A Risk Preference-Based Optimization Model for User-Side Energy Storage System Configuration from the Investor’s Perspective
Abstract
:1. Introduction
2. System Description and Modeling
2.1. BESS Economic Benefit Model
2.2. Conditional Risk Value Theory and Its Applications
2.3. BESS Full Life Cycle Charge and Discharge Model
2.4. GAMS Performs Model Solving
3. Example Testing and Result Analysis
3.1. Parameter Description
3.2. Analysis of Calculation Example Results
3.2.1. Analysis of Economic Characteristics of Different Batteries
3.2.2. The Impact of Different Risk Factors on User-Side Energy Storage Configuration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Liu, N.; Chen, F.; Wang, Y.; Mao, J. Progress and prospects of energy storage technology research: Based on multidimensional comparison. J. Energy Storage 2024, 75, 109710. [Google Scholar] [CrossRef]
- Hong, J.; Liang, F.; Yang, H. Research progress, trends and prospects of big data technology for new energy power and energy storage system. Energy Rev. 2023, 2, 100036. [Google Scholar] [CrossRef]
- Yi, Y.; Chang, L.; Wu, B.; Zhao, J.; Peng, H.; Li, L.; Wang, A. Life Cycle Assessment of Energy Storage Technologies for New Power Systems under Dual-Carbon Target: A Review. Energy Technol. 2024, 12, 2301129. [Google Scholar] [CrossRef]
- Rana, M.M.; Uddin, M.; Sarkar, M.R.; Meraj, S.T.; Shafiullah, G.; Muyeen, S.; Islam, M.A.; Jamal, T. Applications of energy storage systems in power grids with and without renewable energy integration—A comprehensive review. J. Energy Storage 2023, 68, 107811. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Zeng, J.; Tang, S.; Xiong, S. Future of sustainable renewable-based energy systems in smart city industry: Interruptible load scheduling perspective. Sol. Energy 2023, 263, 111866. [Google Scholar] [CrossRef]
- Liu, Y.; He, Q.; Shi, X.; Zhang, Q.; An, X. Energy storage in China: Development progress and business model. J. Energy Storage 2023, 72, 108240. [Google Scholar] [CrossRef]
- Xia, Y.; Xu, Q.; Chen, L.; Du, P. The flexible roles of distributed energy storages in peer-to-peer transactive energy market: A state-of-the-art review. Appl. Energy 2022, 327, 120085. [Google Scholar] [CrossRef]
- Jiao, J.; Long, Z.; Zhang, J.; He, P. Technical and Economic Analysis of Electrochemical Energy Storage in User-side Applications. In Proceedings of the 2024 6th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 28–31 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1308–1311. [Google Scholar]
- Vaka, S.S.K.R.; Matam, S.K. Optimal Sizing and Management of Battery Energy Storage Systems in Microgrids for Operating Cost Minimization. Electr. Power Compon. Syst. 2021, 49, 1319–1332. [Google Scholar] [CrossRef]
- Singh, B.; Kumar, A. Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program. Energy 2023, 278, 127867. [Google Scholar] [CrossRef]
- Liu, Z.; Su, T.; Quan, Z.; Wu, Q.; Wang, Y. Review on the Optimal Configuration of Distributed Energy Storage. Energies 2023, 16, 5426. [Google Scholar] [CrossRef]
- Chatzigeorgiou, N.G.; Theocharides, S.; Makrides, G.; Georghiou, G.E. A review on battery energy storage systems: Applications, developments, and research trends of hybrid installations in the end-user sector. J. Energy Storage 2024, 86, 111192. [Google Scholar] [CrossRef]
- Nadeem, T.B.; Siddiqui, M.; Khalid, M.; Asif, M. Distributed energy systems: A review of classification, technologies, applications, and policies. Energy Strategy Rev. 2023, 48, 101096. [Google Scholar] [CrossRef]
- Song, H.; Liu, C.; Amani, A.M.; Gu, M.; Jalili, M.; Meegahapola, L.; Dickeson, G. Smart optimization in battery energy storage systems: An overview. Energy AI 2024, 17, 100378. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Hasanien, H.M.; Farag, H.E.; Orman, W.A. Energy management of multi-area islanded hybrid microgrids: A stochastic approach. IEEE Access 2023, 11, 101409–101424. [Google Scholar] [CrossRef]
- Zhang, M.; Li, W.; Yu, S.S.; Wen, K.; Muyeen, S. Day-ahead optimization dispatch strategy for large-scale battery energy storage considering multiple regulation and prediction failures. Energy 2023, 270, 126945. [Google Scholar] [CrossRef]
- Xuan, A.; Shen, X.; Guo, Q.; Sun, H. A conditional value-at-risk based planning model for integrated energy system with energy storage and renewables. Appl. Energy 2021, 294, 116971. [Google Scholar] [CrossRef]
- Zhang, D.; Li, J.; Liu, X.; Guo, J.; Xu, S. A stochastic optimization method for energy storage sizing based on an expected value model. Energies 2019, 12, 702. [Google Scholar] [CrossRef]
- Liu, K.; Jia, D.; Sun, Y.; Wei, C.; Geng, G. Optimal allocation of photovoltaic energy storage on user side and benefit analysis of multiple entities. Energy Rep. 2022, 8, 1–13. [Google Scholar] [CrossRef]
- Borenstein, S.; Bushnell, J.; Mansur, E. The economics of electricity reliability. J. Econ. Perspect. 2023, 37, 181–206. [Google Scholar] [CrossRef]
- Fan, W.; Tan, Z.; Li, F.; Zhang, A.; Ju, L.; Wang, Y.; De, G. A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response. Energy 2023, 263, 125783. [Google Scholar] [CrossRef]
- Soroudi, A. Power System Optimization Modeling in GAMS; Springer: Berlin/Heidelberg, Germany, 2017; Volume 78. [Google Scholar]
- Kumar, N.; Dahiya, S.; Singh Parmar, K.P. Multi-objective economic emission dispatch optimization strategy considering battery energy storage system in islanded microgrid. J. Oper. Autom. Power Eng. 2024, 12, 296–311. [Google Scholar]
- Bohórquez-Álvarez, D.P.; Niño-Perdomo, K.D.; Montoya, O.D. Optimal Load Redistribution in Distribution Systems Using a Mixed-Integer Convex Model Based on Electrical Momentum. Information 2023, 14, 229. [Google Scholar] [CrossRef]
Parameter | NAS | VRB | VRLA | Li-Ion |
---|---|---|---|---|
Cp (USD/kW) | 300 | 320 | 230 | 288 |
Ce (USD/kW·h) | 145 | 80 | 110 | 160 |
Cm (USD/kW·a) | 9 | 9 | 11 | 10 |
ƞ/% | 80 | 70 | 85 | 90 |
T/a | 15 | 15 | 10 | 15 |
Parameter | Numerical Value |
---|---|
PV conversion efficiency | 20% |
Government subsidy income | 2.75 USD/MW·h |
Electricity transmission cost | 20 USD/MW·h |
Average annual load growth rate | 1.5% |
Power grid upgrade and transformation cost | USD 300,000 |
Inflation rate | 1.5% |
Discount rate | 9% |
Investors | Type | Risk Coefficient | Risk |
---|---|---|---|
A | Radical | 0.05–0.1 | High |
B | More radical | 0.1–0.5 | Higher |
C | More conservative | 0.5–1 | Lower |
D | Conservative | 1–2 | Low |
Economic Indicators | VRB | Li-Con | NAS | VRLA |
---|---|---|---|---|
net income/millions USD | 0.411 | 0.634 | 0.492 | 4.448 |
total cost/millions USD | 0.770 | 1.499 | 1.591 | 1.010 |
annual return/% | 7.64 | 6.3 | 3.42 | 6.43 |
risk | High | Higher | Lower | Low |
L | Parameter | VRB | Li-Con | NAS | VRLA |
---|---|---|---|---|---|
0.05 | Power/MW | 14.2 | 5.8 | 4.2 | 3.6 |
Capacity/MW·h | 92.2 | 36 | 24.4 | 28 | |
0.2 | Power/MW | 13.2 | 3.6 | 6.2 | 4.8 |
Capacity/MW·h | 84.4 | 28.4 | 36 | 37.4 | |
0.8 | Power/MW | 10.4 | 1.4 | 8.4 | 7.6 |
Capacity/MW·h | 66.4 | 14.6 | 48.8 | 56.4 | |
1.5 | Power/MW | 9.4 | 0.8 | 11.2 | 8.4 |
Capacity/MW·h | 47.2 | 12.2 | 65 | 77.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Sun, Y.; Su, X. A Risk Preference-Based Optimization Model for User-Side Energy Storage System Configuration from the Investor’s Perspective. Electricity 2025, 6, 3. https://doi.org/10.3390/electricity6010003
Gao J, Sun Y, Su X. A Risk Preference-Based Optimization Model for User-Side Energy Storage System Configuration from the Investor’s Perspective. Electricity. 2025; 6(1):3. https://doi.org/10.3390/electricity6010003
Chicago/Turabian StyleGao, Jinming, Yixin Sun, and Xianlong Su. 2025. "A Risk Preference-Based Optimization Model for User-Side Energy Storage System Configuration from the Investor’s Perspective" Electricity 6, no. 1: 3. https://doi.org/10.3390/electricity6010003
APA StyleGao, J., Sun, Y., & Su, X. (2025). A Risk Preference-Based Optimization Model for User-Side Energy Storage System Configuration from the Investor’s Perspective. Electricity, 6(1), 3. https://doi.org/10.3390/electricity6010003