Exploring the Key Attributes Influencing University Students’ Domestic Accommodation Choice: A RIDIT Analysis
Abstract
:1. Introduction
2. Literature Review
2.1. Accommodation Choices of University Students
2.2. Peer-to-Peer (P2P) Accommodation Choices
2.3. Post-COVID-19 Pandemic Students’ Travel Behavior and Accommodation
2.4. Statistical Methods Used in Related Studies
3. Research Methods
3.1. RIDIT Analysis
3.2. Questionnaire Design
3.3. Data Collection
4. Results
5. Discussions and Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Țicău, I.R.; Shahrazad, H. Changes in post-pandemic travelling behavior. What are the effects of the COVID-19 pandemic on students’ traveling interest? Cactus Tour. J. 2022, 4, 27–41. [Google Scholar]
- Fernández, X.; García, Y.Z. Impact of COVID-19 on international tourism. J. Tourism Econ. 2022, 15, 123–135. [Google Scholar]
- Carracero, M.; Lopez, P.; Martinez, R. Pandemic consumption habits and their impact on tourism. J. Tourism Econ. 2021, 14, 45–58. [Google Scholar]
- Longwoods International. COVID-19 Travel Sentiment Study-Wave 7. Available online: https://longwoods-intl.com/news-press-release/COVID-19-travel-sentiment-study-wave-7 (accessed on 6 October 2020).
- Olszewski-Strzyzowski, D.J.; Pasek, M.; Lipowski, M. Perspectives for tourism development in the post-pandemic period in the opinions of university students. Sustainability 2022, 14, 16833. [Google Scholar] [CrossRef]
- Yu, C. Post-epidemic situation and suggestions for college students’ tourism-Taking Guiyang City as an example. Tourism Manag. Technol. Econ. 2023, 6, 63–69. [Google Scholar]
- Cavagnaro, E.; Staffieri, S. A study of students’ travelers values and needs in order to establish futures patterns and insights. J. Tour. Fut. 2015, 1, 94–107. [Google Scholar] [CrossRef]
- Uysal, D. Gen-Z’s consumption behaviours in post-pandemic tourism sector. J. Tour. Leis. Hosp. 2022, 4, 70–82. [Google Scholar] [CrossRef]
- Brochado, A.; Rita, P.; Gameiro, C. Exploring backpackers’ perceptions of the hostel service quality. Int. J. Contemp. Hosp. Manag. 2015, 27, 1839–1855. [Google Scholar] [CrossRef]
- Nash, R.; Thyne, M.; Davies, S. An investigation into customer satisfaction levels in the budget accommodation sector in Scotland: A case study of backpacker tourists and the Scottish Youth Hostels Association. Tour. Manag. 2006, 27, 525–532. [Google Scholar] [CrossRef]
- Reisinger, Y.; Mavondo, F. Determinants of youth travel markets’ perceptions of tourism destinations. Tour. Anal. 2002, 7, 55–66. [Google Scholar] [CrossRef]
- Moisă, C.O. Aspects of the youth travel demand. Ann. Univ. Apulensis Ser. Oecon. 2010, 12, 575–582. [Google Scholar] [CrossRef]
- Dayour, F.; Kimbu, A.N.; Park, S. Backpackers: The need for reconceptualization. Ann. Tour. Res. 2017, 66, 191–193. [Google Scholar] [CrossRef]
- Nagai, H.; Benckendorff, P.; Tkaczynski, A. Differentiating Asian working holiday makers from traditional back-packers on the basis of accommodation preferences. J. Hosp. Tour. Manag. 2018, 35, 66–74. [Google Scholar] [CrossRef]
- Bicikova, K. Understanding student travel behavior: A segmentation analysis of British university students. J. Travel Tour. Mark. 2014, 31, 854–867. [Google Scholar] [CrossRef]
- Xiao, H.; So, K.K.F.; Wang, Y. The university student travel market: Motivations and preferences for activities. Tourism Anal. 2015, 20, 399–412. [Google Scholar] [CrossRef]
- Chansuk, C.; Arreeras, T.; Chiangboon, C.; Phonmakham, K.; Chotikool, N.; Buddee, R.; Pumjampa, S.; Yanasoi, T.; Arreeras, S. Using factor analyses to understand the post-pandemic travel behavior in domestic tourism through a questionnaire survey. Transp. Res. Interdiscip. Perspect. 2022, 16, 100691. [Google Scholar] [CrossRef]
- Spoerr, D. Factor analysis of hotel selection attributes and their significance for different groups of German leisure travelers. J. Qual. Assur. Hosp. Tour. 2021, 22, 312–335. [Google Scholar] [CrossRef]
- Ye, S.; Lei, S.L.; Zhao, X.; Law, R. Modeling tourists’ preference between hotels and peer-to-peer (P2P) sharing accommodation: A pre- and post-COVID-19 comparison. Int. J. Contemp. Hosp. Manag. 2023, 35, 1423–1447. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Kumar, R.V. Modeling tourists’ opinions using RIDIT analysis. In Handbook of Research on Holistic Optimization Techniques in the Hospitality, Tourism, and Travel Industry; Vasant, P., Kalaivanthan, M., Eds.; IGI Global, Business Science Reference: Hershey, PA, USA, 2017; pp. 424–444. [Google Scholar]
- Heung, V.C.S.; Leong, J.S.L. Travel demand and behavior of university students in Hong Kong. Asia Pac. J. Tour. Res. 2006, 11, 81–96. [Google Scholar] [CrossRef]
- Alsawafi, A.M.; Almuhrzi, H. The college student travel market: Exploring the key factors influencing higher education Arab students’ travel decisions. Int. J. Leis. Tour. Mark. 2022, 7, 235–250. [Google Scholar] [CrossRef]
- Bui, H.T.; Wilkins, H.C.; Lee, Y.-S. The social identities of Japanese backpackers. Tour. Cult. Commun. 2013, 13, 147–159. [Google Scholar] [CrossRef]
- Ho, C.-I.; Lin, P.-Y.; Huang, S.-C. Exploring Taiwanses working holiday markers’ motivations: An analysis of Means-End hierarchies. J. Hosp. Tour. Res. 2014, 38, 463–486. [Google Scholar] [CrossRef]
- Tan, Y.; Richardson, S.; Lester, L.; Bai, T.; Sun, L. Evaluation of Australia’s Working Holiday Maker (WHM) Program; National Institute of Labour Studies, Flinders University: Adelaide, Australia, 2009. [Google Scholar]
- Somlai, R. The influence of ratings on choosing accommodation. Sociol. Study 2015, 5, 282–290. [Google Scholar]
- Seekings, J. The youth travel market. Travel Tour. Anal. 1998, 5, 37–55. [Google Scholar]
- Pearce, P.; Son, A. Youth tourism markets in Australia: Comparing the travel behaviours of international English language students and backpackers. Tourism 2004, 52, 341–350. [Google Scholar]
- Tussyadiah, L.P.; Pesonen, J. Impacts of peer-to-peer accommodation use on travel patterns. J. Travel Res. 2016, 55, 1022–1040. [Google Scholar] [CrossRef]
- Amaro, S.; Andreu, L.; Huang, S. Millennials’ intentions to book on Airbnb. Curr. Issues Tour. 2019, 22, 2284–2298. [Google Scholar] [CrossRef]
- Guttentag, D. Airbnb: Disruptive innovation and the rise of an informal tourism accommodation sector. Curr. Issues Tour. 2015, 18, 1192–1217. [Google Scholar] [CrossRef]
- Cheng, M. Sharing economy: A review and agenda for future research. Int. J. Hosp. Manag. 2016, 57, 60–70. [Google Scholar] [CrossRef]
- Poon, K.Y.; Huang, W.-J. Past experience, traveler personality and tripographics on intention to use Airbnb. Int. J. Contemp. Hosp. Manag. 2017, 29, 2425–2443. [Google Scholar] [CrossRef]
- Johnson, A.G.; Neuhofer, B. Airbnb—An exploration of value co-creation experiences in Jamaica. Int. J. Contemp. Hosp. Manag. 2017, 29, 2361–2376. [Google Scholar] [CrossRef]
- Tussyadiah, L.P.; Zach, F. Identifying salient attributes of peer-to-peer accommodation experience. J. Travel Tour. Mark. 2017, 34, 636–652. [Google Scholar] [CrossRef]
- Belarmino, A.; Whalen, E.; Koh, Y.; Bowen, J.T. Comparing guests’ key attributes of peer-to-peer accommodations and hotels: Mixed-methods approach. Curr. Issues Tour. 2017, 22, 1–7. [Google Scholar] [CrossRef]
- Prayag, G.; Ozanne, L.K. A systematic review of peer-to-peer (P2P) accommodation sharing research from 2010 to 2016: Progress and prospects from the multi-level perspective. J. Hosp. Mark. Manag. 2018, 27, 649–678. [Google Scholar] [CrossRef]
- Mody, M.A.; Suess, C.; Lehto, X. The accommodation experience scape: A comparative assessment of hotels and Airbnb. Int. J. Contemp. Hosp. Manag. 2017, 29, 2377–2404. [Google Scholar] [CrossRef]
- Varma, A.; Jukic, N.; Pestek, A.; Shultz, C.J.; Nestorov, S. Airbnb: Exciting innovation or passing fad? Tour. Manag. Perspect. 2016, 20, 228–237. [Google Scholar] [CrossRef]
- Fan, A.; Shin, H.W.; Shi, J.; Wu, L. Young people share, but do so differently: An empirical comparison of peer-to-peer accommodation consumption between Millennials and Generation Z. Cornell Hosp. Q. 2023, 64, 322–337. [Google Scholar] [CrossRef]
- Mohsin, A.; Lengler, J. Airbnb hospitality: Exploring users and non-users’ perceptions and intentions. Sustainability 2021, 13, 10884. [Google Scholar] [CrossRef]
- Huang, D.; Liu, X.; Lai, D.; Li, Z. Users and non-users of P2P accommodation differences in perceived risks and behavioral intentions. J. Hosp. Tour. Technol. 2019, 10, 369–382. [Google Scholar]
- Wang, D.; Nicolau, J.L. Price determinants of sharing economy based accommodation rental: A study of listings from 33 cities on Airbnb.com. Int. J. Hosp. Manag. 2017, 62, 120–131. [Google Scholar] [CrossRef]
- Chen, L.C.; Lin, S.P.; Kuo, C.M. Rural tourism: Marketing strategies for the bed and breakfast industry in Taiwan. Int. J. Hosp. Manag. 2013, 32, 278–286. [Google Scholar] [CrossRef]
- World Tourism Organization. Issue 3: Understanding Domestic Tourism and Seizing Its Opportunities. UNWTO Briefing Note—Tourism and COVID-19. 2020. Available online: https://www.unwto.org/publications-on-tourism-market-intelligence (accessed on 6 October 2023).
- Li, J.; Nguyen, T.H.H.; Coca-Stefaniak, J.A. Understanding post-pandemic travel behaviours—China’s Golden Week. J. Hosp. Tour. Manag. 2021, 49, 84–88. [Google Scholar] [CrossRef]
- Sohn, J.-I.; Alakshendra, A.; Kim, H.-J.; Kim, K.-H.; Kim, H.-D. Understanding the new characteristics and development strategies of coastal tourism for post-COVID-19: A case study in Korea. Sustainability 2021, 13, 7408. [Google Scholar] [CrossRef]
- Balińska, A.; Olejniczak, W. Experiences of Polish tourists traveling for leisure purposes during the COVID-19 pandemic. Sustainability 2021, 13, 11919. [Google Scholar] [CrossRef]
- Kusumaningrum, D.A.; Wachyuni, S.S. The shifting trends in travelling after the COVID-19 pandemic. Int. J. Tour. Hosp. Rev. 2020, 7, 31–40. [Google Scholar] [CrossRef]
- Gassmann, F.; Smith, J.; Johnson, A.B. Characteristics of P2P accommodations in the post-COVID-19 era. J. Tourism Econ. 2019, 22, 145–160. [Google Scholar]
- Kim, B.; Kim, D. Attracted to or locked in? Explaining consumer loyalty toward Airbnb. Sustainability 2020, 12, 2814. [Google Scholar] [CrossRef]
- Farmaki, A.; Stergiou, D.P. Escaping loneliness through Airbnb host-guest interactions. Tour. Manag. 2019, 74, 331–333. [Google Scholar] [CrossRef]
- Santos, A.I.G.P.; Perinotto, A.R.C.; Soares, J.R.R.; Mondo, T.S. Feeling at home while traveling: An analysis of the experiences of Airbnb users. Tourism Hosp. Manag. 2022, 28, 167–192. [Google Scholar] [CrossRef]
- Del Chiappa, G.; Pung, J.M.; Atzeni, M. Factors influencing choice of accommodation during COVID-19: A mixed-methods study of Italian consumers. J. Qual. Assur. Hosp. Tour. 2022, 23, 1037–1063. [Google Scholar] [CrossRef]
- Dilek, S.E.; Fennell, D.A. Discovering the hotel selection factors of vegetarians: The case of Turkey. Tour. Rev. 2018, 73, 492–506. [Google Scholar] [CrossRef]
- Shanka, T.; Taylor, R. An investigation into the perceived importance of service and facility attributes to hotel satisfaction. J. Qual. Assur. Hosp. Tour. 2004, 4, 119–134. [Google Scholar] [CrossRef]
- Rhee, H.T.; Yang, S.B. How does hotel attribute importance vary among different travelers? An exploratory case study based on a conjoint analysis. Electron. Mark. 2015, 25, 211–226. [Google Scholar] [CrossRef]
- Amat-Lefort, N.; Marimon, F.; Mas-Machuca, M. Guest and host perspectives of service quality and satisfaction in digital home-sharing platforms. J. Qual. Assur. Hosp. Tour. 2023, 24, 859–884. [Google Scholar] [CrossRef]
- Wilkins, H.; Merrilees, B.; Herington, C. Towards an understanding of total service quality in hotels. Int. J. Hosp. Manag. 2007, 26, 840–853. [Google Scholar] [CrossRef]
- Clason, D.L.; Dormody, T.J. Analyzing data measured by individual Liker-type items. J. Agric. Educ. 1994, 35, 31–35. [Google Scholar] [CrossRef]
- Pouplard, N.; Qannari, E.M.; Simon, S. Use of ridits to analyse categorical data in preference studies. Food Qual. Prefer. 1997, 8, 419–422. [Google Scholar] [CrossRef]
- Bross, I.D.J. How to use Ridit analysis. Biometrics 1958, 14, 18–37. [Google Scholar] [CrossRef]
- Fleiss, J.L.; Levin, B.; Paik, M.C. Statistical Inference for a Single Proportion; John Wiley & Sons: New York, NY, USA, 2013; Available online: https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=2119421 (accessed on 6 October 2023).
- Wu, C.H. On the application of grey relational analysis and RIDIT analysis to Likert scale surveys. Int. Math. Forum 2007, 2, 675–687. [Google Scholar] [CrossRef]
- Jansen, M.E. Ridit analysis, a review. Stat. Neerl. 1984, 8, 141–158. [Google Scholar] [CrossRef]
- Sthapit, E.; Björk, P.; Jiménez Barreto, J. Negative memorable experience: North American and British Airbnb guests’ perspectives. Tourism Rev. 2021, 76, 639–653. [Google Scholar] [CrossRef]
- Chiang, C.-F.; Huang, C.-W. Online reviews on online travel agency: Understanding tourists’ perceived attributes of Taipei’s economy hotels. J. Qual. Assur. Hosp. Tour. 2022, 23, 945–959. [Google Scholar] [CrossRef]
- Lukanova, G.; Ilieva, G. Robots, artificial intelligence, and service automation in hotels. In Robots, Artificial Intelligence, and Service Automation in Travel, Tourism and Hospitality; Ivanov, S., Webster, C., Eds.; Emerald Publishing Limited: Bingley, UK, 2019; pp. 157–183. [Google Scholar]
- Zhang, Y.; Qi, S. User experience study: The service expectation of hotel guests to the utilization of AI-based service robot in full-service hotels. In HCI in Business, Government and Organizations. eCommerce and Consumer Behavior (HCII 2019); Lecture Notes in Computer Science; Nah, F.F.H., Siau, K., Eds.; Springer: Cham, Switzerland, 2019; Volume 11588, pp. 1–14. [Google Scholar]
- Kumar, R.V.; Bhattacharya, S. Modeling consumer opinions using RIDIT and grey relation analysis. In Handbook of Research on Holistic Optimization Techniques in the Hospitality, Tourism, and Travel Industry; Vasant, P., Kalaivanthan, M., Eds.; IGI Global, Business Science Reference: Hershey, PA, USA, 2017; pp. 185–201. [Google Scholar]
- Sharma, A.; Pathak, V.K.; Siddiqui, M.Q. Antecedents of mobile advertising value: A precedence analysis using the hybrid RIDIT-GRA approach. J. Indian Bus. Res. 2022, 14, 108–124. [Google Scholar] [CrossRef]
Variables | Frequency (%) | Variables | Frequency (%) |
---|---|---|---|
Gender | Accommodation choice for the recent trip | ||
Male | 95 (32.1%) | Hotel | 100 (33.8%) |
Female | 201 (67.9%) | B & B | 93 (31.4%) |
Most recent trip 1 | Airbnb | 9 (3%) | |
0.5 months or less | 121 (40.9%) | Living in relative/friend’s home | 18 (6.1%) |
0.5–1 month | 40 (13.5%) | No accommodation | 76 (25.7%) |
1–3 months | 49 (16.6%) | Traveling companions for the recent trip | |
3–6 months | 38 (12.8%) | Alone | 5 (1.7%) |
6 months or more | 46 (15.5%) | Family members | 102 (34.5%) |
Number of days in the recent trip 2 | Relatives/friends | 159 (53.6%) | |
2-days-1-night | 105 (35.5%) | Classmates | 18 (6.1%) |
3-days-2-night | 81 (27.4%) | Others | 12 (4.1%) |
4-days-3-night | 17 (5.7%) | Type of travel 3 | |
5 days or more | 9 (3%) | Self-independent | 266 (89.9%) |
1-day | 83 (28%) | Package by travel agency | 5 (1.7%) |
Ever used accommodation type 4 | Arrangement by travel agent | 6 (2.0%) | |
Hotel | 268 (90.5%) | Incentive travel | 18 (6.1%) |
B & B | 266 (89.9%) | ||
Airbnb | 55 (11.8%) |
1 | 2 | 3 | 4 | 5 | ρi | Lower Bound | Upper Bound | Priority Ranking | |
---|---|---|---|---|---|---|---|---|---|
Cleanliness of rooms (1) | 0 | 0 | 0.005 | 0.057 | 0.685 | 0.748 | 0.714 | 0.781 | 1 |
Located in a safe neighborhood/feeling safe in the room (2) | 0 | 0 | 0.011 | 0.098 | 0.583 | 0.692 | 0.659 | 0.726 | 2 |
Close to scenic area for meeting the trip requirements (3) | 0 | 0.001 | 0.014 | 0.183 | 0.413 | 0.611 | 0.577 | 0.644 | 3 |
Providing self-catering facilities with good levels of comfort & amenities (4) | 0 | 0.001 | 0.019 | 0.180 | 0.399 | 0.598 | 0.565 | 0.632 | 4 |
Security of payment (5) | 0 | 0.001 | 0.027 | 0.135 | 0.435 | 0.598 | 0.564 | 0.632 | 5 |
The value derived for money spent (6) | 0 | 0.001 | 0.021 | 0.172 | 0.399 | 0.593 | 0.560 | 0.627 | 6 |
Convenient transportation (7) | 0 | 0.002 | 0.021 | 0.158 | 0.391 | 0.572 | 0.538 | 0.605 | 7 |
Guests’ word-of-mouth & recommendation (8) | 0 | 0.001 | 0.022 | 0.191 | 0.349 | 0.564 | 0.530 | 0.598 | 8 |
Service staff friendly & polite (9) | 0 | 0.001 | 0.019 | 0.219 | 0.325 | 0.563 | 0.530 | 0.597 | 9 |
Having specific architecture or appealing decorative design (10) | 0 | 0.002 | 0.045 | 0.197 | 0.231 | 0.475 | 0.442 | 0.509 | 10 |
Having single/double/twin accommodation available (11) | 0 | 0.003 | 0.042 | 0.194 | 0.234 | 0.472 | 0.438 | 0.506 | 11 |
Provision of a comfortable ambiance (12) | 0 | 0.002 | 0.047 | 0.186 | 0.231 | 0.467 | 0.433 | 0.500 | 12 |
Provision of meals (13) | 0 | 0.002 | 0.050 | 0.212 | 0.176 | 0.440 | 0.406 | 0.473 | 13 |
Close to site or event attractions (14) | 0 | 0.003 | 0.060 | 0.169 | 0.198 | 0.430 | 0.396 | 0.463 | 14 |
Unique accommodation experiences (15) | 0 | 0.003 | 0.067 | 0.152 | 0.184 | 0.407 | 0.373 | 0.440 | 15 |
Interaction with B & B host or landlord (16) | 0 | 0.007 | 0.074 | 0.136 | 0.107 | 0.325 | 0.291 | 0.359 | 16 |
Provision of a local trip (17) | 0 | 0.010 | 0.081 | 0.109 | 0.063 | 0.263 | 0.230 | 0.297 | 17 |
Interaction with other guests (18) | 0.001 | 0.015 | 0.068 | 0.064 | 0.036 | 0.183 | 0.150 | 0.217 | 18 |
Attributes | Mean | SD | RIDITs |
---|---|---|---|
(1) | 3.828 | 0.864 | 0.748 |
(2) | 4.247 | 0.748 | 0.692 |
(3) | 3.696 | 0.929 | 0.611 |
(4) | 4.392 | 0.719 | 0.598 |
(5) | 3.784 | 0.902 | 0.598 |
(6) | 4.334 | 0.759 | 0.593 |
(7) | 4.236 | 0.806 | 0.572 |
(8) | 3.372 | 0.959 | 0.564 |
(9) | 3.922 | 0.904 | 0.563 |
(10) | 4.797 | 0.527 | 0.475 |
(11) | 4.351 | 0.744 | 0.472 |
(12) | 3.916 | 0.877 | 0.467 |
(13) | 4.628 | 0.672 | 0.440 |
(14) | 4.334 | 0.827 | 0.430 |
(15) | 3.956 | 0.833 | 0.407 |
(16) | 3.105 | 0.956 | 0.325 |
(17) | 2.642 | 1.022 | 0.263 |
(18) | 4.226 | 0.931 | 0.183 |
Attributes | Factors and the Related Loadings | Mean | SD | RIDITs | ||||
---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | ||||
(7) | 0.796 | 4.236 | 0.806 | 0.572 | ||||
(10) | 0.752 | 4.797 | 0.527 | 0.475 | ||||
(12) | 0.738 | 3.916 | 0.877 | 0.467 | ||||
(4) | 0.697 | 4.392 | 0.719 | 0.598 | ||||
(18) | 0.810 | 4.226 | 0.931 | 0.183 | ||||
(16) | 0.761 | 3.105 | 0.956 | 0.325 | ||||
(17) | 0.709 | 2.642 | 1.022 | 0.263 | ||||
(15) | 0.518 | 3.956 | 0.833 | 0.407 | ||||
(14) | 0.738 | 4.334 | 0.827 | 0.430 | ||||
(9) | 0.662 | 3.922 | 0.904 | 0.563 | ||||
(3) | 0.782 | 3.696 | 0.929 | 0.611 | ||||
(13) | 0.768 | 4.628 | 0.627 | 0.440 | ||||
(11) | 0.617 | 4.351 | 0.744 | 0.472 | ||||
(8) | 0.711 | 2.372 | 0.959 | 0.564 | ||||
(2) | 0.652 | 4.247 | 0.748 | 0.692 | ||||
(5) | 0.631 | 3.784 | 0.902 | 0.598 | ||||
(1) | 0.620 | 3.828 | 0.864 | 0.748 | ||||
(6) | 0.600 | 4.334 | 0.759 | 0.593 | ||||
Eigen values | 5.169 | 2.043 | 1.172 | 1.123 | 1.025 | |||
Cronbach’s α | 0.754 | 0.720 | 0.514 | 0.613 | 0.697 | |||
Variance explained (%) | 28.719 | 11.348 | 6.512 | 6.239 | 5.693 | |||
Accumulated variance explained (%) | 28.719 | 40.067 | 46.579 | 52.818 | 58.511 | |||
KMO | 0.845 |
Priority | Female (N = 201) | Male (N = 95) | ||
---|---|---|---|---|
Ranking | Attributes | RIDITs | Attributes | RIDITs |
1 | (1) | 0.745 | (1) | 0.753 |
2 | (2) | 0.683 | (2) | 0.711 |
3 | (3) | 0.624 | (4) | 0.626 |
4 | (5) | 0.606 | (3) | 0.582 |
5 | (6) | 0.599 | (5) | 0.581 |
6 | (8) | 0.595 | (6) | 0.580 |
7 | (7) | 0.589 | (9) | 0.579 |
8 | (4) | 0.585 | (7) | 0.534 |
9 | (9) | 0.556 | (8) | 0.498 |
10 | (11) | 0.447 | (10) | 0.487 |
11 | (10) | 0.470 | (12) | 0.470 |
12 | (12) | 0.465 | (14) | 0.470 |
13 | (13) | 0.437 | (11) | 0.461 |
14 | (14) | 0.410 | (13) | 0.447 |
15 | (15) | 0.406 | (15) | 0.409 |
16 | (16) | 0.323 | (16) | 0.330 |
17 | (17) | 0.257 | (17) | 0.227 |
18 | (18) | 0.173 | (18) | 0.206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-P.; Ho, C.-I.; Huang, S.-H. Exploring the Key Attributes Influencing University Students’ Domestic Accommodation Choice: A RIDIT Analysis. Tour. Hosp. 2024, 5, 814-829. https://doi.org/10.3390/tourhosp5030047
Li C-P, Ho C-I, Huang S-H. Exploring the Key Attributes Influencing University Students’ Domestic Accommodation Choice: A RIDIT Analysis. Tourism and Hospitality. 2024; 5(3):814-829. https://doi.org/10.3390/tourhosp5030047
Chicago/Turabian StyleLi, Chin-Pei, Chaang-Iuan Ho, and Shu-Han Huang. 2024. "Exploring the Key Attributes Influencing University Students’ Domestic Accommodation Choice: A RIDIT Analysis" Tourism and Hospitality 5, no. 3: 814-829. https://doi.org/10.3390/tourhosp5030047
APA StyleLi, C. -P., Ho, C. -I., & Huang, S. -H. (2024). Exploring the Key Attributes Influencing University Students’ Domestic Accommodation Choice: A RIDIT Analysis. Tourism and Hospitality, 5(3), 814-829. https://doi.org/10.3390/tourhosp5030047