Estimation of Crop Production and CO2 Fluxes Using Remote Sensing: Application to a Winter Wheat/Sunflower Rotation †
Abstract
:1. Introduction
2. Experiments
2.1. Study Area
2.2. Meteorological, Fluxes, and Satellite Data
2.3. Methods
3. Results
3.1. Local Validation at FR-Aur
3.2. Model’s Upscaling
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grant, R.F.; Arkebauer, T.J.; Dobermann, A.; Hubbard, K.G.; Schimelfenig, T.T.; Suyker, A.E.; Verma, S.B.; Walters, D.T. Net Biome Productivity of Irrigated and Rainfed Maize–Soybean Rotations: Modeling vs. Measurements. Agron. J. 2007, 99, 1404. [Google Scholar] [CrossRef]
- Calvet, J.-C.; Noilhan, J.; Roujean, J.-L.; Bessemoulin, P.; Cabelguenne, M.; Olioso, A.; Wigneron, J.-P. An interactive vegetation SVAT model tested against data from six contrasting sites. Agric. For. Meteorol. 1998, 92, 73–95. [Google Scholar] [CrossRef]
- Krinner, G.; Viovy, N.; Noblet-Ducoudré, N. de; Ogée, J.; Polcher, J.; Friedlingstein, P.; Ciais, P.; Sitch, S.; Prentice, I.C. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model stics. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Donatelli, M.; Nelson, R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Jones, C.A.; Kiniry, J.R.; Dyke, P.T. CERES-Maize: A Simulation Model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986; ISBN 978-0-89096-269-5. [Google Scholar]
- Pique, G.; Fieuzal, R.; Al Bitar, A.; Veloso, A.; Tallec, T.; Brut, A.; Ferlicoq, M.; Zawilski, B.; Dejoux, J.-F.; Gibrin, H.; et al. Estimation of daily CO2 fluxes and of the components of the carbon budget for winter wheat by the assimilation of Sentinel 2-like remote sensing data into a crop model. Geoderma 2020, 376, 114428. [Google Scholar] [CrossRef]
- Pique, G.; Fieuzal, R.; Debaeke, P.; Al Bitar, A.; Tallec, T.; Ceschia, E. Combining High-Resolution Remote Sensing Products with a Crop Model to Estimate Carbon and Water Budget Components: Application to Sunflower. Remote Sens. 2020, 12, 2967. [Google Scholar] [CrossRef]
- Durand, Y.; Brun, E.; Merindol, L.; Guyomarc’h, G.; Lesaffre, B.; Martin, E. A meteorological estimation of relevant parameters for snow models. Ann. Glaciol. 1993, 18, 65–71. [Google Scholar] [CrossRef]
- Baret, F.; Hagolle, O.; Geiger, B.; Bicheron, P.; Miras, B.; Huc, M.; Berthelot, B.; Niño, F.; Weiss, M.; Samain, O.; et al. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION. Remote Sens. Environ. 2007, 110, 275–286. [Google Scholar] [CrossRef]
- Duchemin, B.; Maisongrande, P.; Boulet, G.; Benhadj, I. A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ. Model. Softw. 2008, 23, 876–892. [Google Scholar] [CrossRef]
- Duchemin, B.; Fieuzal, R.; Rivera, M.; Ezzahar, J.; Jarlan, L.; Rodriguez, J.; Hagolle, O.; Watts, C. Impact of Sowing Date on Yield and Water Use Efficiency of Wheat Analyzed through Spatial Modeling and FORMOSAT-2 Images. Remote Sens. 2015, 7, 5951–5979. [Google Scholar] [CrossRef]
- Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder--Mead Simplex Method in Low Dimensions. SIAM J. Optim. 1998, 9, 112–147. [Google Scholar] [CrossRef]
R² | RMSE [gC.m−2.d−1] | Mean Bias [gC.m−2.d−1] | ||
---|---|---|---|---|
GPP | 2-year period | 0.93 | 1.49 | 0.28 |
Winter wheat season | 0.94 | 1.48 | 0.38 | |
Regrowth period | 0.03 | 1.46 | 1.15 | |
Sunflower season | 0.92 | 1.50 | 0.09 | |
RECO | 2-year period | 0.83 | 0.70 | 0.00 |
Winter wheat season | 0.88 | 0.66 | 0.07 | |
Bare soil period | 0.05 | 0.93 | −0.08 | |
Regrowth period | 0.01 | 1.30 | 0.75 | |
Sunflower season | 0.86 | 0.66 | −0.04 | |
NEE | 2-year period | 0.86 | 1.06 | −0.06 |
Winter wheat season | 0.89 | 1.10 | 0.12 | |
Bare soil period | 0.10 | 1.58 | −1.02 | |
Regrowth period | 0.02 | 1.11 | 0.31 | |
Sunflower season | 0.86 | 0.80 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pique, G.; Wijmert, T.; Fieuzal, R.; Ceschia, E. Estimation of Crop Production and CO2 Fluxes Using Remote Sensing: Application to a Winter Wheat/Sunflower Rotation. Environ. Sci. Proc. 2021, 4, 15. https://doi.org/10.3390/ecas2020-08141
Pique G, Wijmert T, Fieuzal R, Ceschia E. Estimation of Crop Production and CO2 Fluxes Using Remote Sensing: Application to a Winter Wheat/Sunflower Rotation. Environmental Sciences Proceedings. 2021; 4(1):15. https://doi.org/10.3390/ecas2020-08141
Chicago/Turabian StylePique, Gaétan, Taeken Wijmert, Rémy Fieuzal, and Eric Ceschia. 2021. "Estimation of Crop Production and CO2 Fluxes Using Remote Sensing: Application to a Winter Wheat/Sunflower Rotation" Environmental Sciences Proceedings 4, no. 1: 15. https://doi.org/10.3390/ecas2020-08141
APA StylePique, G., Wijmert, T., Fieuzal, R., & Ceschia, E. (2021). Estimation of Crop Production and CO2 Fluxes Using Remote Sensing: Application to a Winter Wheat/Sunflower Rotation. Environmental Sciences Proceedings, 4(1), 15. https://doi.org/10.3390/ecas2020-08141