Neglected Issues in T Lymphocyte Metabolism: Purine Metabolism and Control of Nuclear Envelope Regulatory Processes. New Insights into Triggering Potential Metabolic Fragilities
Abstract
:1. Introduction
2. Purine and Purino-Receptors Role
2.1. Balance Between ATP/GTP and the Adenosine/Guanosine Pool
2.2. Nucleoside Transporters in the Regulation of Purinergic Signals
2.3. Effects of Purinergic Signaling in Immune Cells
3. T Lymphocytes and Nuclear Envelope
3.1. The Nuclear Issue During Immune Cells Regulation
3.2. Nuclear Envelope and Nuclear Transport Regulation in T Lymphocyte
3.3. Metabolic Activated T Lymphocytes Produce Chromatin Change
4. Purine Metabolism and Reorganization of Nuclear/Cytoplasmic Transport Under Physiological and Pathological Conditions
4.1. Nervous System
4.2. Viral Infections: HIV
4.3. Cancer
4.4. Immunodeficiency
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADA | Adenosine Deaminase |
ADSL | Adenylosuccinate lyase |
ADSS | Adenylosuccinate synthase |
AKT | Serina-threonina kinase 1/Protein kinase B |
APRT | Adenine phosphoribosyltransferase |
APs | Alkaline phosphatases |
cGAMP | Cyclic guanosine monophosphateadenosine monophosphate |
cGAS | Cyclic GMP-AMP synthase |
CMR1 | Exportin 1 |
DDP4 | Dipeptidyl Peptidase-4 |
EMT | Epithelial-mesenchymal transition |
eN | Ecto-5′-nucleotidase |
E-NPP | Ecto-nucleotide pyrophosphatase/phosphodiesterase |
E-NTPDase | Ecto-nucleoside triphosphate diphosphohydrolase |
EPHA4 | Ephrin type-A receptor 4 |
FOXO1 | Forkhead box O1 |
GAP | GTPase-activating protein |
GEF | Guanine nucleotide exchange factors |
GEVALs | GTP-Evaluators |
GMPR | Guanosine monophosphate reductase |
GMPS | Guanosine monophosphate synthetase |
GPI | Glycosylphosphatidylinositol |
GUK | Guanylate kinase |
hCTN | Human concentrative nucleoside transporter |
hENT | Human equilibrative nucleoside transporter |
HPRT | Hypoxanthine-guanine phosphoribosyl transferase |
HSC | Hematopoietic stem cell |
Impβ1/β2 | Importin β1/β2 |
Imp7 | Importin 7 |
IMPDH | Inosine-5′-monophosphate dehydrogenase |
INM | Inner nuclear membrane |
LINC | Linker of nucleoskeleton and cytoskeleton complex |
MSU | Monosodium urate |
mTOR | Mammalian target of rapamycin |
MVP | Major vault protein |
NCT | Nucleocytoplasmatic trasnsport |
NE | Nuclear Envelope |
NES | Nuclear export signal |
NF-kB | Nuclear factor-kappa B |
NME | Nucleoside diphosphate kinase |
NPC | Nuclear pore complex |
NTR | Nuclear transport receptors |
ONM | Outer nuclear membrane |
PBL | Peripheral blood lymphocyte |
PD1/L1 | Programmed cell death protein 1/ligand 1 |
PI3K | Phosphatidylinositol 3-kinase |
PNP | Purine nucleotide phosphorylase |
PRPP | Phosphoribosyl pyrophosphate |
PTEN | Phosphatase and tensin homolog |
RAN | Ran-related nuclear protein |
RANBP1 | Ran-binding protein 1 |
RANGAP1 | Ran GTPase-activating protein |
RORγt | Retinoic acid receptor-related-orphan-receptor-γt |
RRE | Rev response element |
RTC | Replication-transcription complex |
SCID | Severe combined immunodeficiency |
SGK1 | Serum and glucocorticoid-regulated kinase 1 |
SLC | Solute carriers |
STING | Stimulator of interferon response CGAMP interactor 1 |
TAM | Tumor-associated macrophages |
TCR | T-cell receptor |
TILs | Tumour-infiltrating lymphocytes |
TLR | Toll-like receptor |
TME | Tumor microenvironment |
XO | Xanthine oxidase |
XPO1 | Exportin-1 |
References
- Huang, Z.; Xie, N.; Illes, P.; Di Virgilio, F.; Ulrich, H.; Semyanov, A.; Verkhratsky, A.; Sperlagh, B.; Yu, S.-G.; Huang, C.; et al. From Purines to Purinergic Signalling: Molecular Functions and Human Diseases. Signal Transduct. Target Ther. 2021, 6, 162. [Google Scholar] [CrossRef] [PubMed]
- Drury, A.N.; Szent-Györgyi, A. The Physiological Activity of Adenine Compounds with Especial Reference to Their Action upon the Mammalian Heart. J. Physiol. 1929, 68, 213–237. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G.; Boeynaems, J.-M. Purinergic Signalling and Immune Cells. Purinergic Signal. 2014, 10, 529–564. [Google Scholar] [CrossRef] [PubMed]
- Deaglio, S.; Robson, S.C. Ectonucleotidases as Regulators of Purinergic Signaling in Thrombosis, Inflammation, and Immunity. Adv. Pharmacol. 2011, 61, 301. [Google Scholar] [CrossRef]
- Ralevic, V.; Burnstock, G. Receptors for Purines and Pyrimidines. Pharmacol. Rev. 1998, 50, 413–492. [Google Scholar]
- Khakh, B.S.; North, R.A. Neuromodulation by Extracellular ATP and P2X Receptors in the CNS. Neuron 2012, 76, 51–69. [Google Scholar] [CrossRef]
- Hechler, B.; Gachet, C. Purinergic Receptors in Thrombosis and Inflammation. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2307–2315. [Google Scholar] [CrossRef]
- Scott, K.L.; Halfmann, C.T.; Hoefakker, A.D.; Purkayastha, P.; Wang, T.C.; Lele, T.P.; Roux, K.J. Nucleocytoplasmic Transport Rates Are Regulated by Cellular Processes That Modulate GTP Availability. bioRxiv 2023. bioRxiv:2023.12.29.573651. [Google Scholar] [CrossRef]
- Seegmiller, J.E.; Watanabe, T.; Shreier, M.H.; Waldmann, T.A. Immunological Aspects of Purine Metabolism. In Purine Metabolism in Man—II: Regulation of Pathways and Enzyme Defects; Müller, M.M., Kaiser, E., Seegmiller, J.E., Eds.; Springer US: Boston, MA, USA, 1977; pp. 412–433. ISBN 978-1-4613-4223-6. [Google Scholar]
- Di Virgilio, F.; Vuerich, M. Purinergic Signaling in the Immune System. Auton. Neurosci. 2015, 191, 117–123. [Google Scholar] [CrossRef]
- Cekic, C.; Linden, J. Purinergic Regulation of the Immune System. Nat. Rev. Immunol. 2016, 16, 177–192. [Google Scholar] [CrossRef]
- Selezneva, A.; Gibb, A.J.; Willis, D. The Nuclear Envelope as a Regulator of Immune Cell Function. Front. Immunol. 2022, 13, 840069. [Google Scholar] [CrossRef]
- Saez, A.; Herrero-Fernandez, B.; Gomez-Bris, R.; Somovilla-Crespo, B.; Rius, C.; Gonzalez-Granado, J.M. Lamin A/C and the Immune System: One Intermediate Filament, Many Faces. Int. J. Mol. Sci. 2020, 21, 6109. [Google Scholar] [CrossRef] [PubMed]
- Rocha-Perugini, V.; González-Granado, J.M. Nuclear Envelope Lamin-A as a Coordinator of T Cell Activation. Nucleus 2014, 5, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Hetzer, M.W.; Walther, T.C.; Mattaj, I.W. PUSHING THE ENVELOPE: Structure, Function, and Dynamics of the Nuclear Periphery. Annu. Rev. Cell. Dev. Biol. 2005, 21, 347–380. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Sun, X.; Chen, Z.; Ma, H.; Liu, Y. Super-Resolution Imaging of T Lymphocyte Activation Reveals Chromatin Decondensation and Disrupted Nuclear Envelope. Commun. Biol. 2024, 7, 717. [Google Scholar] [CrossRef]
- Kalab, P.; Heald, R. The RanGTP Gradient—A GPS for the Mitotic Spindle. J. Cell Sci. 2008, 121, 1577–1586. [Google Scholar] [CrossRef]
- Audia, S.; Brescia, C.; Dattilo, V.; D’Antona, L.; Calvano, P.; Iuliano, R.; Trapasso, F.; Perrotti, N.; Amato, R. RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases. Cancers 2023, 15, 486. [Google Scholar] [CrossRef]
- El-Tanani, M.; Nsairat, H.; Mishra, V.; Mishra, Y.; Aljabali, A.A.A.; Serrano-Aroca, Á.; Tambuwala, M.M. Ran GTPase and Its Importance in Cellular Signaling and Malignant Phenotype. Int. J. Mol. Sci. 2023, 24, 3065. [Google Scholar] [CrossRef]
- Bischoff, F.R.; Görlich, D. RanBP1 Is Crucial for the Release of RanGTP from Importin β-Related Nuclear Transport Factors. FEBS Lett. 1997, 419, 249–254. [Google Scholar] [CrossRef]
- Pastor-Anglada, M.; Pérez-Torras, S. Emerging Roles of Nucleoside Transporters. Front. Pharmacol. 2018, 9, 606. [Google Scholar] [CrossRef]
- Burnstock, G. Purinergic Signalling: Therapeutic Developments. Front. Pharmacol. 2017, 8, 661. [Google Scholar] [CrossRef]
- Rotondo, J.C.; Mazziotta, C.; Lanzillotti, C.; Stefani, C.; Badiale, G.; Campione, G.; Martini, F.; Tognon, M. The Role of Purinergic P2X7 Receptor in Inflammation and Cancer: Novel Molecular Insights and Clinical Applications. Cancers 2022, 14, 1116. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, F.; Tabucchi, A.; Perrett, D.; Pizzichini, M.; Rosi, F.; Pagani, R.; Marinello, E. Purine Metabolism in HIV-1 Virus-Infected T Lymphocyte Population. Biomed. Pharmacother. 1996, 50, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Heintzman, D.R.; Fisher, E.L.; Rathmell, J.C. Microenvironmental Influences on T Cell Immunity in Cancer and Inflammation. Cell. Mol. Immunol. 2022, 19, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Brescia, C.; Audia, S.; Pugliano, A.; Scaglione, F.; Iuliano, R.; Trapasso, F.; Perrotti, N.; Chiarella, E.; Amato, R. Metabolic Drives Affecting Th17/Treg Gene Expression Changes and Differentiation: Impact on Immune-Microenvironment Regulation. APMIS, 2024; online ahead of print. [Google Scholar] [CrossRef]
- Quéméneur, L.; Gerland, L.-M.; Flacher, M.; Ffrench, M.; Revillard, J.-P.; Genestier, L. Differential Control of Cell Cycle, Proliferation, and Survival of Primary T Lymphocytes by Purine and Pyrimidine Nucleotides1. J. Immunol. 2003, 170, 4986–4995. [Google Scholar] [CrossRef]
- Conley, J.M.; Gallagher, M.P.; Berg, L.J. T Cells and Gene Regulation: The Switching On and Turning Up of Genes after T Cell Receptor Stimulation in CD8 T Cells. Front. Immunol. 2016, 7, 76. [Google Scholar] [CrossRef]
- Schneider, E.; Winzer, R.; Rissiek, A.; Ricklefs, I.; Meyer-Schwesinger, C.; Ricklefs, F.L.; Bauche, A.; Behrends, J.; Reimer, R.; Brenna, S.; et al. CD73-Mediated Adenosine Production by CD8 T Cell-Derived Extracellular Vesicles Constitutes an Intrinsic Mechanism of Immune Suppression. Nat. Commun. 2021, 12, 5911. [Google Scholar] [CrossRef]
- Wang, T.; Gnanaprakasam, J.N.R.; Chen, X.; Kang, S.; Xu, X.; Sun, H.; Liu, L.; Rodgers, H.; Miller, E.; Cassel, T.A.; et al. Inosine Is an Alternative Carbon Source for CD8+-T-Cell Function under Glucose Restriction. Nat. Metab. 2020, 2, 635–647. [Google Scholar] [CrossRef]
- Saveljeva, S.; Sewell, G.W.; Ramshorn, K.; Cader, M.Z.; West, J.A.; Clare, S.; Haag, L.-M.; de Almeida Rodrigues, R.P.; Unger, L.W.; Iglesias-Romero, A.B.; et al. A Purine Metabolic Checkpoint That Prevents Autoimmunity and Autoinflammation. Cell Metab. 2022, 34, 106–124.e10. [Google Scholar] [CrossRef]
- Giuffrida, L.; Sek, K.; Henderson, M.A.; Lai, J.; Chen, A.X.Y.; Meyran, D.; Todd, K.L.; Petley, E.V.; Mardiana, S.; Mølck, C.; et al. CRISPR/Cas9 Mediated Deletion of the Adenosine A2A Receptor Enhances CAR T Cell Efficacy. Nat. Commun. 2021, 12, 3236. [Google Scholar] [CrossRef]
- Brescia, C.; Dattilo, V.; D’Antona, L.; Chiarella, E.; Tallerico, R.; Audia, S.; Rocca, V.; Iuliano, R.; Trapasso, F.; Perrotti, N.; et al. RANBP1, a Member of the Nuclear-Cytoplasmic Trafficking-Regulator Complex, Is the Terminal-Striking Point of the SGK1-Dependent Th17+ Pathological Differentiation. Front. Immunol. 2023, 14, 1213805. [Google Scholar] [CrossRef]
- Wu, C.; Chen, Z.; Xiao, S.; Thalhamer, T.; Madi, A.; Han, T.; Kuchroo, V. SGK1 Governs the Reciprocal Development of Th17 and Regulatory T Cells. Cell Rep. 2018, 22, 653–665. [Google Scholar] [CrossRef]
- Traut, T.W. Physiological Concentrations of Purines and Pyrimidines. Mol. Cell. Biochem. 1994, 140, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. Purinergic Nerves. Pharmacol. Rev. 1972, 24, 509–581. [Google Scholar] [PubMed]
- Junger, W.G. Immune Cell Regulation by Autocrine Purinergic Signalling. Nat. Rev. Immunol. 2011, 11, 201–212. [Google Scholar] [CrossRef]
- Castillo-Leon, E.; Dellepiane, S.; Fiorina, P. ATP and T-Cell-Mediated Rejection. Curr. Opin. Organ Transplant. 2018, 23, 34–43. [Google Scholar] [CrossRef]
- Lane, A.N.; Fan, T.W.-M. Regulation of Mammalian Nucleotide Metabolism and Biosynthesis. Nucleic Acids Res. 2015, 43, 2466–2485. [Google Scholar] [CrossRef] [PubMed]
- Syrovatkina, V.; Alegre, K.O.; Dey, R.; Huang, X.-Y. Regulation, Signaling and Physiological Functions of G-Proteins. J. Mol. Biol. 2016, 428, 3850–3868. [Google Scholar] [CrossRef]
- Zala, D.; Schlattner, U.; Desvignes, T.; Bobe, J.; Roux, A.; Chavrier, P.; Boissan, M. The Advantage of Channeling Nucleotides for Very Processive Functions. F1000Res 2017, 6, 724. [Google Scholar] [CrossRef]
- Kopra, K.; Mahran, R.; Yli-Hollo, T.; Tabata, S.; Vuorinen, E.; Fujii, Y.; Vuorinen, I.; Ogawa-Iio, A.; Hirayama, A.; Soga, T.; et al. Homogeneous Luminescent Quantitation of Cellular Guanosine and Adenosine Triphosphates (GTP and ATP) Using QT-LucGTP&ATP Assay. Anal. Bioanal. Chem. 2023, 415, 6689–6700. [Google Scholar] [CrossRef]
- Liu, J.; Hong, S.; Yang, J.; Zhang, X.; Wang, Y.; Wang, H.; Peng, J.; Hong, L. Targeting Purine Metabolism in Ovarian Cancer. J. Ovarian Res. 2022, 15, 93. [Google Scholar] [CrossRef]
- Natsumeda, Y.; Prajda, N.; Donohue, J.P.; Glover, J.L.; Weber, G. Enzymic Capacities of Purine de Novo and Salvage Pathways for Nucleotide Synthesis in Normal and Neoplastic Tissues. Cancer Res. 1984, 44, 2475–2479. [Google Scholar] [PubMed]
- Yin, J.; Ren, W.; Huang, X.; Deng, J.; Li, T.; Yin, Y. Potential Mechanisms Connecting Purine Metabolism and Cancer Therapy. Front. Immunol. 2018, 9, 1697. [Google Scholar] [CrossRef] [PubMed]
- Fairbanks, L.D.; Bofill, M.; Ruckemann, K.; Simmonds, H.A. Importance of Ribonucleotide Availability to Proliferating T-Lymphocytes from Healthy Humans. Disproportionate Expansion of Pyrimidine Pools and Contrasting Effects of de Novo Synthesis Inhibitors. J. Biol. Chem. 1995, 270, 29682–29689. [Google Scholar] [CrossRef]
- Pareek, V.; Pedley, A.M.; Benkovic, S.J. Human de Novo Purine Biosynthesis. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 1–16. [Google Scholar] [CrossRef]
- Pedley, A.M.; Benkovic, S.J. A New View into the Regulation of Purine Metabolism—The Purinosome. Trends. Biochem. Sci. 2017, 42, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; French, J.B.; Fang, Y.; Benkovic, S.J. The Purinosome, a Multi-Protein Complex Involved in the de Novo Biosynthesis of Purines in Humans. Chem. Commun. 2013, 49, c3cc41437j. [Google Scholar] [CrossRef]
- Knowles, J.R. Enzyme-Catalyzed Phosphoryl Transfer Reactions. Annu. Rev. Biochem. 1980, 49, 877–919. [Google Scholar] [CrossRef]
- Stagg, J.; Golden, E.; Wennerberg, E.; Demaria, S. The Interplay between the DNA Damage Response and Ectonucleotidases Modulates Tumor Response to Therapy. Sci. Immunol. 2023, 8, eabq3015. [Google Scholar] [CrossRef]
- Mustafa, S.J.; Morrison, R.R.; Teng, B.; Pelleg, A. Adenosine Receptors and the Heart: Role in Regulation of Coronary Blood Flow and Cardiac Electrophysiology. In Adenosine Receptors in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2009; Volume 193, pp. 161–188. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Ijzerman, A.P.; Jacobson, K.A.; Klotz, K.-N.; Linden, J. International Union of Pharmacology. XXV. Nomenclature and Classification of Adenosine Receptors. Pharmacol. Rev. 2001, 53, 527–552. [Google Scholar]
- Livingston, M.; Heaney, L.G.; Ennis, M. Adenosine, Inflammation and Asthma—A Review. Inflamm. Res. 2004, 53, 171–178. [Google Scholar] [CrossRef]
- Yegutkin, G.G.; Boison, D. ATP and Adenosine Metabolism in Cancer: Exploitation for Therapeutic Gain. Pharmacol. Rev. 2022, 74, 799–824. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, F.; Sarti, A.C.; Falzoni, S.; De Marchi, E.; Adinolfi, E. Extracellular ATP and P2 Purinergic Signalling in the Tumour Microenvironment. Nat. Rev. Cancer 2018, 18, 601–618. [Google Scholar] [CrossRef] [PubMed]
- Ayna, G.; Krysko, D.V.; Kaczmarek, A.; Petrovski, G.; Vandenabeele, P.; Fésüs, L. ATP Release from Dying Autophagic Cells and Their Phagocytosis Are Crucial for Inflammasome Activation in Macrophages. PLoS ONE 2012, 7, e40069. [Google Scholar] [CrossRef] [PubMed]
- Lépine, S.; Le Stunff, H.; Lakatos, B.; Sulpice, J.C.; Giraud, F. ATP-Induced Apoptosis of Thymocytes Is Mediated by Activation of P2X7 Receptor and Involves de Novo Ceramide Synthesis and Mitochondria. Biochim. Biophys. Acta (BBA)—Mol. Cell. Biol. Lipids 2006, 1761, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Romio, M.; Reinbeck, B.; Bongardt, S.; Hüls, S.; Burghoff, S.; Schrader, J. Extracellular Purine Metabolism and Signaling of CD73-Derived Adenosine in Murine Treg and Teff Cells. Am. J. Physiol.-Cell Physiol. 2011, 301, C530–C539. [Google Scholar] [CrossRef]
- Gorini, S.; Callegari, G.; Romagnoli, G.; Mammi, C.; Mavilio, D.; Rosano, G.; Fini, M.; Di Virgilio, F.; Gulinelli, S.; Falzoni, S.; et al. ATP Secreted by Endothelial Cells Blocks CX3CL1-Elicited Natural Killer Cell Chemotaxis and Cytotoxicity via P2Y11 Receptor Activation. Blood 2010, 116, 4492–4500. [Google Scholar] [CrossRef]
- Woehrle, T.; Yip, L.; Elkhal, A.; Sumi, Y.; Chen, Y.; Yao, Y.; Insel, P.A.; Junger, W.G. Pannexin-1 Hemichannel–Mediated ATP Release Together with P2X1 and P2X4 Receptors Regulate T-Cell Activation at the Immune Synapse. Blood 2010, 116, 3475–3484. [Google Scholar] [CrossRef]
- Kinsey, G.R.; Huang, L.; Jaworska, K.; Khutsishvili, K.; Becker, D.A.; Ye, H.; Lobo, P.I.; Okusa, M.D. Autocrine Adenosine Signaling Promotes Regulatory T Cell–Mediated Renal Protection. J. Am. Soc. Nephrol. 2012, 23, 1528–1537. [Google Scholar] [CrossRef]
- King, A.E.; Ackley, M.A.; Cass, C.E.; Young, J.D.; Baldwin, S.A. Nucleoside Transporters: From Scavengers to Novel Therapeutic Targets. Trends Pharmacol. Sci. 2006, 27, 416–425. [Google Scholar] [CrossRef]
- Bono, M.R.; Fernández, D.; Flores-Santibáñez, F.; Rosemblatt, M.; Sauma, D. CD73 and CD39 Ectonucleotidases in T Cell Differentiation: Beyond Immunosuppression. FEBS Lett. 2015, 589, 3454–3460. [Google Scholar] [CrossRef]
- Zimmermann, H.; Zebisch, M.; Sträter, N. Cellular Function and Molecular Structure of Ecto-Nucleotidases. Purinergic Signal. 2012, 8, 437–502. [Google Scholar] [CrossRef]
- Csóka, B.; Németh, Z.H.; Törő, G.; Koscsó, B.; Kókai, E.; Robson, S.C.; Enjyoji, K.; Rolandelli, R.H.; Erdélyi, K.; Pacher, P.; et al. CD39 Improves Survival in Microbial Sepsis by Attenuating Systemic Inflammation. FASEB J. 2015, 29, 25–36. [Google Scholar] [CrossRef]
- Dwyer, K.M.; Deaglio, S.; Gao, W.; Friedman, D.; Strom, T.B.; Robson, S.C. CD39 and Control of Cellular Immune Responses. Purinergic Signal. 2007, 3, 171–180. [Google Scholar] [CrossRef]
- Maliszewski, C.R.; Delespesse, G.J.; Schoenborn, M.A.; Armitage, R.J.; Fanslow, W.C.; Nakajima, T.; Baker, E.; Sutherland, G.R.; Poindexter, K.; Birks, C. The CD39 Lymphoid Cell Activation Antigen. Molecular Cloning and Structural Characterization. J. Immunol. 1994, 153, 3574–3583. [Google Scholar] [CrossRef]
- Eltzschig, H.K.; Köhler, D.; Eckle, T.; Kong, T.; Robson, S.C.; Colgan, S.P. Central Role of Sp1-Regulated CD39 in Hypoxia/Ischemia Protection. Blood 2009, 113, 224. [Google Scholar] [CrossRef]
- Thompson, L.F.; Eltzschig, H.K.; Ibla, J.C.; Wiele, C.J.V.D.; Resta, R.; Morote-Garcia, J.C.; Colgan, S.P. Crucial Role for Ecto-5′-Nucleotidase (CD73) in Vascular Leakage during Hypoxia. J. Exp. Med. 2004, 200, 1395. [Google Scholar] [CrossRef]
- Synnestvedt, K.; Furuta, G.T.; Comerford, K.M.; Louis, N.; Karhausen, J.; Eltzschig, H.K.; Hansen, K.R.; Thompson, L.F.; Colgan, S.P. Ecto-5′-Nucleotidase (CD73) Regulation by Hypoxia-Inducible Factor-1 Mediates Permeability Changes in Intestinal Epithelia. J. Clin. Investg. 2002, 110, 993–1002. [Google Scholar] [CrossRef]
- Regateiro, F.S.; Howie, D.; Nolan, K.F.; Agorogiannis, E.I.; Greaves, D.R.; Cobbold, S.P.; Waldmann, H. Generation of Anti-Inflammatory Adenosine Byleukocytes Is Regulated by TGF-β. Eur. J. Immunol. 2011, 41, 2955–2965. [Google Scholar] [CrossRef]
- Deaglio, S.; Dwyer, K.M.; Gao, W.; Friedman, D.; Usheva, A.; Erat, A.; Chen, J.-F.; Enjyoji, K.; Linden, J.; Oukka, M.; et al. Adenosine Generation Catalyzed by CD39 and CD73 Expressed on Regulatory T Cells Mediates Immune Suppression. J. Exp. Med. 2007, 204, 1257–1265. [Google Scholar] [CrossRef]
- Moncrieffe, H.; Nistala, K.; Kamhieh, Y.; Evans, J.; Eddaoudi, A.; Eaton, S.; Wedderburn, L.R. High Expression of the Ectonucleotidase CD39 on T Cells from the Inflamed Site Identifies Two Distinct Populations, One Regulatory and One Memory T Cell Population. J. Immunol. 2010, 185, 134–143. [Google Scholar] [CrossRef]
- Chalmin, F.; Mignot, G.; Bruchard, M.; Chevriaux, A.; Végran, F.; Hichami, A.; Ladoire, S.; Derangère, V.; Vincent, J.; Masson, D.; et al. Stat3 and Gfi-1 Transcription Factors Control Th17 Cell Immunosuppressive Activity via the Regulation of Ectonucleotidase Expression. Immunity 2012, 36, 362–373. [Google Scholar] [CrossRef]
- Lindley, E.R.; Pisoni, R.L. Demonstration of Adenosine Deaminase Activity in Human Fibroblast Lysosomes. Biochem. J. 1993, 290, 457–462. [Google Scholar] [CrossRef]
- Franco, R.; Pacheco, R.; Gatell, J.M.; Gallart, T.; Lluis, C. Enzymatic and Extraenzymatic Role of Adenosine Deaminase 1 in T-Cell-Dendritic Cell Contacts and in Alterations of the Immune Function. Crit. Rev. Immunol. 2007, 27, 459–509. [Google Scholar] [CrossRef]
- Bradford, K.L.; Moretti, F.A.; Carbonaro-Sarracino, D.A.; Gaspar, H.B.; Kohn, D.B. Adenosine Deaminase (ADA)-Deficient Severe Combined Immune Deficiency (SCID): Molecular Pathogenesis and Clinical Manifestations. J. Clin. Immunol. 2017, 37, 626–637. [Google Scholar] [CrossRef]
- Sander, S.; Müller, I.; Garcia-Alai, M.M.; Nicke, A.; Tidow, H. New Insights into P2X7 Receptor Regulation: Ca2+-Calmodulin and GDP Bind to the Soluble P2X7 Ballast Domain. J. Biol. Chem. 2022, 298, 102495. [Google Scholar] [CrossRef]
- Jain, J.; Almquist, S.J.; Ford, P.J.; Shlyakhter, D.; Wang, Y.; Nimmesgern, E.; Germann, U.A. Regulation of Inosine Monophosphate Dehydrogenase Type I and Type II Isoforms in Human Lymphocytes. Biochem. Pharmacol. 2004, 67, 767–776. [Google Scholar] [CrossRef]
- Spector, T.; Jones, T.E.; Miller, R.L. Reaction Mechanism and Specificity of Human GMP Reductase. Substrates, Inhibitors, Activators, and Inactivators. J. Biol. Chem. 1979, 254, 2308–2315. [Google Scholar] [CrossRef]
- Bianchi-Smiraglia, A.; Rana, M.S.; Foley, C.E.; Paul, L.M.; Lipchick, B.C.; Moparthy, S.; Moparthy, K.; Fink, E.E.; Bagati, A.; Hurley, E.; et al. Internally Ratiometric Fluorescent Sensors for Evaluation of Intracellular GTP Levels and Distribution. Nat. Methods 2017, 14, 1003–1009. [Google Scholar] [CrossRef]
- Wei, Z.; Yang, J. Role of Rho GTPases in the immune regulation of infection and inflammation. Chin. J. Schistosomiasis Control 2017, 29, 807–813. [Google Scholar] [CrossRef]
- Mzali, R.; Seguin, L.; Liot, C.; Auger, A.; Pacaud, P.; Loirand, G.; Thibault, C.; Pierre, J.; Bertoglio, J. Regulation of Rho Signaling Pathways in Interleukin-2-stimulated Human T-lymphocytes. FASEB J. 2005, 19, 1911–1913. [Google Scholar] [CrossRef]
- Wolff, D.W.; Bianchi-Smiraglia, A.; Nikiforov, M.A. Compartmentalization and Regulation of GTP in Control of Cellular Phenotypes. Trends Mol. Med. 2022, 28, 758–769. [Google Scholar] [CrossRef]
- Young, J.D.; Yao, S.Y.M.; Baldwin, J.M.; Cass, C.E.; Baldwin, S.A. The Human Concentrative and Equilibrative Nucleoside Transporter Families, SLC28 and SLC29. Mol. Asp. Med. 2013, 34, 529–547. [Google Scholar] [CrossRef]
- Naes, S.M.; Ab-Rahim, S.; Mazlan, M.; Abdul Rahman, A. Equilibrative Nucleoside Transporter 2: Properties and Physiological Roles. Biomed. Res. Int. 2020, 2020, 5197626. [Google Scholar] [CrossRef]
- Wei, C.-W.; Lee, C.-Y.; Lee, D.-J.; Chu, C.-F.; Wang, J.-C.; Wang, T.-C.; Jane, W.-N.; Chang, Z.-F.; Leu, C.-M.; Dzhagalov, I.L.; et al. Equilibrative Nucleoside Transporter 3 Regulates T Cell Homeostasis by Coordinating Lysosomal Function with Nucleoside Availability. Cell Rep. 2018, 23, 2330–2341. [Google Scholar] [CrossRef]
- Donaton, M.C.V.; Holsbeeks, I.; Lagatie, O.; Van Zeebroeck, G.; Crauwels, M.; Winderickx, J.; Thevelein, J.M. The Gap1 General Amino Acid Permease Acts as an Amino Acid Sensor for Activation of Protein Kinase A Targets in the Yeast Saccharomyces Cerevisiae. Mol. Microbiol. 2003, 50, 911–929. [Google Scholar] [CrossRef]
- Duflot, S.; Riera, B.; Fernández-Veledo, S.; Casadó, V.; Norman, R.I.; Casado, F.J.; Lluís, C.; Franco, R.; Pastor-Anglada, M. ATP-Sensitive K+ Channels Regulate the Concentrative Adenosine Transporter CNT2 Following Activation by A1 Adenosine Receptors. Mol. Cell. Biol. 2004, 24, 2710–2719. [Google Scholar] [CrossRef]
- Huber-Ruano, I.; Pinilla-Macua, I.; Torres, G.; Casado, F.J.; Pastor-Anglada, M. Link between High-Affinity Adenosine Concentrative Nucleoside Transporter-2 (CNT2) and Energy Metabolism in Intestinal and Liver Parenchymal Cells. J. Cell. Physiol. 2010, 225, 620–630. [Google Scholar] [CrossRef]
- Idzko, M.; Hammad, H.; van Nimwegen, M.; Kool, M.; Willart, M.A.M.; Muskens, F.; Hoogsteden, H.C.; Luttmann, W.; Ferrari, D.; Di Virgilio, F.; et al. Extracellular ATP Triggers and Maintains Asthmatic Airway Inflammation by Activating Dendritic Cells. Nat. Med. 2007, 13, 913–919. [Google Scholar] [CrossRef]
- Elliott, M.R.; Chekeni, F.B.; Trampont, P.C.; Lazarowski, E.R.; Kadl, A.; Walk, S.F.; Park, D.; Woodson, R.I.; Ostankovich, M.; Sharma, P.; et al. Nucleotides Released by Apoptotic Cells Act as a Find-Me Signal for Phagocytic Clearance. Nature 2009, 461, 282–286. [Google Scholar] [CrossRef]
- Homolya, L.; Steinberg, T.H.; Boucher, R.C. Cell to Cell Communication in Response to Mechanical Stress via Bilateral Release of Atp and Utp in Polarized Epithelia. J. Cell Biol. 2000, 150, 1349–1360. [Google Scholar] [CrossRef]
- Hazleton, J.E.; Berman, J.W.; Eugenin, E.A. Purinergic Receptors Are Required for HIV-1 Infection of Primary Human Macrophages. J. Immunol. 2012, 188, 4488–4495. [Google Scholar] [CrossRef]
- Cronstein, B.N.; Kramer, S.B.; Weissmann, G.E.; Hirschhorn, R.O. Adenosine: A Physiological Modulator of Superoxide Anion Generation by Human Neutrophils. J. Exp. Med. 1983, 158, 1160–1177. [Google Scholar] [CrossRef]
- Schrier, D.J.; Imre, K.M. The Effects of Adenosine Agonists on Human Neutrophil Function. J. Immunol. 1986, 137, 3284–3289. [Google Scholar] [CrossRef]
- Gu, B.J.; Baird, P.N.; Vessey, K.A.; Skarratt, K.K.; Fletcher, E.L.; Fuller, S.J.; Richardson, A.J.; Guymer, R.H.; Wiley, J.S. A Rare Functional Haplotype of the P2RX4 and P2RX7 Genes Leads to Loss of Innate Phagocytosis and Confers Increased Risk of Age-Related Macular Degeneration. FASEB J. 2013, 27, 1479–1487. [Google Scholar] [CrossRef]
- Ohsawa, K.; Sanagi, T.; Nakamura, Y.; Suzuki, E.; Inoue, K.; Kohsaka, S. Adenosine A3 Receptor Is Involved in ADP-Induced Microglial Process Extension and Migration. J. Neurochem. 2012, 121, 217–227. [Google Scholar] [CrossRef]
- Wilkin, F.; Stordeur, P.; Goldman, M.; Boeynaems, J.-M.; Robaye, B. Extracellular Adenine Nucleotides Modulate Cytokine Production by Human Monocyte-derived Dendritic Cells: Dual Effect on IL-12 and Stimulation of IL-10. Eur. J. Immunol. 2002, 32, 2409–2417. [Google Scholar] [CrossRef]
- La Sala, A.; Ferrari, D.; Corinti, S.; Cavani, A.; Di Virgilio, F.; Girolomoni, G. Extracellular ATP Induces a Distorted Maturation of Dendritic Cells and Inhibits Their Capacity to Initiate Th1 Responses1. J. Immunol. 2001, 166, 1611–1617. [Google Scholar] [CrossRef]
- Panther, E.; Corinti, S.; Idzko, M.; Herouy, Y.; Napp, M.; La Sala, A.; Girolomoni, G.; Norgauer, J. Adenosine Affects Expression of Membrane Molecules, Cytokine and Chemokine Release, and the T-Cell Stimulatory Capacity of Human Dendritic Cells. Blood 2003, 101, 3985–3990. [Google Scholar] [CrossRef]
- Wilson, J.M.; Kurtz, C.C.; Black, S.G.; Ross, W.G.; Alam, M.S.; Linden, J.; Ernst, P.B. The A2B Adenosine Receptor Promotes Th17 Differentiation via Stimulation of Dendritic Cell IL-6. J. Immunol. 2011, 186, 6746–6752. [Google Scholar] [CrossRef]
- Wolberg, G.; Zimmerman, T.P.; Hiemstra, K.; Winston, M.; Chu, L.C. Adenosine Inhibition of Lymphocyte-Mediated Cytolysis: Possible Role of Cyclic Adenosine Monophosphate. Science 1975, 187, 957–959. [Google Scholar] [CrossRef]
- Barankiewicz, J.; Dosch, H.M.; Cohen, A. Extracellular Nucleotide Catabolism in Human B and T Lymphocytes. The Source of Adenosine Production. J. Biol. Chem. 1988, 263, 7094–7098. [Google Scholar] [CrossRef]
- Dwyer, K.M.; Hanidziar, D.; Putheti, P.; Hill, P.A.; Pommey, S.; McRae, J.L.; Winterhalter, A.; Doherty, G.; Deaglio, S.; Koulmanda, M.; et al. Expression of CD39 by Human Peripheral Blood CD4+CD25+ T Cells Denotes a Regulatory Memory Phenotype. Am. J. Transpl. 2010, 10, 2410–2420. [Google Scholar] [CrossRef]
- Doherty, G.A.; Bai, A.; Hanidziar, D.; Longhi, M.S.; Lawlor, G.O.; Putheti, P.; Csizmadia, E.; Nowak, M.; Cheifetz, A.S.; Moss, A.C.; et al. CD73 Is a Phenotypic Marker of Effector Memory Th17 Cells in Inflammatory Bowel Disease. Eur. J. Immunol. 2012, 42, 3062–3072. [Google Scholar] [CrossRef]
- Mandapathil, M.; Hilldorfer, B.; Szczepanski, M.J.; Czystowska, M.; Szajnik, M.; Ren, J.; Lang, S.; Jackson, E.K.; Gorelik, E.; Whiteside, T.L. Generation and Accumulation of Immunosuppressive Adenosine by Human CD4+CD25highFOXP3+ Regulatory T Cells. J. Biol. Chem. 2010, 285, 7176–7186. [Google Scholar] [CrossRef]
- Aswad, F.; Kawamura, H.; Dennert, G. High Sensitivity of CD4+CD25+ Regulatory T Cells to Extracellular Metabolites Nicotinamide Adenine Dinucleotide and ATP: A Role for P2X7 Receptors. J. Immunol. 2005, 175, 3075–3083. [Google Scholar] [CrossRef]
- Schenk, U.; Frascoli, M.; Proietti, M.; Geffers, R.; Traggiai, E.; Buer, J.; Westendorf, A.M.; Grassi, F. ATP Inhibits the Generation and Function of Regulatory T Cells Through the Activation of Purinergic P2X Receptors. Sci. Signal. 2011, 4, ra12. [Google Scholar] [CrossRef]
- Mirabet, M.; Herrera, C.; Cordero, O.J.; Mallol, J.; Lluis, C.; Franco, R. Expression of A2B Adenosine Receptors in Human Lymphocytes: Their Role in T Cell Activation. J. Cell Sci. 1999, 112 Pt 4, 491–502. [Google Scholar] [CrossRef]
- Koshiba, M.; Rosin, D.L.; Hayashi, N.; Linden, J.; Sitkovsky, M.V. Patterns of A2A Extracellular Adenosine Receptor Expression in Different Functional Subsets of Human Peripheral T Cells. Flow Cytometry Studies with Anti-A2A Receptor Monoclonal Antibodies. Mol. Pharmacol. 1999, 55, 614–624. [Google Scholar]
- Koshiba, M.; Rosin, D.L.; Hayashi, N.; Linden, J.; Sitkovsky, M.V. Extracellular ATP Exerts Opposite Effects on Activated and Regulatory CD4+ T Cells via Purinergic P2 Receptor Activation. The J. Immunol. 2012, 189, 1303–1310. [Google Scholar]
- Duhant, X.; Schandené, L.; Bruyns, C.; Gonzalez, N.S.; Goldman, M.; Boeynaems, J.-M.; Communi, D. Extracellular Adenine Nucleotides Inhibit the Activation of Human CD4+ T Lymphocytes1. J. Immunol. 2002, 169, 15–21. [Google Scholar] [CrossRef]
- Priebe, T.; Platsoucas, C.D.; Nelson, J.A. Adenosine Receptors and Modulation of Natural Killer Cell Activity by Purine Nucleosides. Cancer Res. 1990, 50, 4328–4331. [Google Scholar] [PubMed]
- Kawamura, H.; Aswad, F.; Minagawa, M.; Govindarajan, S.; Dennert, G. P2X7 Receptors Regulate NKT Cells in Autoimmune Hepatitis1. The J. Immunol. 2006, 176, 2152–2160. [Google Scholar] [CrossRef] [PubMed]
- Bassler, K.; Schulte-Schrepping, J.; Warnat-Herresthal, S.; Aschenbrenner, A.C.; Schultze, J.L. The Myeloid Cell Compartment-Cell by Cell. Annu. Rev. Immunol. 2019, 37, 269–293. [Google Scholar] [CrossRef]
- Ruterbusch, M.; Pruner, K.B.; Shehata, L.; Pepper, M. In Vivo CD4+ T Cell Differentiation and Function: Revisiting the Th1/Th2 Paradigm. Annu. Rev. Immunol. 2020, 38, 705–725. [Google Scholar] [CrossRef]
- Watson, M.L. The nuclear envelope. J. Biophys. Biochem. Cytol. 1955, 1, 257–270. [Google Scholar] [CrossRef]
- Malhas, A.; Goulbourne, C.; Vaux, D.J. The Nucleoplasmic Reticulum: Form and Function. Trends Cell Biol. 2011, 21, 362–373. [Google Scholar] [CrossRef]
- Prokocimer, M.; Davidovich, M.; Nissim-Rafinia, M.; Wiesel-Motiuk, N.; Bar, D.Z.; Barkan, R.; Meshorer, E.; Gruenbaum, Y. Nuclear Lamins: Key Regulators of Nuclear Structure and Activities. J. Cell. Mol. Med. 2009, 13, 1059–1085. [Google Scholar] [CrossRef]
- Patil, S.; Sengupta, K. Role of A- and B-type Lamins in Nuclear Structure–Function Relationships. Biol. Cell 2021, 113, 295–310. [Google Scholar] [CrossRef]
- Hampoelz, B.; Andres-Pons, A.; Kastritis, P.; Beck, M. Structure and Assembly of the Nuclear Pore Complex. Annu. Rev. Biophys. 2019, 48, 515–536. [Google Scholar] [CrossRef]
- van Zon, A.; Mossink, M.H.; Scheper, R.J.; Sonneveld, P.; Wiemer, E.A.C. The Vault Complex. Cell. Mol. Life Sci. 2003, 60, 1828–1837. [Google Scholar] [CrossRef]
- Chugani, D.C.; Rome, L.H.; Kedersha, N.L. Evidence That Vault Ribonucleoprotein Particles Localize to the Nuclear Pore Complex. J. Cell Sci. 1993, 106 Pt1, 20–29. [Google Scholar] [CrossRef]
- Chung, J.-H.; Eng, C. Nuclear-Cytoplasmic Partitioning of Phosphatase and Tensin Homologue Deleted on Chromosome 10 (PTEN) Differentially Regulates the Cell Cycle and Apoptosis. Cancer Res. 2005, 65, 8096–8100. [Google Scholar] [CrossRef]
- Abbondanza, C.; Rossi, V.; Roscigno, A.; Gallo, L.; Belsito, A.; Piluso, G.; Medici, N.; Nigro, V.; Molinari, A.M.; Moncharmont, B.; et al. Interaction of Vault Particles with Estrogen Receptor in the MCF-7 Breast Cancer Cell. J. Cell Biol. 1998, 141, 1301–1310. [Google Scholar] [CrossRef] [PubMed]
- Kitazono, M.; Okumura, H.; Ikeda, R.; Sumizawa, T.; Furukawa, T.; Nagayama, S.; Seto, K.; Aikou, T.; Akiyama, S. Reversal of LRP-Associated Drug Resistance in Colon Carcinoma Sw-620 Cells. Int. J. Cancer 2001, 91, 126–131. [Google Scholar] [CrossRef]
- Berger, W.; Spiegl-Kreinecker, S.; Buchroithner, J.; Elbling, L.; Pirker, C.; Fischer, J.; Micksche, M. Overexpression of the Human Major Vault Protein in Astrocytic Brain Tumor Cells. Int. J. Cancer 2001, 94, 377–382. [Google Scholar] [CrossRef]
- Mrázek, J.; Kreutmayer, S.B.; Grässer, F.A.; Polacek, N.; Hüttenhofer, A. Subtractive Hybridization Identifies Novel Differentially Expressed ncRNA Species in EBV-Infected Human B Cells. Nucleic Acids Res. 2007, 35, e37. [Google Scholar] [CrossRef]
- Kowalski, M.P.; Dubouix-Bourandy, A.; Bajmoczi, M.; Golan, D.E.; Zaidi, T.; Coutinho-Sledge, Y.S.; Gygi, M.P.; Gygi, S.P.; Wiemer, E.A.C.; Pier, G.B. Host Resistance to Lung Infection Mediated by Major Vault Protein in Epithelial Cells. Science 2007, 317, 130–132. [Google Scholar] [CrossRef]
- Berger, W.; Steiner, E.; Grusch, M.; Elbling, L.; Micksche, M. Vaults and the Major Vault Protein: Novel Roles in Signal Pathway Regulation and Immunity. Cell. Mol. Life Sci. 2008, 66, 43. [Google Scholar] [CrossRef]
- Gieseler, R.K.; Xu, H.; Schlemminger, R.; Peters, J.H. Serum-Free Differentiation of Rat and Human Dendritic Cells, Accompanied by Acquisition of the Nuclear Lamins A/C as Differentiation Markers. Adv. Exp. Med. Biol. 1993, 329, 287–291. [Google Scholar] [CrossRef]
- González-Granado, J.M.; Silvestre-Roig, C.; Rocha-Perugini, V.; Trigueros-Motos, L.; Cibrián, D.; Morlino, G.; Blanco-Berrocal, M.; Osorio, F.G.; Freije, J.M.P.; López-Otín, C.; et al. Nuclear Envelope Lamin-A Couples Actin Dynamics with Immunological Synapse Architecture and T Cell Activation. Sci. Signal. 2014, 7, ra37. [Google Scholar] [CrossRef]
- Olins, A.L.; Zwerger, M.; Herrmann, H.; Zentgraf, H.; Simon, A.J.; Monestier, M.; Olins, D.E. The Human Granulocyte Nucleus: Unusual Nuclear Envelope and Heterochromatin Composition. Eur. J. Cell Biol. 2008, 87, 279–290. [Google Scholar] [CrossRef]
- Manley, H.R.; Keightley, M.C.; Lieschke, G.J. The Neutrophil Nucleus: An Important Influence on Neutrophil Migration and Function. Front. Immunol. 2018, 9, 2867. [Google Scholar] [CrossRef]
- Raab, M.; Gentili, M.; de Belly, H.; Thiam, H.-R.; Vargas, P.; Jimenez, A.J.; Lautenschlaeger, F.; Voituriez, R.; Lennon-Duménil, A.-M.; Manel, N.; et al. ESCRT III Repairs Nuclear Envelope Ruptures During Cell Migration to Limit DNA Damage and Cell Death. Science 2016, 352, 359–362. [Google Scholar] [CrossRef]
- Kim, Y.; Bayona, P.W.; Kim, M.; Chang, J.; Hong, S.; Park, Y.; Budiman, A.; Kim, Y.-J.; Choi, C.Y.; Kim, W.S.; et al. Macrophage Lamin A/C Regulates Inflammation and the Development of Obesity-Induced Insulin Resistance. Front. Immunol. 2018, 9, 696. [Google Scholar] [CrossRef]
- Bottazzi, B.; Nobili, N.; Mantovani, A. Expression of C-Fos Proto-Oncogene in Tumor-Associated Macrophages. J. Immunol. 1990, 144, 4878–4882. [Google Scholar] [CrossRef]
- Niedergang, F. Dendritic Cells Mature to Resist Lamin Degradation and Herpes Virus Release. J. Cell Biol. 2019, 218, 387–388. [Google Scholar] [CrossRef]
- Faria, A.M.C.; Levay, A.; Wang, Y.; Kamphorst, A.O.; Rosa, M.L.P.; Nussenzveig, D.R.; Balkan, W.; Chook, Y.M.; Levy, D.E.; Fontoura, B.M.A. The Nucleoporin Nup96 Is Required for Proper Expression of Interferon-Regulated Proteins and Functions. Immunity 2006, 24, 295–304. [Google Scholar] [CrossRef]
- Xylourgidis, N.; Roth, P.; Sabri, N.; Tsarouhas, V.; Samakovlis, C. The Nucleoporin Nup214 Sequesters CRM1 at the Nuclear Rim and Modulates NFκB Activation in Drosophila. J. Cell Sci. 2006, 119, 4409–4419. [Google Scholar] [CrossRef]
- Olins, A.L.; Hoang, T.V.; Zwerger, M.; Herrmann, H.; Zentgraf, H.; Noegel, A.A.; Karakesisoglou, I.; Hodzic, D.; Olins, D.E. The LINC-Less Granulocyte Nucleus. Eur. J. Cell Biol. 2009, 88, 203–214. [Google Scholar] [CrossRef]
- Wen, A.Y.; Sakamoto, K.M.; Miller, L.S. The Role of the Transcription Factor CREB in Immune Function. J. Immunol. 2010, 185, 6413–6419. [Google Scholar] [CrossRef]
- Li, B.; Jie, W.; Huang, L.; Wei, P.; Li, S.; Luo, Z.; Friedman, A.K.; Meredith, A.L.; Han, M.-H.; Zhu, X.-H.; et al. Nuclear BK Channels Regulate Gene Expression via the Control of Nuclear Calcium Signaling. Nat. Neurosci. 2014, 17, 1055–1063. [Google Scholar] [CrossRef]
- Yang, X.; Wang, G.; Cao, T.; Zhang, L.; Ma, Y.; Jiang, S.; Teng, X.; Sun, X. Large-Conductance Calcium-Activated Potassium Channels Mediate Lipopolysaccharide-Induced Activation of Murine Microglia. J. Biol. Chem. 2019, 294, 12921–12932. [Google Scholar] [CrossRef]
- Rønningen, T.; Shah, A.; Oldenburg, A.R.; Vekterud, K.; Delbarre, E.; Moskaug, J.Ø.; Collas, P. Prepatterning of Differentiation-Driven Nuclear Lamin A/C-Associated Chromatin Domains by GlcNAcylated Histone H2B. Genome Res. 2015, 25, 1825–1835. [Google Scholar] [CrossRef]
- Toribio-Fernández, R.; Zorita, V.; Rocha-Perugini, V.; Iborra, S.; Martínez del Hoyo, G.; Chevre, R.; Dorado, B.; Sancho, D.; Sanchez-Madrid, F.; Andrés, V.; et al. Lamin A/C Augments Th1 Differentiation and Response against Vaccinia Virus and Leishmania Major. Cell. Death Dis. 2018, 9, 9. [Google Scholar] [CrossRef]
- Toribio-Fernández, R.; Herrero-Fernandez, B.; Zorita, V.; López, J.A.; Vázquez, J.; Criado, G.; Pablos, J.L.; Collas, P.; Sánchez-Madrid, F.; Andrés, V.; et al. Lamin A/C Deficiency in CD4+ T-cells Enhances Regulatory T-cells and Prevents Inflammatory Bowel Disease. J. Pathol. 2019, 249, 509–522. [Google Scholar] [CrossRef]
- Bauer, B.; Baier, G. Protein Kinase C and AKT/Protein Kinase B in CD4+ T-Lymphocytes: New Partners in TCR/CD28 Signal Integration. Mol. Immunol. 2002, 38, 1087–1099. [Google Scholar] [CrossRef]
- Zuo, B.; Yang, J.; Wang, F.; Wang, L.; Yin, Y.; Dan, J.; Liu, N.; Liu, L. Influences of Lamin A Levels on Induction of Pluripotent Stem Cells. Biol. Open 2012, 1, 1118–1127. [Google Scholar] [CrossRef]
- Pino-Lagos, K.; Benson, M.J.; Noelle, R.J. Retinoic Acid in the Immune System. Ann. N. Y. Acad. Sci. 2008, 1143, annals.1443.017. [Google Scholar] [CrossRef]
- Donahue, D.A.; Porrot, F.; Couespel, N.; Schwartz, O. SUN2 Silencing Impairs CD4 T Cell Proliferation and Alters Sensitivity to HIV-1 Infection Independently of Cyclophilin A. J. Virol. 2017, 91, e02303-16. [Google Scholar] [CrossRef]
- Franco-Obregón, A.; Wang, H.W.; Clapham, D.E. Distinct Ion Channel Classes Are Expressed on the Outer Nuclear Envelope of T- and B-Lymphocyte Cell Lines. Biophys. J. 2000, 79, 202–214. [Google Scholar] [CrossRef]
- Fedorenko, O.A.; Volkova, T.M.; Marchenko, S.M. New cation channel of the T-lymphocyte nuclear membrane. Fiziol. Zh. 2006, 52, 17–21. [Google Scholar]
- Shan, S. ATPase and GTPase Tangos Drive Intracellular Protein Transport. Trends. Biochem. Sci. 2016, 41, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Sepehrimanesh, M. Nucleocytoplasmic Transport: Regulatory Mechanisms and the Implications in Neurodegeneration. Int. J. Mol. Sci. 2021, 22, 4165. [Google Scholar] [CrossRef]
- Binger, K.J.; Linker, R.A.; Muller, D.N.; Kleinewietfeld, M. Sodium Chloride, SGK1, and Th17 Activation. Pflugers Arch. Eur. J. Physiol. 2015, 467, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Talarico, C.; Dattilo, V.; D’Antona, L.; Menniti, M.; Bianco, C.; Ortuso, F.; Alcaro, S.; Schenone, S.; Perrotti, N.; Amato, R. SGK1, the New Player in the Game of Resistance: Chemo-Radio Molecular Target and Strategy for Inhibition. Cell. Physiol. Biochem. 2016, 39, 1863–1876. [Google Scholar] [CrossRef]
- Abbruzzese, C.; Catalogna, G.; Gallo, E.; di Martino, S.; Mileo, A.M.; Carosi, M.; Dattilo, V.; Schenone, S.; Musumeci, F.; Lavia, P.; et al. The Small Molecule SI113 Synergizes with Mitotic Spindle Poisons in Arresting the Growth of Human Glioblastoma Multiforme. Oncotarget 2017, 8, 110743–110755. [Google Scholar] [CrossRef]
- Hwang, J.-R.; Byeon, Y.; Kim, D.; Park, S.-G. Recent Insights of T Cell Receptor-Mediated Signaling Pathways for T Cell Activation and Development. Exp. Mol. Med. 2020, 52, 750–761. [Google Scholar] [CrossRef]
- Kouzine, F.; Wojtowicz, D.; Yamane, A.; Resch, W.; Kieffer-Kwon, K.-R.; Bandle, R.; Nelson, S.; Nakahashi, H.; Awasthi, P.; Feigenbaum, L.; et al. Global Regulation of Promoter Melting in Naïve Lymphocytes. Cell 2013, 153, 988–999. [Google Scholar] [CrossRef]
- Kieffer-Kwon, K.-R.; Nimura, K.; Rao, S.S.P.; Xu, J.; Jung, S.; Pekowska, A.; Dose, M.; Stevens, E.; Mathe, E.; Dong, P.; et al. Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation. Mol. Cell 2017, 67, 566–578.e10. [Google Scholar] [CrossRef]
- Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z.J. Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type-I Interferon Pathway. Science 2013, 339, 1232458. [Google Scholar] [CrossRef]
- Song, J.-X.; Villagomes, D.; Zhao, H.; Zhu, M. cGAS in Nucleus: The Link Between Immune Response and DNA Damage Repair. Front. Immunol. 2022, 13, 1076784. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Liu, F. cGAS–STING Signaling and Function in Metabolism and Kidney Diseases. J. Mol. Cell Biol. 2021, 13, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.L. Metabolism in T Cell Activation and Differentiation. Curr. Opin. Immunol. 2010, 22, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Raud, B.; McGuire, P.J.; Jones, R.G.; Sparwasser, T.; Berod, L. Fatty Acid Metabolism in CD8+ T Cell Memory: Challenging Current Concepts. Immunol. Rev. 2018, 283, 213–231. [Google Scholar] [CrossRef] [PubMed]
- Menk, A.V.; Scharping, N.E.; Moreci, R.S.; Zeng, X.; Guy, C.; Salvatore, S.; Bae, H.; Xie, J.; Young, H.A.; Wendell, S.G.; et al. Early TCR Signaling Induces Rapid Aerobic Glycolysis Enabling Distinct Acute T Cell Effector Functions. Cell Rep. 2018, 22, 1509–1521. [Google Scholar] [CrossRef]
- Varanasi, S.K.; Ma, S.; Kaech, S.M. T Cell Metabolism in a State of Flux. Immunity 2019, 51, 783–785. [Google Scholar] [CrossRef]
- Wang, R.; Dillon, C.P.; Shi, L.Z.; Milasta, S.; Carter, R.; Finkelstein, D.; McCormick, L.L.; Fitzgerald, P.; Chi, H.; Munger, J.; et al. The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation. Immunity 2011, 35, 871–882. [Google Scholar] [CrossRef]
- Carr, E.L.; Kelman, A.; Wu, G.S.; Gopaul, R.; Senkevitch, E.; Aghvanyan, A.; Turay, A.M.; Frauwirth, K.A. Glutamine Uptake and Metabolism Are Coordinately Regulated by ERK/MAPK During T Lymphocyte Activation. J. Immunol. 2010, 185, 1037–1044. [Google Scholar] [CrossRef]
- Burnstock, G. Purinergic Signalling and Neurological Diseases: An Update. CNS Neurol. Disord. Drug Targets 2017, 16, 257–265. [Google Scholar] [CrossRef]
- Brozovich, F.V.; Nicholson, C.J.; Degen, C.V.; Gao, Y.Z.; Aggarwal, M.; Morgan, K.G. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol. Rev. 2016, 68, 476–532. [Google Scholar] [CrossRef]
- Burnstock, G.; Jacobson, K.A.; Christofi, F.L. Purinergic Drug Targets for Gastrointestinal Disorders. Curr. Opin. Pharmacol. 2017, 37, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Abohalaka, R. Bronchial Epithelial and Airway Smooth Muscle Cell Interactions in Health and Disease. Heliyon 2023, 9, e19976. [Google Scholar] [CrossRef] [PubMed]
- Wirsching, E.; Fauler, M.; Fois, G.; Frick, M. P2 Purinergic Signaling in the Distal Lung in Health and Disease. Int. J. Mol. Sci. 2020, 21, 4973. [Google Scholar] [CrossRef]
- Richette, P.; Bardin, T. Gout. Lancet 2010, 375, 318–328. [Google Scholar] [CrossRef]
- Kau, T.R.; Way, J.C.; Silver, P.A. Nuclear Transport and Cancer: From Mechanism to Intervention. Nat. Rev. Cancer 2004, 4, 106–117. [Google Scholar] [CrossRef]
- Martin, A.J.; Jans, D.A. Antivirals that Target the Host IMPα/Β1-Virus Interface. Biochem. Soc. Trans. 2021, 49, 281–295. [Google Scholar] [CrossRef]
- Uddin, M.H.; Zonder, J.A.; Azmi, A.S. Exportin 1 Inhibition as Antiviral Therapy. Drug Discov. Today 2020, 25, 1775. [Google Scholar] [CrossRef]
- Elenkov, I.J.; Wilder, R.L.; Chrousos, G.P.; Vizi, E.S. The Sympathetic Nerve—An Integrative Interface between Two Supersystems: The Brain and the Immune System. Pharmacol. Rev. 2000, 52, 595–638. [Google Scholar]
- Haskó, G.; Szabó, C. Regulation of Cytokine and Chemokine Production by Transmitters and Co-Transmitters of the Autonomic Nervous System. Biochem. Pharmacol. 1998, 56, 1079–1087. [Google Scholar] [CrossRef]
- Suzuki, R.; Furuno, T.; Okamoto, K.; Teshima, R.; Nakanishi, M. ATP Plays a Role in Neurite Stimulation with Activated Mast Cells. J. Neuroimmunol. 2007, 192, 49–56. [Google Scholar] [CrossRef]
- Arizono, N.; Matsuda, S.; Hattori, T.; Kojima, Y.; Maeda, T.; Galli, S.J. Anatomical Variation in Mast Cell Nerve Associations in the Rat Small Intestine, Heart, Lung, and Skin. Similarities of Distances between Neural Processes and Mast Cells, Eosinophils, or Plasma Cells in the Jejunal Lamina Propria. Lab. Investg. 1990, 62, 626–634. [Google Scholar]
- Chelmicka-Schorr, E.; Kwasniewski, M.N.; Czlonkowska, A. Sympathetic Nervous System Modulates Macrophage Function. Int. J. Immunopharmacol. 1992, 14, 841–846. [Google Scholar] [CrossRef]
- Madden, K.S.; Moynihan, J.A.; Brenner, G.J.; Felten, S.Y.; Felten, D.L.; Livnat, S. Sympathetic Nervous System Modulation of the Immune System. III. Alterations in T and B Cell Proliferation and Differentiation in Vitro Following Chemical Sympathectomy. J. Neuroimmunol. 1994, 49, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Jinnah, H.A.; Sabina, R.L.; Van Den Berghe, G. Chapter 187—Metabolic Disorders of Purine Metabolism Affecting the Nervous System. In Handbook of Clinical Neurology; Dulac, O., Lassonde, M., Sarnat, H.B., Eds.; Pediatric Neurology Part III; Elsevier: Amsterdam, The Netherlands, 2013; Volume 113, pp. 1827–1836. [Google Scholar]
- Deeks, S.G.; Overbaugh, J.; Phillips, A.; Buchbinder, S. HIV Infection. Nat. Rev. Dis. Primers 2015, 1, 15035. [Google Scholar] [CrossRef]
- Tabucchi, A.; Carlucci, F.; Re, M.C.; Furlini, G.; Consolmagno, E.; Leoncini, R.; Pizzichini, M.; Marinello, E.; Rubino, M.; Pagani, R. The Behavior of Free Purine Nucleotides in Lymphocytes Infected with HIV-1 Virus. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 1993, 1182, 317–322. [Google Scholar] [CrossRef]
- Ratner, L.; Fisher, A.; Jagodzinski, L.L.; Mitsuya, H.; Liou, R.S.; Gallo, R.C.; Wong-Staal, F. Complete Nucleotide Sequences of Functional Clones of the AIDS Virus. AIDS Res. Hum. Retrovir. 1987, 3, 57–67. [Google Scholar] [CrossRef]
- Engelman, A.N. HIV Capsid and Integration Targeting. Viruses 2021, 13, 125. [Google Scholar] [CrossRef] [PubMed]
- Xue, G.; Yu, H.J.; Buffone, C.; Huang, S.-W.; Lee, K.; Goh, S.L.; Gres, A.T.; Guney, M.H.; Sarafianos, S.G.; Luban, J.; et al. The HIV-1 Capsid Core Is an Opportunistic Nuclear Import Receptor. Nat. Commun. 2023, 14, 3782. [Google Scholar] [CrossRef]
- Fassati, A.; Görlich, D.; Harrison, I.; Zaytseva, L.; Mingot, J.-M. Nuclear Import of HIV-1 Intracellular Reverse Transcription Complexes Is Mediated by Importin 7. EMBO J. 2003, 22, 3675–3685. [Google Scholar] [CrossRef]
- Askjaer, P.; Jensen, T.H.; Nilsson, J.; Englmeier, L.; Kjems, J. The Specificity of the CRM1-Rev Nuclear Export Signal Interaction Is Mediated by RanGTP. J. Biol. Chem. 1998, 273, 33414–33422. [Google Scholar] [CrossRef]
- Floer, M.; Blobel, G. Putative Reaction Intermediates in Crm1-Mediated Nuclear Protein Export*. J. Biol. Chem. 1999, 274, 16279–16286. [Google Scholar] [CrossRef] [PubMed]
- Zolotukhin, A.S.; Felber, B.K. Mutations in the Nuclear Export Signal of Human Ran-Binding Protein RanBP1 Block the Rev-Mediated Posttranscriptional Regulation of Human Immunodeficiency Virus Type 1. J. Biol. Chem. 1997, 272, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
- Zayas, J.P.; Mamede, J.I. HIV Infection and Spread between Th17 Cells. Viruses 2022, 14, 404. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, S.; Wang, Z.; Li, J.; Yuan, Y.; Li, T.; Zuo, M.; Feng, W.; Li, W.; Chen, M.; et al. Purine Metabolism-Related Gene Expression Signature Predicts Survival Outcome and Indicates Immune Microenvironment Profile of Gliomas. Front. Pharmacol. 2022, 13, 1038272. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Ohta, A. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment. Front. Immunol. 2016, 7, 109. [Google Scholar] [CrossRef]
- Bastid, J.; Cottalorda-Regairaz, A.; Alberici, G.; Bonnefoy, N.; Eliaou, J.-F.; Bensussan, A. ENTPD1/CD39 Is a Promising Therapeutic Target in Oncology. Oncogene 2013, 32, 1743–1751. [Google Scholar] [CrossRef]
- Jin, D.; Fan, J.; Wang, L.; Thompson, L.F.; Liu, A.; Daniel, B.J.; Shin, T.; Curiel, T.J.; Zhang, B. CD73 on Tumor Cells Impairs Anti-Tumor T Cell Responses: A Novel Mechanism of Tumor-Induced Immune Suppression. Cancer Res. 2010, 70, 2245–2255. [Google Scholar] [CrossRef]
- Ohta, A.; Ohta, A.; Madasu, M.; Kini, R.; Subramanian, M.; Goel, N.; Sitkovsky, M. A2A Adenosine Receptor May Allow Expansion of T Cells Lacking Effector Functions in Extracellular Adenosine-Rich Microenvironments. J. Immunol. 2009, 183, 5487–5493. [Google Scholar] [CrossRef]
- Zarek, P.E.; Huang, C.-T.; Lutz, E.R.; Kowalski, J.; Horton, M.R.; Linden, J.; Drake, C.G.; Powell, J.D. A2A Receptor Signaling Promotes Peripheral Tolerance by Inducing T-Cell Anergy and the Generation of Adaptive Regulatory T Cells. Blood 2008, 111, 25–259. [Google Scholar] [CrossRef]
- Wilson, J.M.; Ross, W.G.; Agbai, O.N.; Frazier, R.; Figler, R.A.; Rieger, J.; Linden, J.; Ernst, P.B. The A2B Adenosine Receptor Impairs the Maturation and Immunogenicity of Dendritic Cells. J. Immunol. 2009, 182, 4616–4623. [Google Scholar] [CrossRef] [PubMed]
- Csóka, B.; Selmeczy, Z.; Koscsó, B.; Németh, Z.H.; Pacher, P.; Murray, P.J.; Kepka-Lenhart, D.; Morris, S.M.; Gause, W.C.; Leibovich, S.J.; et al. Adenosine Promotes Alternative Macrophage Activation via A2A and A2B Receptors. FASEB J. 2012, 26, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Mahipal, A.; Malafa, M. Importins and Exportins as Therapeutic Targets in Cancer. Pharmacol. Ther. 2016, 164, 135–143. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, L.; Chen, L.; Gong, B.; Jia, D.; Sun, Q. Nuclear Transport Proteins: Structure, Function and Disease Relevance. Signal. Transduct. Target Ther. 2023, 8, 425. [Google Scholar] [CrossRef]
- Azmi, A.S.; Uddin, M.H.; Mohammad, R.M. The Nuclear Export Protein XPO1—From Biology to Targeted Therapy. Nat. Rev. Clin. Oncol. 2021, 18, 152–169. [Google Scholar] [CrossRef] [PubMed]
- Cagatay, T.; Chook, Y.M. Karyopherins in Cancer. Curr. Opin. Cell Biol. 2018, 52, 30–42. [Google Scholar] [CrossRef]
- Uzzo, R.G.; Clark, P.E.; Rayman, P.; Bloom, T.; Rybicki, L.; Novick, A.C.; Bukowski, R.M.; Finke, J.H. Alterations in NFκB Activation in T Lymphocytes of Patients with Renal Cell Carcinoma. J. Natl. Cancer Inst. 1999, 91, 718–721. [Google Scholar] [CrossRef]
- Finke, J.H.; Rayman, P.; Hart, L.; Alexander, J.P.; Edinger, M.G.; Tubbs, R.R.; Klein, E.; Tuason, L.; Bukowski, R.M. Characterization of Tumor-Infiltrating Lymphocyte Subsets from Human Renal Cell Carcinoma: Specific Reactivity Defined by Cytotoxicity, Interferon-Gamma Secretion, and Proliferation. J. Immunother. Emphas. Tumor. Immunol. 1994, 15, 91–104. [Google Scholar] [CrossRef]
- Alexander, J.P.; Kudoh, S.; Melsop, K.A.; Hamilton, T.A.; Edinger, M.G.; Tubbs, R.R.; Sica, D.; Tuason, L.; Klein, E.; Bukowski, R.M. T-Cells Infiltrating Renal Cell Carcinoma Display a Poor Proliferative Response Even Though They Can Produce Interleukin 2 and Express Interleukin 2 Receptors. Cancer Res. 1993, 53, 1380–1387. [Google Scholar]
- Rosenberg, S.A. A New Era for Cancer Immunotherapy Based on the Genes That Encode Cancer Antigens. Immunity 1999, 10, 281–287. [Google Scholar] [CrossRef]
- Weis, K. Regulating Access to the Genome: Nucleocytoplasmic Transport throughout the Cell Cycle. Cell 2003, 112, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Flinn, A.M.; Gennery, A.R. Adenosine Deaminase Deficiency: A Review. Orphanet. J. Rare Dis. 2018, 13, 65. [Google Scholar] [CrossRef]
- Bobby Gaspar, H. Bone Marrow Transplantation and Alternatives for Adenosine Deaminase DeficiencyImmunol. Allergy Clin. N. Am. 2010, 30, 221–236. [Google Scholar]
- Sauer, A.V.; Brigida, I.; Carriglio, N.; Aiuti, A. Autoimmune Dysregulation and Purine Metabolism in Adenosine Deaminase Deficiency. Front. Immunol. 2012, 3, 265. [Google Scholar] [CrossRef]
- Hirschhorn, R.; Candotti, F. Immunodeficiency Due to Defects of Purine Metabolism. In Primary Immunodeficiency Diseases; A Molecular And Genetic Approach; Oxford Academic: Oxford, UK, 2006; Available online: https://academic.oup.com/book/50949/chapter-abstract/421420621?redirectedFrom=fulltext (accessed on 3 October 2024).
- Hirschhorn, R.; Nicknam, M.N.; Eng, F.; Yang, D.R.; Borkowsky, W. Novel Deletion and a New Missense Mutation (Glu 217 Lys) at the Catalytic Site in Two Adenosine Deaminase Alleles of a Patient with Neonatal Onset Adenosine Deaminase- Severe Combined Immunodeficiency. J. Immunol. 1992, 149, 3107–3112. [Google Scholar] [CrossRef] [PubMed]
- Apasov, S.G.; Blackburn, M.R.; Kellems, R.E.; Smith, P.T.; Sitkovsky, M.V. Adenosine Deaminase Deficiency Increases Thymic Apoptosis and Causes Defective T Cell Receptor Signaling. J. Clin. Investig. 2001, 108, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Apasov, S.; Koshiba, M.; Sitkovsky, M. Role of A2a Extracellular Adenosine Receptor-Mediated Signaling in Adenosine-Mediated Inhibition of T-Cell Activation and Expansion. Blood 1997, 90, 1600–1610. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Dunwiddie, T.V. How Does Adenosine Inhibit Transmitter Release? Trends Pharmacol. Sci. 1988, 9, 130–134. [Google Scholar] [CrossRef]
- Etzioni, A. Immune Deficiency and Autoimmunity. Autoimmun. Rev. 2003, 2, 364–369. [Google Scholar] [CrossRef]
- Ozsahin, H.; Arredondo-Vega, F.X.; Santisteban, I.; Fuhrer, H.; Tuchschmid, P.; Jochum, W.; Aguzzi, A.; Lederman, H.M.; Fleischman, A.; Winkelstein, J.A.; et al. Adenosine Deaminase Deficiency in Adults. Blood 1997, 89, 2849–2855. [Google Scholar] [CrossRef]
- Sauer, A.V.; Brigida, I.; Carriglio, N.; Jofra Hernandez, R.; Scaramuzza, S.; Clavenna, D.; Sanvito, F.; Poliani, P.L.; Gagliani, N.; Carlucci, F.; et al. Alterations in the Adenosine Metabolism and CD39/CD73 Adenosinergic Machinery Cause Loss of Treg Cell Function and Autoimmunity in ADA-Deficient SCID. Blood 2012, 119, 1428–1439. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.K.; Atkinson, K.; Karlson, E.W.; Willett, W.; Curhan, G. Purine-Rich Foods, Dairy and Protein Intake, and the Risk of Gout in Men. N. Engl. J. Med. 2004, 350, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Boison, D.; Yegutkin, G.G. Adenosine Metabolism—Emerging Concepts for Cancer Therapy. Cancer Cell 2019, 36, 582–596. [Google Scholar] [CrossRef] [PubMed]
- Perrot, I.; Michaud, H.-A.; Giraudon-Paoli, M.; Augier, S.; Docquier, A.; Gros, L.; Courtois, R.; Déjou, C.; Jecko, D.; Becquart, O.; et al. Blocking Antibodies Targeting the CD39/CD73 Immunosuppressive Pathway Unleash Immune Responses in Combination Cancer Therapies. Cell Rep. 2019, 27, 2411–2425.e9. [Google Scholar] [CrossRef]
- Hay, C.M.; Sult, E.; Huang, Q.; Mulgrew, K.; Fuhrmann, S.R.; McGlinchey, K.A.; Hammond, S.A.; Rothstein, R.; Rios-Doria, J.; Poon, E.; et al. Targeting CD73 in the Tumor Microenvironment with MEDI9447. Oncoimmunology 2016, 5, e1208875. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, Y.; Teng, Y.; Yang, B. Increased Nuclear Transporter Importin 7 Contributes to the Tumor Growth and Correlates With CD8 T Cell Infiltration in Cervical Cancer. Front. Cell Dev. Biol. 2021, 9, 732786. [Google Scholar] [CrossRef]
- Azuma, K.; Sasada, T.; Takedatsu, H.; Shomura, H.; Koga, M.; Maeda, Y.; Yao, A.; Hirai, T.; Takabayashi, A.; Shichijo, S.; et al. Ran, a Small GTPase Gene, Encodes Cytotoxic T Lymphocyte (CTL) Epitopes Capable of Inducing HLA-A33–Restricted and Tumor-Reactive CTLs in Cancer Patients. Clin. Cancer Res. 2004, 10, 6695–6702. [Google Scholar] [CrossRef]
Name | Catalytic Reaction | Molecular Pathway |
---|---|---|
ADA | Adenosine + H+ + H2O = Inosine + NH4+ | Nucleotides via salvage pathway |
2’-dAdo + H+ + H2O = 2’-dI + NH4+ | ||
ADSL | SAICAR→AICAR S-AMP→AMP | Purine metabolism Nucleotides via de novo pathway |
ADSS | GTP + IMP + L-aspartate = GDP + 2H+ + S-AMP + phosphate | Nucleotides via salvage and de novo pathways |
APRT | PRPP + adenine = AMP + diphosphate | Purine metabolism |
Nucleotides via salvage pathway | ||
GMPR | IMP + NADP+ + NH4+ = GMP + 2H+ + NADPH | Maintenance of intracellular balance of A and G nucleotides |
GMPS | ATP + H2O + L-glutamine + XMP = AMP + diphosphate + GMP + 2H+ + L-glutamate | Purine metabolism GMP biosynthesis |
GUK | ATP + GMP = ADP + GDP | Recycling of GMP |
HPRT | PRPP + hypoxantine = Diphosphate + IMP PRPP + guanine = Diphosphate + GMP | Purine metabolism Nucleotides via salvage pathway |
IMPDH | H2O + IMP + NAD+ = H+ + NADH + XMP | Purine metabolism XMP biosynthesis via de novo pathway |
Name | Family | Expression | Locatization | Function |
---|---|---|---|---|
Purinoreceptors | ||||
A2A | P1 | Immune cells | Membrane | G-protein coupled receptor |
Intracellular | Transducer | |||
A2B | P1 | T lymphocyte | Membrane | G-protein coupled receptor |
Monocytes | Transducer | |||
A3 | P1 | Eosinophils | Membrane | G-protein coupled receptor |
Transducer | ||||
P2X1 | P2 | Monocytes Neutrophils | Membrane | G-protein coupled receptor ATP-gated ion channel |
P2X4 | P2 | Immune cells | Membrane | ATP-gated ion channel |
P2X5 | P2 | High B lymphocyte Low T lymphocyte | Membrane Intracellular | ATP-gated ion channel |
P2X6 | P2 | Basophils T lymphocyte | Membrane | ATP-gated ion channel |
P2X7 | P2 | Immune cells | Membrane | ATP-gated ion channel |
P2Y1 | P2 | Basophils Monocytes | Membrane | G-protein coupled receptor Transducer |
P2Y2 | P2 | Eosinophils Monocytes | Membrane | G-protein coupled receptor Transducer |
P2Y6 | P2 | Dendritic cells Monocytes | Membrane | G-protein coupled receptor Transducer |
P2Y11 | P2 | T lymphocyte NK | Membrane | G-protein coupled receptor Transducer |
P2Y12 | P2 | Monocytes Dendritic cells | Membrane | G-protein coupled receptor Transducer |
P2Y13 | P2 | Ganulocytes Monocytes | Membrane | G-protein coupled receptor Transducer |
Transporters | ||||
hCNT3 | SLC28A3 | Monocytes | Membrane | Nucleosides transporter |
hENT1 | SLC29A1 | Eosinophils | Membrane Intracellular | Nucleosides transporter |
hENT2 | SLC29A2 | T lymphocytes | Membrane | Nucleosides transporter |
hENT3 | SLC29A3 | Immune cells | Membrane | Nucleosides transporter |
hENT4 | SLC29A4 | Immune cells | Membrane | Nucleosides transporter |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torchia, N.; Brescia, C.; Chiarella, E.; Audia, S.; Trapasso, F.; Amato, R. Neglected Issues in T Lymphocyte Metabolism: Purine Metabolism and Control of Nuclear Envelope Regulatory Processes. New Insights into Triggering Potential Metabolic Fragilities. Immuno 2024, 4, 521-548. https://doi.org/10.3390/immuno4040032
Torchia N, Brescia C, Chiarella E, Audia S, Trapasso F, Amato R. Neglected Issues in T Lymphocyte Metabolism: Purine Metabolism and Control of Nuclear Envelope Regulatory Processes. New Insights into Triggering Potential Metabolic Fragilities. Immuno. 2024; 4(4):521-548. https://doi.org/10.3390/immuno4040032
Chicago/Turabian StyleTorchia, Naomi, Carolina Brescia, Emanuela Chiarella, Salvatore Audia, Francesco Trapasso, and Rosario Amato. 2024. "Neglected Issues in T Lymphocyte Metabolism: Purine Metabolism and Control of Nuclear Envelope Regulatory Processes. New Insights into Triggering Potential Metabolic Fragilities" Immuno 4, no. 4: 521-548. https://doi.org/10.3390/immuno4040032
APA StyleTorchia, N., Brescia, C., Chiarella, E., Audia, S., Trapasso, F., & Amato, R. (2024). Neglected Issues in T Lymphocyte Metabolism: Purine Metabolism and Control of Nuclear Envelope Regulatory Processes. New Insights into Triggering Potential Metabolic Fragilities. Immuno, 4(4), 521-548. https://doi.org/10.3390/immuno4040032