Remote Sensing for Precise Nutrient Management in Agriculture †
Abstract
:1. Introduction
2. Remote Sensing Applications
2.1. Role of Remote Sensing in Nutrient Management
2.2. Types of Remote Sensing
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Auernhammer, H. Precision farming the environmental challenge. Comput. Electron. Agric. 2001, 30, 31–43. [Google Scholar] [CrossRef]
- Schellberg, J.; Hill, M.J.; Gerhards, R.; Rothmund, M.; Braun, M. Precision agriculture on grassland: Applications, perspectives and constraints. Eur. J. Agron. 2008, 29, 59–71. [Google Scholar] [CrossRef]
- Liaghat, S.; Balasundram, S.K. A review: The role of remote sensing in precision agriculture. Am. J. Agric. Biol. Sci. 2010, 5, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Pandey, P.C.; Petropoulos, G.P.; Pavlides, A.; Srivastava, P.K.; Koutsias, N.; Bao, Y. Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends. In Hyperspectral Remote Sensing: Theory and Applications; Pandey, P.C., Srivastava, P.K., Heiko Balzter, H., Bhattacharya, B., Eds.; Elsevier: Amsterdam, Netherlands, 2020; pp. 121–146. ISBN 9780081028940. [Google Scholar]
- Steven, M.D.; Clark, J.A. Applications of remote sensing in agriculture-A Review. Int. J. Current Microbiol. App. Sci. 2013, 8, 2270–2283. [Google Scholar]
- Chang, C.Y.; Zhou, R.; Kira, O.; Marri, S.; Skovira, J.; Gu, L.; Sun, Y. An Unmanned Aerial System (UAS) for concurrent measurements of solar-induced chlorophyll fluorescence and hyperspectral reflectance toward improving crop monitoring. Agric. For. Meteorol. 2020, 294, 108145. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2007; pp. 1–28. [Google Scholar]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote. Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Casa, R.; Cavalieri, A.; Cascio, B.L. Nitrogen fertilisation management in precision agriculture: A preliminary application example on maize. Ital. J. Agron. 2011, 6, e5. [Google Scholar] [CrossRef] [Green Version]
- Hedley, C. The role of precision agriculture for improved nutrient management on farms. J. Sci. Food Agric. 2015, 95, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Xu, W.; He, Z.; Zhao, W.; Yang, M. Advances in plant nutrition diagnosis based on remote sensing and computer application. Neural Comput. Appl. 2020, 32, 16833–16842. [Google Scholar] [CrossRef]
- Song, Y.Q.; Zhao, X.; Su, H.Y.; Li, B.; Hu, Y.M.; Cui, X.S. Predicting spatial variations in soil nutrients with hyperspectral remote sensing at regional scale. Sensors 2018, 18, 3086. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samreen, T.; Tahir, S.; Arshad, S.; Kanwal, S.; Anjum, F.; Nazir, M.Z.; Sidra-Tul-Muntaha. Remote Sensing for Precise Nutrient Management in Agriculture. Environ. Sci. Proc. 2022, 23, 32. https://doi.org/10.3390/environsciproc2022023032
Samreen T, Tahir S, Arshad S, Kanwal S, Anjum F, Nazir MZ, Sidra-Tul-Muntaha. Remote Sensing for Precise Nutrient Management in Agriculture. Environmental Sciences Proceedings. 2022; 23(1):32. https://doi.org/10.3390/environsciproc2022023032
Chicago/Turabian StyleSamreen, Tayyaba, Sidra Tahir, Samia Arshad, Sehrish Kanwal, Faraz Anjum, Muhammad Zulqernain Nazir, and Sidra-Tul-Muntaha. 2022. "Remote Sensing for Precise Nutrient Management in Agriculture" Environmental Sciences Proceedings 23, no. 1: 32. https://doi.org/10.3390/environsciproc2022023032
APA StyleSamreen, T., Tahir, S., Arshad, S., Kanwal, S., Anjum, F., Nazir, M. Z., & Sidra-Tul-Muntaha. (2022). Remote Sensing for Precise Nutrient Management in Agriculture. Environmental Sciences Proceedings, 23(1), 32. https://doi.org/10.3390/environsciproc2022023032