 2010, 19, 216–222. [Google Scholar] [CrossRef]
- OECD. Guidelines for the Testing of Chemicals. Lemna Sp. Growth Inhibition Test; OECD: Paris, France, 2006. [Google Scholar]
- Khellaf, N.; Zerdaoui, M. Growth response of the duckweed Lemna minor to heavy metal pollution. Iran. J. Environ. Health Sci. Eng. 2009, 6, 161–166. [Google Scholar]
- Ueda, K.; Nagai, T. Relative sensitivity of duckweed Lemna minor and six algae to seven herbicides. J. Pestic. Sci. 2021, 46, 267–273. [Google Scholar] [CrossRef]
- Hiscox, J.D.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 1979, 57, 1332–1334. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Bourgeade, P.; Aleya, E.; Alaoui-Sosse, L.; Herlem, G.; Alaoui-Sosse, B.; Bourioug, M. Growth, pigment changes, and photosystem II activity in the aquatic macrophyte Lemna minor exposed to bisphenol A. Environ. Sci. Pollut. Res. 2021, 28, 68671–68678. [Google Scholar] [CrossRef] [PubMed]
- de Alkimin, G.D.; Santos, J.; Soares, A.M.; Nunes, B. Ecotoxicological effects of the azole antifungal agent clotrimazole on the macrophyte species Lemna minor and Lemna gibba. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 237, 108835. [Google Scholar] [CrossRef] [PubMed]
- Matešković, A. The Effects of Microplastics on the Growth and Photosynthesis of Lemna Minor. Ph.D. Thesis, Prirodoslovno-Matematički Fakultet, Zagreb, Croatia, 2024. [Google Scholar]
- Abernethy, S. The Acute Lethality to Rainbow Trout of Water Contaminated by an Automobile Tire; Ministry of Environment and Energy: Toronto, Canada, 1994. [Google Scholar]
- Gualtieri, M.; Andrioletti, M.; Vismara, C.; Milani, M.; Camatini, M. Toxicity of tire debris leachates. Environ. Int. 2005, 31, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Zhao, H.; Peter, K.T.; Gonzalez, M.; Wetzel, J.; Wu, C.; Hu, X.; Prat, J.; Mudrock, E.; Hettinger, R.; et al. A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon. Science 2021, 371, 185–189. [Google Scholar] [CrossRef]
- Putar, U.; Turk, K.; Jung, J.; Kim, C.; Kalčíková, G. The dual impact of tire wear microplastics on the growth and ecological interactions of duckweed Lemna minor. Environ. Pollut. 2025, 368, 125681. [Google Scholar] [CrossRef]
- Zhang, M.; Yin, H.; Tan, J.; Wang, X.; Yang, Z.; Hao, L.; Du, T.; Niu, Z.; Ge, Y. A comprehensive review of tyre wear particles: Formation, measurements, properties, and influencing factors. Atmos. Environ. 2023, 297, 119597. [Google Scholar] [CrossRef]
- Radić, S.; Babić, M.; Škobić, D.; Roje, V.; Pevalek-Kozlina, B. Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol. Environ. Saf. 2010, 73, 336–342. [Google Scholar] [CrossRef]
- Kumar, K.; Sarkar, P.; Paul, T.; Shukla, S.P.; Kumar, S. Ecotoxicological effects of triclosan on Lemna minor: Bioconcentration, growth inhibition and oxidative stress. Environ. Sci. Pollut. Res. 2024, 31, 56550–56564. [Google Scholar] [CrossRef]
- Palta, J.P. Leaf chlorophyll content. Remote Sens. Rev. 1990, 5, 207–213. [Google Scholar] [CrossRef]
- Humphrey, A. Chlorophyll. Food Chem. 1980, 5, 57–67. [Google Scholar] [CrossRef]
- Hashimoto, H.; Uragami, C.; Cogdell, R.J. Carotenoids and photosynthesis. In Carotenoids in Nature: Biosynthesis, Regulation and Function; Springer: Cham, Switzerland, 2016; pp. 111–139. [Google Scholar]
- Takeshita, T.; Takeda, K.; Ota, S.; Yamazaki, T.; Kawano, S. A Simple Method for Measuring the Starch and Lipid Contents in the Cell of Microalgae. Cytologia 2015, 80, 475–481. [Google Scholar] [CrossRef]
- Sree, K.S.; Keresztes, Á.; Mueller-Roeber, B.; Brandt, R.; Eberius, M.; Fischer, W.; Appenroth, K.J. Phytotoxicity of cobalt ions on the duckweed Lemna minor—Morphology, ion uptake, and starch accumulation. Chemosphere 2015, 131, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Van Dyck, I.; Vanhoudt, N.; i Batlle, J.V.; Horemans, N.; Van Gompel, A.; Nauts, R.; Vangronsveld, J. Effects of environmental parameters on starch and soluble sugars in Lemna minor. Plant Physiol. Biochem. 2023, 200, 107755. [Google Scholar] [CrossRef] [PubMed]
- Havaux, M. Carotenoid oxidation products as stress signals in plants. Plant J. 2014, 79, 597–606. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, J.; Beckles, D.M. A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress. Sci. Rep. 2018, 8, 9314. [Google Scholar] [CrossRef]
- Ribeiro, C.; Stitt, M.; Hotta, C.T. How Stress Affects Your Budget—Stress Impacts on Starch Metabolism. Front. Plant Sci. 2022, 13, 774060. [Google Scholar] [CrossRef]
- Al-Debei, H.; Mugnai, S. Starch accumulation in the leaves of root-restricted pepper affects plant growth by a feedback-inhibition of the photosynthesis. Adv. Hortic. Sci. 2013, 25, 253–259. [Google Scholar] [CrossRef]
Pigment | Equation |
---|---|
Ca | (16.72 ∗ A665.2) − (9.16 ∗ A652.4) |
Cb | (34.09 ∗ A652.4) − (15.28 ∗ A665.2) |
Ca+b | (1.44 ∗ A665.2) − (24.93 ∗ A652.4) |
Carotenoids | (1000 ∗ A470 − 1.63 ∗ Ca − 104.96 ∗ Cb)/221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandel, S.; Campbell, N.; Abdulkadir, A.; Moore, K.; Rosby, R.; Hossain, E. Assessment of Growth and Physiological Responses of Lemna minor Exposed to 4-Aminodiphenylamine, a Tire Wear Compound. Pollutants 2025, 5, 20. https://doi.org/10.3390/pollutants5030020
Kandel S, Campbell N, Abdulkadir A, Moore K, Rosby R, Hossain E. Assessment of Growth and Physiological Responses of Lemna minor Exposed to 4-Aminodiphenylamine, a Tire Wear Compound. Pollutants. 2025; 5(3):20. https://doi.org/10.3390/pollutants5030020
Chicago/Turabian StyleKandel, Shila, Naja’Ree Campbell, Abubakar Abdulkadir, Kristin Moore, Raphyel Rosby, and Ekhtear Hossain. 2025. "Assessment of Growth and Physiological Responses of Lemna minor Exposed to 4-Aminodiphenylamine, a Tire Wear Compound" Pollutants 5, no. 3: 20. https://doi.org/10.3390/pollutants5030020
APA StyleKandel, S., Campbell, N., Abdulkadir, A., Moore, K., Rosby, R., & Hossain, E. (2025). Assessment of Growth and Physiological Responses of Lemna minor Exposed to 4-Aminodiphenylamine, a Tire Wear Compound. Pollutants, 5(3), 20. https://doi.org/10.3390/pollutants5030020