How Does Mycorrhiza Interact with Different Levels of Fertilization on Prosopis alba? †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Mycorrhizal: Isolation, Multiplication and Application of AMF Inocula
2.3. Morphological Characteristics
2.4. Mycorrhizal Response
2.5. Biochemical Characteristics
2.6. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Evaluation of the Interaction Effect of AMF with Chemical Fertilizer
3.1.1. Morphological Response
3.1.2. Mycorrhizal Response
3.1.3. Biochemical Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babalola, O.O. Beneficial Bacteria of Agricultural Importance. Biotechnol. Lett. 2010, 32, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Babalola, O.O.; Sanni, A.I.; Odhiambo, G.D.; Torto, B. Plant Growth-Promoting Rhizobacteria Do Not Pose Any Deleterious Effect on Cowpea and Detectable Amounts of Ethylene Are Produced. World J. Microbiol. Biotechnol. 2007, 23, 747–752. [Google Scholar] [CrossRef]
- Hou, M.P.; Oluranti, B.O. Evaluation of Plant Growth Promoting Potential of Four Rhizobacterial Species for Indigenous System. J. Cent. South Univ. 2013, 20, 164–171. [Google Scholar] [CrossRef]
- Alori, E.; Dare, M.; Babaloba, O. Sustainable Agriculture Reviews. In Sustainable Agriculture Reviews; Springer: Berlin/Heidelberg, Germany, 2012; Volume 11, pp. 281–307. ISBN 978-94-007-5448-5. [Google Scholar]
- H.M.S.P.Madawala Arbuscular Mycorrhizal Fungi as Biofertilizers: Current Trends, Challenges, and Future Prospects. In Biofertilizers Advances in Bio-Inoculant; Amitava, R.; Vijay, S.; Manoj, P.; Sing, H.B.; Sing, A.K. (Eds.) Elsevier: Amsterdam, The Netherlands, 2021; Volume 1, pp. 83–93. ISBN 9780128216675. [Google Scholar]
- Vandresen, J.; Nishidate, F.R.; Torezan, J.M.D.; Zangara, W. Inoculação de Fungos Micorrízicos Arbusculares e Adubação Na Formação e Pós-Transplante de Mudas de Cinco Espécies Arbóreas Nativas Do Sul Do Brasil. Acta Bot. Bras. 2007, 21, 753–765. [Google Scholar] [CrossRef] [Green Version]
- Senilliani, M.G.; Brassiolo, M.; Bruno, C. Dominant Height Curves and Site Index in Prosopis Alba Plantations. AgriScientia 2021, 38, 13–25. [Google Scholar] [CrossRef]
- Sun, Z.; Song, J.; Xin, X.; Xie, X.; Zhao, B. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses during AM Symbiosis. Front. Microbiol. 2018, 9, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balestrini, R.; Lumini, E.; Borriello, R.; Bianciotto, V. Plant Soil Biota Interactions. In Soil Microbiology, Ecology and Biochemistry; Academic Press: London, UK, 2015; pp. 311–329. ISBN 9780124159556. [Google Scholar]
- Cabrera, A.L. Fitogeografía de La República Argentina. Bol. Soc. Argent. Bot. 1971, 14, 1–42. [Google Scholar]
- Sagadin, M.B.; Monteoliva, M.I.; Luna, C.M.; Cabello, M.N. Diversidad e Infectividad de Hongos Micorrícicos Arbusculares Nativos Provenientes de Algarrobales Del Parque Chaqueño Argentino Con Características Edafoclimáticas Contrastantes. AgriScientia 2018, 35, 19. [Google Scholar] [CrossRef] [Green Version]
- Salto, C.S.; Sagadin, M.B.; Luna, C.M.; Oberschelp, G.P.J.; Harrand, L.; Cabello, M.N. Interactions between Mineral Fertilization and Arbuscular Mycorrhizal Fungi Improve Nursery Growth and Drought Tolerance of Prosopis alba Seedlings. Agrofor. Syst. 2020, 94, 103–111. [Google Scholar] [CrossRef]
- Cavagnaro, T.R.; Smith, F.A.; Ayling, S.M.; Smith, S. Growth and Phosphorus Nutrition of a Paris-type Arbuscular Mycorrhizal Symbiosis. New Phytol. 2003, 157, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Santacruz-García, A.C.; Senilliani, M.G.; Gómez, A.T.; Ewens, M.; Yonny, M.E.; Villalba, G.F.; Nazareno, M.A. Biostimulants as Forest Protection Agents: Do These Products Have an Effect against Abiotic Stress on a Forest Native Species? Aspects to Elucidate Their Action Mechanisms. For. Ecol. Manag. 2022, 522, 120446. [Google Scholar] [CrossRef]
- Malusa, E.; Sas-Paszt, L.; Popinska, W.; Zurawich, E. The Effect of a Substrate, Containing Arbuscular Mycorrhizal Fungi, and Rhizosphere Microorganisms (Trichoderma, Bacillus, Pseudomonas and Streptomyces), and Foliar Fertilization on Growth Response and Rhizosphere PH of Three Strawberry Cultivars. Int. J. Fruit Sci. 2007, 6, 25–41. [Google Scholar] [CrossRef]
- Zangaro, W.; Torezan, J.; Domingues; Rostirola, L.; de Souza, P.; Nogueira, M. Influência de Micorrizas, Substratos Orgânicos e Volume de Recipientes Para o Crescimento de Heliocarpus popayanensis Kunth. CERNE 2015, 21, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Veiga, R.S.L.; Jansa, J.; Frossard, E.; Van der Heijden, M.G. Can Arbuscular Mycorrhizal Fungi Reduce the Growth of Agricultural Weeds? PLoS ONE 2011, 6, e27825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santacruz-García, A.; Bravo, S.; Del Corro, F.; García, E.; Molina-Terrén, D.; Nazareno, M. How Do Plants Respond Biochemically to Fire? The Role of Photosynthetic Pigments and Secondary Metabolites in the Post-Fire Resprouting Response. Forests 2021, 12, 56. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Sun, S.; Mu, C.; Yan, X. Effects of Arbuscular Mycorrhizal Fungi on the Growth, Photosynthesis and Photosynthetic Pigments of Leymus Chinensis Seedlings under Salt-Alkali Stress and Nitrogen Deposition. Sci. Total Environ. 2017, 576, 234–241. [Google Scholar] [CrossRef] [PubMed]
Treatments | SM | M1 | M2 |
---|---|---|---|
Morphological variables | |||
SI | 9.4 ± 0.3 A | 9.1 ± 0.3 A | 8.9 ± 0.3 A |
RDW * | 1.13 ± 0.1 A | 0.84 ± 0.1 AB | 0.73 ± 0.1 B |
ADW | 1.71 ± 0.1 A | 1.71 ± 0.1 A | 1.75 ± 0.1 A |
Treatments | SM | M1 | M2 |
---|---|---|---|
Biochemical variables | |||
Carotenoids and xanthophylls *** | 228.67 ± 6.8 A | 188.28 ± 6.8 B | 186.04 ± 6.8 B |
Chlorophylls ** | 1258.85 ± 51.2 A | 1065.32 ± 51.2 B | 1054.34 ± 51.2 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senilliani, M.G.; Guzmán, A.d.V.; Gomez, A.T.; Santacruz-García, A.C.; Sagadin, M.; Ewens, M.; Coria, C.; Gómez, J.; Frias, R.; Nazareno, M.A. How Does Mycorrhiza Interact with Different Levels of Fertilization on Prosopis alba? Environ. Sci. Proc. 2022, 22, 31. https://doi.org/10.3390/IECF2022-13088
Senilliani MG, Guzmán AdV, Gomez AT, Santacruz-García AC, Sagadin M, Ewens M, Coria C, Gómez J, Frias R, Nazareno MA. How Does Mycorrhiza Interact with Different Levels of Fertilization on Prosopis alba? Environmental Sciences Proceedings. 2022; 22(1):31. https://doi.org/10.3390/IECF2022-13088
Chicago/Turabian StyleSenilliani, María Gracia, Analía del Valle Guzmán, Adriana Teresita Gomez, Ana Carolina Santacruz-García, Monica Sagadin, Mauricio Ewens, Cristian Coria, Joaquín Gómez, Rodrigo Frias, and Mónica Azucena Nazareno. 2022. "How Does Mycorrhiza Interact with Different Levels of Fertilization on Prosopis alba?" Environmental Sciences Proceedings 22, no. 1: 31. https://doi.org/10.3390/IECF2022-13088
APA StyleSenilliani, M. G., Guzmán, A. d. V., Gomez, A. T., Santacruz-García, A. C., Sagadin, M., Ewens, M., Coria, C., Gómez, J., Frias, R., & Nazareno, M. A. (2022). How Does Mycorrhiza Interact with Different Levels of Fertilization on Prosopis alba? Environmental Sciences Proceedings, 22(1), 31. https://doi.org/10.3390/IECF2022-13088