Portable Biogas Digester: A Review
Abstract
:1. Introduction
2. Modification of Biogas Digester Designs
3. Recent Studies on Factors Affecting the Performance of Portable Biogas Digesters
3.1. Temperature
3.2. pH
3.3. Hydraulic Retention Time
3.4. Carbon/Nitrogen (C/N) Ratio
3.5. Organic Loading Rate
4. Why Portable Biogas Digester
5. Design and Assumption Consideration for Portable Biogas Digesters
- Total mass is assumed as the mass of the solid waste plus the mass of the water (for instance, 20 L of water for 10 kg of dry waste)
- The ratio of the diameter (D) to the height (H) of the portable biogas digester is assumed to be D:2H.
- The slurry chamber height in the inlet and outlets depends on the maximum pressure attained by the gas, which is equal to the pressure of the water slurry above the lowest slurry level in the inlet and outlet tanks. Usually, for a safe limit, a pressure of 0.85 m water gauge is often used.
- In a scenario where the diameters of the inlet pipe were not available in the range of ±15 to 20 cm, the inlet and outlet tank were not in the same dimensions. Therefore, the inlet diameter is said to be slightly higher.
6. Material for the Construction of Portable Biogas Digesters
7. Previous Studies on Portable Biogas Digesters
8. Economic Feasibility of the Port Biogas Digesters
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nkoi, B.; Lebele-Alawa, B.T.; Odobeatu, B. Design and Fabrication of a Modified Portable Biogas Digester for Renewable Cooking-Gas Production. Eur. J. Eng. Technol. Res. 2018, 3, 21. [Google Scholar] [CrossRef]
- Feroskhan, M.; Ismail, S.; Natarajan, G.; Manavalla, S.; Khan, T.M.Y.; Khadar, S.D.A.; Ali, M.A. A Comprehensive Study of the Effects of Various Operating Parameters on a Biogas-Diesel Dual Fuel Engine. Sustainability 2023, 15, 1232. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Biogas Production and Applications in the Sustainable Energy Transition. J. Energy 2022, 2022, 8750221. [Google Scholar] [CrossRef]
- Twinomunuji, E.; Kemausuor, F.; Black, M.; Roy, A.; Leach, M.; Sadhukhan RO, J.; Murphy, R. The Potential for Bottled Biogas for Clean Cooking in Africa. [Online]. Available online: https://www.mecs.org.uk/working-papers (accessed on 5 May 2024).
- Uddin, M.; Wright, M.M. Anaerobic digestion fundamentals, challenges, and technological advances. Phys. Sci. Rev. 2022, 8, 2819–2837. [Google Scholar] [CrossRef]
- Abubakar, A.M. Biodigester and Feedstock Type: Characteristic, Selection, and Global Biogas Production. J. Eng. Res. Sci. 2022, 1, 170–187. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Mwirigi, J.; Balana, B.B.; Mugisha, J.; Walekhwa, P.; Melamu, R.; Nakami, S.; Makenzi, P. Socio-economic hurdles to widespread adoption of small-scale biogas digesters in Sub-Saharan Africa: A review. Biomass Bioenergy 2014, 70, 17–25. [Google Scholar] [CrossRef]
- Roubík, H.; Mazancová, J.; Banout, J.; Verner, V. Addressing problems at small-scale biogas plants: A case study from central Vietnam. J. Clean. Prod. 2016, 112, 2784–2792. [Google Scholar] [CrossRef]
- Puzzolo, E.; Pope, D.; Stanistreet, D.; Rehfuess, E.A.; Bruce, N.G. Clean fuels for resource-poor settings: A systematic review of barriers and enablers to adoption and sustained use. Environ. Res. 2016, 146, 218–234. [Google Scholar] [CrossRef]
- De Alwis, A. Biogas—A review of Sri Lanka’s performance with a renewable energy technology. Energy Sustain. Dev. 2002, 6, 30–37. [Google Scholar] [CrossRef]
- Ioannou-Ttofa, L.; Foteinis, S.; Moustafa, A.S.; Abdelsalam, E.; Samer, M.; Fatta-Kassinos, D. Life cycle assessment of household biogas production in Egypt: Influence of digester volume, biogas leakages, and digestate valorization as biofertilizer. J. Clean. Prod. 2020, 286, 125468. [Google Scholar] [CrossRef]
- Zaki, M.B.A.M.; Shamsudin, R.; Yusoff, M.Z.M. Portable Biodigester System for Household Use—A review. Adv. Agric. Food Res. J. 2020, 2. [Google Scholar] [CrossRef]
- Oji Achuka, N.; Paul, O.C.; Emmanuel, C.C.; Chukwuemeka, I.; Frances, U.G.; Amagu, E.E.; Dinobi, O.A. Effect of Ground Insulation and Feedstock on the Performance of Fixed Dome Biogas Digester. Agric. Eng. Int. CIGR 2023, 25, 145–171. Available online: http://www.cigrjournal.org (accessed on 10 May 2024).
- Sawyerr, N.; Trois, C.; Workneh, T.S.; Oyebode, O.; Babatunde, O.M. Design of a household biogas digester using co-digested cassava, vegetable and fruit waste. Energy Rep. 2020, 6, 1476–1482. [Google Scholar] [CrossRef]
- Anusuyadevi, P.R.; Kumar, D.J.P.; Jyothi, A.D.H.V.O.; Patwardhan, N.S.; V., J.; Mol, A. Towards Viable Eco-Friendly Local Treatment of Blackwater in Sparsely Populated Regions. Water 2023, 15, 542. [Google Scholar] [CrossRef]
- Sudiartha, G.A.W.; Imai, T.; Mamimin, C.; Reungsang, A. Effects of Temperature Shifts on Microbial Communities and Biogas Production: An In-Depth Comparison. Fermentation 2023, 9, 642. [Google Scholar] [CrossRef]
- Hasan, K.M.; Hossain, M.A.; Hasan, M.T.; Moniruzzaman, M.; Islam, M.R. Prototype Biogas Plant for Residential Use. Doctoral Dissertation, Sonargoan University, Dhaka, Bangladesh, 2021. [Google Scholar]
- Obileke, K.; Onyeaka, H.; Nwokolo, N. Materials for the design and construction of household biogas digesters for biogas production: A review. Int. J. Energy Res. 2021, 45, 3761–3779. [Google Scholar] [CrossRef]
- Bodhe, A.; Dethe, P.; Sethi, M.; Deshmukh, D.; Vishakarma, A.K.; Chauhan, A. Development of Balloon Biogas Plant for Small Farmers. E3S Web Conf. 2023, 434, 01004. [Google Scholar] [CrossRef]
- Tangwe, S.; Mukumba, P.; Makaka, G. Design and Employing of a Non-Linear Response Surface Model to Predict the Microbial Loads in Anaerobic Digestion of Cow Manure: Batch Balloon Digester. Sustainability 2022, 14, 13289. [Google Scholar] [CrossRef]
- Mutungwazi, A.; Mukumba, P.; Makaka, G. Biogas digester types installed in South Africa: A review. Renew. Sustain. Energy Rev. 2018, 81, 172–180. [Google Scholar] [CrossRef]
- Nie, E.; He, P.; Zhang, H.; Hao, L.; Shao, L.; Lü, F. How does temperature regulate anaerobic digestion? Renew. Sustain. Energy Rev. 2021, 150, 111453. [Google Scholar] [CrossRef]
- Mulu, A.; Ayenew, T. Characterization of Abattoir Wastewater and Evaluation of the Effectiveness of the Wastewater Treatment Systems in Luna and Kera Abattoirs in Central Ethiopia. Int. J. Sci. Eng. Res. 2015, 6, 1026–1040. [Google Scholar]
- Akindolire, M.A.; Rama, H.; Roopnarain, A. Psychrophilic anaerobic digestion: A critical evaluation of microorganisms and enzymes to drive the process. Renew. Sustain. Energy Rev. 2022, 161, 112394. [Google Scholar] [CrossRef]
- Schumann, R.A.; Meyer, J.H.; Antwerpen, V.R. A review of green manuring practices in sugarcane production. Proc. S. Afr. Sugar Technol. Assess 2000, 74, 93–100. [Google Scholar]
- Shonhiwa, C.; Mapantsela, Y.; Makaka, G.; Mukumba, P.; Shambira, N. Biogas Valorisation to Biomethane for Commercialisation in South Africa: A Review. Energies 2023, 16, 5272. [Google Scholar] [CrossRef]
- Makamure, F.; Mukumba, P.; Makaka, G. An analysis of bio-digester substrate heating methods: A review. Renew. Sustain. Energy Rev. 2020, 137, 110432. [Google Scholar] [CrossRef]
- Li, J.; Jin, S.; Wan, D.; Li, H.; Gong, S.; Novakovic, V. Feasibility of annual dry anaerobic digestion temperature-controlled by solar energy in cold and arid areas. J. Environ. Manag. 2022, 318, 115626. [Google Scholar] [CrossRef] [PubMed]
- Yusof, M.A.B.M.; Chan, Y.J.; Chong, C.H. Comparative analysis in the performances of four in-ground lagoon anaerobic digesters treating palm oil mill effluent (POME). Asia-Pac. J. Chem. Eng. 2023, 18, e2947. [Google Scholar] [CrossRef]
- Som Gupta, A.; Khatiwada, D.; Arnberg, R. Feasibility Study for Production of Biogas from Wastewater and Sewage Sludge-Development of a Sustainability Assessment Framework and its Application. Master’s Thesis, KTH School of Industrial Engineering and Management, Energy Technology, Division of ECS, Stockholm, Sweden, 2020. [Google Scholar]
- Mousavi, S.E.; Goyette, B.; Zhao, X.; Couture, C.; Talbot, G.; Rajagopal, R. Struvite-Driven Integration for Enhanced Nutrient Recovery from Chicken Manure Digestate. Bioengineering 2024, 11, 145. [Google Scholar] [CrossRef]
- Mahmoud, I.; Hassan, M.; Aboelenin, S.M.; Soliman, M.M.; Attia, H.F.; Metwally, K.A.; Salem, H.M.; El-Tahan, A.M.; El-Saadony, M.T.; Khalaphallah, R. Biogas manufacture from co-digestion of untreated primary sludge with raw chicken manure under anaerobic mesophilic environmental conditions. Saudi J. Biol. Sci. 2022, 29, 2969–2977. [Google Scholar] [CrossRef]
- Ouyang, D.; Chen, H.; Liu, N.; Zhang, J.; Zhao, X. Insight into the negative effects of lignin on enzymatic hydrolysis of cellulose for biofuel production via selective oxidative delignification and inhibitive actions of phenolic model compounds. Renew. Energy 2021, 185, 196–207. [Google Scholar] [CrossRef]
- Krishania, M.; Kumar, V.; Vijay, V.K.; Malik, A. Analysis of different techniques used for improvement of biomethanation process: A review. Fuel 2012, 106, 1–9. [Google Scholar] [CrossRef]
- Parajuli, A.; Khadka, A.; Sapkota, L.; Ghimire, A. Effect of Hydraulic Retention Time and Organic-Loading Rate on Two-Staged, Semi-Continuous Mesophilic Anaerobic Digestion of Food Waste during Start-Up. Fermentation 2022, 8, 620. [Google Scholar] [CrossRef]
- Niu, S.; Gao, S.; Zhang, K.; Li, Z.; Wang, G.; Li, H.; Xia, Y.; Tian, J.; Yu, E.; Xie, J.; et al. Effects of hydraulic retention time and influent nitrate concentration on solid-phase denitrification system using wheat husk as carbon source. PeerJ 2023, 11, e15756. [Google Scholar] [CrossRef] [PubMed]
- Olarewaju Adeleye, A.; Amoo, A.; Emmanuel Madu, I. Maximizing Efficiency in Biogas Production: A Comprehensive Review of Operational Parameters Maximizing Efficiency in Biogas Production: A Comprehensive Review of Operational Parameters Article Information Abstract. Niger. Res. J. Eng. Environ. Sci. 2023, 8. [Google Scholar] [CrossRef]
- Azis, F.A.; Choo, M.; Suhaimi, H.; Abas, P.E. The Effect of Initial Carbon to Nitrogen Ratio on Kitchen Waste Composting Maturity. Sustainability 2023, 15, 6191. [Google Scholar] [CrossRef]
- Induchoodan, T.G.; Haq, I.; Kalamdhad, A.S. Factors affecting anaerobic digestion for biogas production: A review. Adv. Org. Waste Manag. 2022, 223–233. [Google Scholar] [CrossRef]
- Tanimu, M.I.; Ghazi, T.I.; Harun, R.M.; Idris, A. Effect of carbon to nitrogen ratio of food waste on biogas methane production in a batch mesophilic anaerobic digester. Int. J. Innov. Manag. Technol. 2014, 5, 116. [Google Scholar]
- Khanal, S.K.; Nindhia, T.G.; Nitayavardhana, S. Biogas from wastes: Processes and applications. In Sustainable Resource Recovery and Zero Waste Approaches; Elsevier: Amsterdam, The Netherlands, 2019; pp. 165–174. [Google Scholar]
- Zhang, J.; He, N.; Liu, C.; Xu, L.; Chen, Z.; Li, Y.; Wang, R.; Yu, G.; Sun, W.; Xiao, C.; et al. Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Glob. Chang. Biol. 2019, 26, 2534–2543. [Google Scholar] [CrossRef]
- Shahbaz, M.; Ammar, M.; Korai, R.M.; Ahmad, N.; Ali, A.; Khalid, M.S.; Zou, D.; Li, X. Impact of C/N ratios and organic loading rates of paper, cardboard and tissue wastes in batch and CSTR anaerobic digestion with food waste on their biogas production and digester stability. SN Appl. Sci. 2020, 2, 1–13. [Google Scholar] [CrossRef]
- Jos, B.; Hundagi, F.; Wisudawati, R.P.; Budiyono; Sumardiono, S. Study of C/N Ratio Effect on Biogas Production of Carica Solid Waste by SS-AD Method And LS-AD. MATEC Web Conf. 2018, 156, 03055. [Google Scholar] [CrossRef]
- Orhorhoro, E.K.; Ebunilo, P.O.; Sadjere, G.E. Experimental Determination of Effect of Total Solid (TS) and Volatile Solid (VS) on Biogas Yield. Am. J. Mod. Energy 2017, 3, 131–135. [Google Scholar] [CrossRef]
- Jiang, J.; He, S.; Kang, X.; Sun, Y.; Yuan, Z.; Xing, T.; Guo, Y.; Li, L. Effect of Organic Loading Rate and Temperature on the Anaerobic Digestion of Municipal Solid Waste: Process Performance and Energy Recovery. Front. Energy Res. 2020, 8, e89. [Google Scholar] [CrossRef]
- Orhorhoro, E.K.; Ebunilo, P.O.; Sadjere, G.E. Effect of Organic Loading Rate (OLR) on Biogas Yield Using a Single and Three-Stages Continuous Anaerobic Digestion Reactors. Int. J. Eng. Res. Afr. 2018, 39, 147–155. [Google Scholar] [CrossRef]
- Aili Hamzah, A.F.; Hamzah, M.H.; Che Man, H.; Jamali, N.S.; Siajam, S.I.; Ismail, M.H. Effect of organic loading on anaerobic digestion of cow dung: Methane production and kinetic study. Heliyon 2023, 9, e16791. [Google Scholar] [CrossRef] [PubMed]
- Pacis, M.C.; Gutierrez, G.; Averia, A.C.C.; Samillano, O.G.; Tiongco, K.R. Development of a portable biogas generator for animal farms. In Proceedings of the 4th Electronic and Green Materials International Conference 2018 (EGM 2018), Bandung, Indonesia, 27–28 July 2018. [Google Scholar] [CrossRef]
- Yalcinkaya, S. A spatial modeling approach for siting, sizing and economic assessment of centralized biogas plants in organic waste management. J. Clean. Prod. 2020, 255, 120040. [Google Scholar] [CrossRef]
- AGET. Africa Green Energy Technologies n.d. Google Scholar.
- Shiddiq, A.B.A.; Hermansyah, H.; Wijanarko, A.; Utami, T.S.; Sahlan, M. Analysis for the feasibility of portable biodigester to produce household scale energy. In Proceedings of the 4th International Tropical Renewable Energy Conference (i-TREC 2019), Bali, Indonesia, 14–16 August 2019. [Google Scholar] [CrossRef]
- Kedia, V.; Prakash, S.; Professor, A. Portable Biodigester. Int. J. Innov. Res. Sci. Eng. Technol. 2007, 3297. [Google Scholar]
- Rajendran, K.; Aslanzadeh, S.; Taherzadeh, M.J. Household Biogas Digesters—A Review. Energies 2012, 5, 2911–2942. [Google Scholar] [CrossRef]
- Mushtaq, K.; Zaidi, A.A.; Askari, S.J. Design and performance analysis of floating dome type portable biogas plant for domestic use in Pakistan. Sustain. Energy Technol. Assess 2016, 14, 21–25. [Google Scholar] [CrossRef]
- Singh, B.; Szamosi, Z.; Siménfalvi, Z. Impact of mixing intensity and duration on biogas production in an anaerobic digester: A review. Crit. Rev. Biotechnol. 2020, 40, 508–521. [Google Scholar] [CrossRef]
- Obileke, K.; Mamphweli, S.; Meyer, E.L.; Makaka, G.; Nwokolo, N. Design and Fabrication of a Plastic Biogas Digester for the Production of Biogas from Cow Dung. J. Eng. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Alkhalidi, A.; Khawaja, M.K.; Amer, K.A.; Nawafleh, A.S.; Al-Safadi, M.A. Portable Biogas Digesters for Domestic Use in Jordanian Villages. Recycling 2019, 4, 21. [Google Scholar] [CrossRef]
- Torbira, M.S.; Saturday, E.G. Biogas production from cow dungs using a modified fixed-dome digester. Glob. J. Eng. Technol. Adv. 2021, 7, 224–230. [Google Scholar] [CrossRef]
- Wang, J.; Chai, Y.; Shao, Y.; Qian, X. Techno-economic Assessment of Biogas Project: A Longitudinal Case Study from Japan. Resour. Conserv. Recycl. 2021, 164, 105174. [Google Scholar] [CrossRef]
- Nape, K.; Magama, P.; Moeletsi, M.; Tongwane, M.; Nakana, P.; Mliswa, V.; Motsepe, M.; Madikiza, S. Introduction of household biogas digesters in rural farming households of the Maluti-a-Phofung municipality, South Africa. J. Energy South. Afr. 2019, 30, 28–37. [Google Scholar] [CrossRef]
- Obileke, K.; Makaka, G.; Nwokolo, N.; Meyer, E.L.; Mukumba, P. Economic Analysis of Biogas Production via Biogas Digester Made from Composite Material. Chemengineering 2022, 6, 67. [Google Scholar] [CrossRef]
- Abbas, I.; Liu, J.; Noor, R.S.; Faheem, M.; Farhan, M.; Ameen, M.; Shaikh, S.A. Development and performance evaluation of small size household portable biogas plant for domestic use. Biomass Convers. Biorefinery 2022, 12, 3107–3119. [Google Scholar] [CrossRef]
- Masinde, B.H.; Nyaanga, D.M.; Njue, M.R.; Matofari, J.W. Effect of Total Solids on Biogas Production in a Fixed Dome Laboratory Digester under Mesophilic Temperature. Ann. Adv. Agric. Sci. 2020, 4, 26–33. [Google Scholar] [CrossRef]
- Liebetrau, J.; O’Shea, R.; Wellisch, M.; Lyng, K.-A.; Bochmann, G.; McCabe, B.K.; Harris, P.W.; Lukehurst, C.; Kornatz, P.; Murphy, J.D. Potential and Utilization of Manure to Generate Biogas in Seven Countries; IEA: Paris, France, 2021. [Google Scholar]
- Kingsley Nimame, P.; Ede, P.N.; Hilkiah Igoni, A. Optimizing gas production through biodigester design options in a tropical environment. Eur. J. Eng. Technol. 2020, 8. [Google Scholar]
- Osueke, C.O.; Onokwai, A.O.; Ezugwu, C.A.; Patrick, U.; Okunola, A.A.; Ikpotokin, I.; Micheal, I. Design and Fabrication of Anaerobic Digester for Biogas Production. Int. J. Civ. Eng. Technol. 2018, 9, 2639–3648. [Google Scholar]
- Leyva, L.L.; Santos, Y.M.; Granda, I.D.; Orges, C.A.; Palacios, S.M.; Chapi, R.M. Design of a Lab-Scale Anaerobic Biodigester for Renewable Energy from Municipal Solid Waste; Universidad Técnica del Norte: Ibarra, Ecuador, 2018. [Google Scholar]
- Yinquan, W.; Yinhu, Q. Design and selection of biomass biogas mixing equipment for removing miscellaneous multiphase flow from livestock and poultry waste. In Proceedings of the 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 25–27 December 2020; pp. 842–845. [Google Scholar]
- Shibashis, G. Thin-Walled Pressure Vessel Design Calculation Example to ASME Section viii Division 1. 2008. Available online: http://blog.com/machine-design/simplified-asme-thin-wall-pressure-vessel-design-calculation-example-part1-overview (accessed on 23 June 2024).
- Rossel-Kipping, E.; Ortiz-Laurel, H.; Gonzalez-Medina, E.; Amante-Orozco, A. Conceptual Design and Functional Modelling of a Portable Thermophilic Biodigester for a High Dry Matter Feedstock. Chem. Eng. Trans. 2017, 58, 463–468. [Google Scholar]
- Darwin, D.; Cheng, J.J.; Liu, Z.; Gontupil, J.; Kwon, O.S. Anaerobic co-digestion of rice straw and digested swine manure with different total solid concentration for methane production. Int. J. Agric. Biol. Eng. 2014, 7, 79–90. [Google Scholar]
- Ajay, C.; Mohan, S.; Dinesha, P. Decentralized energy from portable biogas digesters using domestic kitchen waste: A review. Waste Manag. 2021, 125, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Zeynali, R.; Khojastehpour, M.; Ebrahimi-Nik, M. Effect of ultrasonic pre-treatment on biogas yield and specific energy in anaerobic digestion of fruit and vegetable wholesale market wastes. Sustain. Environ. Res. 2017, 27, 259–264. [Google Scholar] [CrossRef]
- Kouya-Takala, G.; Jacques Nguimbous-Kouoh, J.; D’aquin Biyindi, T.; Manguelle-Dicoum, E. Biogas and Digestate Production in a Portable Anaerobic Digester by Methanization. Available online: http://www.iaras.org/iaras/journals/ijres (accessed on 25 May 2024).
- Nwankwo, C.S.; Okoyeuzu, C.F.; Ahamefula, I. Efficiency of a modified plastic tank as a bio-degradation system in Sub-Saharan African countries. Res. Agric. Eng. 2020, 66, 89–96. [Google Scholar] [CrossRef]
- Sebayuana, K.; Nindhia, T.G.T.; Surata, I.W.; Shukla, S.K.; Khanal, S.K. Performance of 500 Liter Stainless Steel Portable Biogas Anaerobic Digester with Agitator Designed for the Tropical Developing Country. Key Eng. Mater. 2021, 877, 160–165. [Google Scholar] [CrossRef]
- Lasisi, K.H.; Lasisi, K.H.; Ojomo, O.A. Methane Generation from Cow Dung with the Aid of a Termitic Enzyme Using a Locally Fabricated Bio-Digester. Int. J. Eng. Technol. 2017, 3, 135–142. [Google Scholar]
- Tasnim, F.; Iqbal, S.A.; Chowdhury, A.R. Biogas production from anaerobic co-digestion of cow manure with kitchen waste and Water Hyacinth. Renew. Energy 2015, 109, 434–439. [Google Scholar] [CrossRef]
- Adeniran, K.; O Adeniran, A.; Sanusi, T.J.; A Olasehinde, D. Increasing the biogas yield of a floating drum anaerobic digester using poultry droppings with banana (Musa Paradisiacal) peels. IOP Conf. Ser. Earth Environ. Sci. 2020, 445, 012050. [Google Scholar] [CrossRef]
- Kalsum, L.; Hasan, Y.; Syarif, A.; Dayaningrat, D. Biogas and Electrical Energy Production from Market Waste at Fixed Dome Bio-digester in Talang Banjar Jambi. Atl. Highlights Eng. 2022, 9, 197–200. [Google Scholar]
Types of Portable Digester | Volume of the Digester (m3) | Material Used for Fabrication | Biogas Generation (m3) | Advantages | Disadvantages | Organic Loading Rate (kg/L) | References |
---|---|---|---|---|---|---|---|
EZ digester | 1.5 | Modified plastic | - | Provides mobility, compactness, and low cost with rich energy content | Provides inefficient agitation and inability to control the temperature | 0.03 | [23] |
Africa green energy technologies(AGET digester) | 2.5 | - | 2 m3 biogas per day | Provide easy transportation | Provides inefficient mixing and is expensive | - | [23] |
Plug flow-type digester | 2.5–7.5 | Plastic | - | Provides effortless handling and transportation, operates in rigorous climatic conditions, and has low construction and maintenance costs. | The absence of a stirring mechanism, low conversion rate of solids, and the necessity of periodic cleaning | 180 | [55] |
Self-pressurized portable biodigester | 0.05 | High-density polyethylene (HDPE) plastic | 0.04 m3 biogas generated within 35 days HRT | 0.032 | [57] |
Portable Biogas Digester Designs | References | Other Designs | References |
---|---|---|---|
Easily transportable and adaptable to various settings. | [26] | They consist of a dome-shaped, fixed gas holder made of bricks or concrete. | [58] |
They are made of prefabricated modules that can be quickly assembled and disassembled. | [19] | No moving parts needed. | [60] |
Versatility to be customized for different organic waste sources and biogas output needs. | [6] | A long lifespan of 20+ years if well built. | [61] |
Relatively low cost compared to other digesters due to less infrastructure and use of low-cost material. | [62] | They have high costs because they require human labor to build and have relatively high-cost materials. | [63] |
A volume of 0.2–3.6 m3 even up to 7.5 m3. | [55,64] | The digester volume is fixed, so it cannot be expanded later. | [65] |
Ability to generate biogas from food, agricultural, livestock manure, etc. | [66] | Require skill for construction. | [67] |
Design Consideration/Procedure | Notes |
---|---|
The estimation of biogas requirement and waste feed rate | A total of 1 m3 of biogas is required for cooking. The feeding rate depends on the type of feedstock. For design purposes, the lower value of 10% total solid is considered, this implies that 1 kg of waste results in 0.1 kg of TS present |
The estimation of the mass of water | The pre-knowledge of the total solid in the feed is required to be known before the design of the portable digester [68]. The increase in total solids from 10% to 20% results in a reduction in methane production. Due to mass transfer limitation, the production of methane ceases when the total solids are 30%. Therefore, total solids of 7–9% are recommended to be maintained in the feed. |
The estimation of hydraulic retention time | The hydraulic retention time is affected by the temperature and geographic location. For instance, hot regions are expected to have lesser hydraulic retention time (<30 days) as compared to tropical regions. On the contrary, in cold regions, the hydraulic retention time is usually above 50 days. The hydraulic retention time is important during the calculation of the size of the digester. |
The estimation of the volume of the slurry and gas holder | Interestingly, the total slurry of the feedstock depends on the rate of feed and hydraulic retention time, whereas the volume gas holder is a function of gas generation and consumption. |
Materials | Advantages | Disadvantages |
---|---|---|
PVC | Less weight and easily portable as well as easy to install and of flexible design | Short life span and requires regular maintenance |
PE | Cheaper compared to PVC | - |
Neoprene rubber | Weather resistance | Expensive/low pressure/less life span |
Steel drum | Leak proof and ability to produce gas at a constant flow | Corrosion and heavy weight of the gas holder |
Fiber-reinforced plastic (FRP) | High strength to weight and durability; resistance to corrosion | High cost and limited fire resistance; potential debonding issue; may lose strength and stiffness at high temperature. |
Waterproof adhesive | Strength and resilience to withstand moisture, humidity, and immersion | Difficult to remove once cured, decreases at high temperature, and susceptible to freezing at low temperature; lower water resistance than solvent-based products. |
Heat-sealed plastic/rubber | Simple design and low construction. | Limited durability and may require frequent replacements. |
Concrete | Durable and long-lasting. | Expensive and requires professional masonry |
Types of Portable Biogas Digesters | Type of Wastes/Feedstock | Biogas Yield (m3/kg TS) | References |
---|---|---|---|
Plastic digester | Cow dung Domestic waste | 0.18 0.17 | [55] |
Plastic digester (AGET portable digester) | Kitchen waste | 2.0 | [53] |
Plastic digester (Little green monster digester) | - | 2.0 | [60] |
Metallic digester | Cow dung | 0.005 | [1] |
Plastic digester | Cow dung | 0.00157 | [79] |
Plastic biodigester | Kitchen waste | 0.000175 | [78] |
Plastic biodigester | Kitchen waste | 0.000115 | [80] |
Plastic digester (agitated) | Cow dung | 0.036 | [23] |
Plastic biodigester (balloon) | Cow dung | 12 | [20] |
Floating drum portable digester | Banana peel | 0.13182 | [81] |
Fixed-dome portable digester | Kitchen | 5 | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mapantsela, Y.; Mukumba, P.; Obileke, K.; Lethole, N. Portable Biogas Digester: A Review. Gases 2024, 4, 205-223. https://doi.org/10.3390/gases4030012
Mapantsela Y, Mukumba P, Obileke K, Lethole N. Portable Biogas Digester: A Review. Gases. 2024; 4(3):205-223. https://doi.org/10.3390/gases4030012
Chicago/Turabian StyleMapantsela, Yolanda, Patrick Mukumba, KeChrist Obileke, and Ndanduleni Lethole. 2024. "Portable Biogas Digester: A Review" Gases 4, no. 3: 205-223. https://doi.org/10.3390/gases4030012
APA StyleMapantsela, Y., Mukumba, P., Obileke, K., & Lethole, N. (2024). Portable Biogas Digester: A Review. Gases, 4(3), 205-223. https://doi.org/10.3390/gases4030012