Hazards to Aircraft Crews, Passengers, and Equipment from Thunderstorm-Generated X-rays and Gamma-Rays
Abstract
:Simple Summary
Abstract
1. Introduction
2. High-Energy Physics of Lightning
2.1. X-rays from Lightning
2.2. Terrestrial Gamma-Ray Flashes
2.3. Gamma-Ray Glows and Secondary Emission of High-Energy Photons Due to Photonuclear Reactions
2.4. Physical Mechanisms of TGFs and Related Phenomena
3. Hazards to Aircraft from TGFs and Positive Leader Strikes
3.1. Hazards to Aircraft Personnel
3.2. Hazards to Aircraft Equipment
4. Ball Lightning and Its Hazards
4.1. Ball Lightning Casualties
4.2. Possibility of Ionizing Radiation from Ball Lightning
4.3. Examples of Possible Connection Between Ball Lightning and Gamma-Ray Glows
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gravelle, C.M.; Stano, G.; Carcione, B.C.; Elsenheimer, C.B. Utilizing the Geostationary Lightning Mapper Long-Flash Detection Capability for National Weather Service Decision Support Services. In Proceedings of the American Meteorological Society 2019 Annual Conference, Phoenix, Arizona, 9 January 2019; Talk 7.3. Available online: https://ams.confex.com/ams/2019Annual/meetingapp.cgi/Paper/354282 (accessed on 28 June 2021).
- Wilson, C.T.R. The acceleration of beta particles in strong electric fields such as those in thunderclouds. Math. Proc. Camb. Philos. Soc. 1925, 22, 534–538. [Google Scholar] [CrossRef]
- Rakov, V.A.; Uman, M.A. Lightning Physics and Effects; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Torii, T.; Takeishi, M.; Honoso, T. Observation of gamma-ray dose increase associated with winter thunderstorm and lightning activity. J. Geophys. Res. 2002, 107, 4324:1–4324:9. [Google Scholar] [CrossRef]
- Dwyer, J.; Smith, D.M.; Cummer, S.A. High-energy atmospheric physics: Terrestrial gamma-ray flashes and related phenomena. Space Sci. Rev. 2012, 173, 133–196. [Google Scholar] [CrossRef] [Green Version]
- Parks, G.K.; Mauk, B.H.; Spiger, R.; Chin, J. X-ray enhancement detected during thunderstorm and lightning activities. Geophys. Res. Lett. 1981, 8, 1176–1179. [Google Scholar] [CrossRef]
- McCarthy, M.; Parks, G.K. Further observations of X rays inside thunderstorms. Geophys. Res. Lett. 1985, 12, 393–396. [Google Scholar] [CrossRef]
- Moore, C.B.; Eack, K.B.; Aulich, G.D.; Rison, W. Energetic radiation associated with lightning stepped-leaders. Geophys. Res. Lett. 2001, 28, 2141–2144. [Google Scholar] [CrossRef]
- Dwyer, J.R.; Uman, M.A.; Rassoul, H.A.; Al-Dayeh, M.; Caraway, L.; Jerauld, J.; Rakov, V.A.; Jordan, D.M.; Rambo, K.J.; Corbin, V.; et al. Energetic radiation produced during rocket-triggered lightning. Science 2003, 299, 694–697. [Google Scholar] [CrossRef]
- Fishman, G.J.; Bhat, P.N.; Mallozzi, R.; Horack, J.M.; Koshut, T.; Kouvelioutou, C.; Pendleton, G.N.; Meegan, C.A.; Wilson, R.B.; Pacieas, W.S.; et al. Discovery of intense gamma-ray flashes of atmospheric origin. Science 1994, 264, 1313–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavani, M.; Argan, A.; Paccagnella, A.; Pesoli, A.; Palma, F.; Gerardin, S.; Bagatin, M.; Trois, A.; Picozza, P.; Benvenuti, P.; et al. Possible effects on avionics induced by terrestrial gamma-ray flashes. Nat. Hazards Earth Syst. Sci. 2013, 13, 1127–1133. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.M.; Dwyer, J.R.; Hazelton, B.J.; Grefenstette, B.W.; Martinez-McKinney, G.F.M.; Zhang, Z.Y.; Lowell, A.W.; Kelley, N.A.; Splitt, M.E.; Lazarus, S.M.; et al. The rarity of terrestrial gamma-ray flashes. Geophys Res. Lett. 2011, 38, L08807:1–L08807:5. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, J.; Uman, M.A. The physics of lightning. Phys. Reports. 2014, 534, 147–241. [Google Scholar] [CrossRef]
- Dwyer, J.R.; Smith, D.M.; Hazelton, B.J.; Crefenstette, B.W.; Kelley, N.A.; Lowell, A.W.; Schaal, M.M.; Rassoul, H.K. Positron clouds within thunderstorms. J. Plasma Phys. 2015, 81, 475810405:1–475810405:17. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Bowers, G.S.; Enoto, T.; Kamogawa, M.; Nakamura, Y.; Morimoto, T.; Smith, D.M.; Furuta, Y.; Nakazawa, K.; Yuasa, N.; et al. Termination of electron acceleration in thundercloud by intracloud/intercloud discharge. Geophys. Res. Lett. 2018, 45, 5700–5707. [Google Scholar] [CrossRef]
- Yuasa, T.; Wada, Y.; Enoto, T.; Furuta, Y.; Tsuchiya, H.; Hisadomi, Sh.; Tsuji, Y.; Okuda, K.; Matsumoto, T.; Nakazawa, K.; et al. Thundercloud Project: Exploring high-energy phenomena in thundercloud and lightning. Prog. Theor. Exp. Phys. 2020, 2020, 103H01:1–103H01:27. [Google Scholar] [CrossRef]
- Gibney, E. Mystery gamma rays could help solve age-old lightning puzzle. Nature 2021, 590, 378–381. [Google Scholar] [CrossRef]
- Diniz, G.S.; Ferreira, I.S.; Wada, Y.; Enoto, T. Generation possibility of gamma-ray glows induced by photonuclear reactions. Geophys. Res. Atmos. 2021. Available online: https://onlinelibrary.wiley.com/doi/10.1029/2020JD034101 (accessed on 12 May 2021).
- Chilingarian, A.; Mkrtchyan, H. Role of the lower positive charge region (LPCR) in initiation of the thunderstorm ground enhancements (TGEs). Phys. Rev. D 2012, 86, 072003:1–072003:11. [Google Scholar] [CrossRef]
- Chilingarian, A.; Hovsepyan, G.; Elbekian, A.; Karapetyan, T.; Kozliner, L.; Martoian, H.; Sargsyan, B. Origin of enhanced gamma radiation in thunderclouds. Phys. Rev. Res. 2019, 1, 033167:1–033167:9. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, M.; Secchini, S.; Galli, M.; Giovannini, G.; Pagliarin, A. Gamma-ray bursts of atmospheric origin in the MeV energy range. Geophys. Res. Lett. 2000, 27, 1599–1602. [Google Scholar] [CrossRef]
- Shmatov, M.L. Expected spectrum of high-energy photons from ball lightning. J. Plasma Phys. 2006, 72, 277–284. [Google Scholar] [CrossRef]
- Umemoto, D.; Tsuchiya, H.; Enoto, T.; Yamada, S.; Yuasa, T.; Kawaharada, M.; Kitaguchi, T.; Nakazawa, K.; Kokubun, M.; Kato, H.; et al. On-ground detection of an electron-positron annihilation line from thunderclouds. Phys. Rev. E 2016, 93, 021201. [Google Scholar] [CrossRef]
- Shmatov, M.L. Possible detection of high-energy photons from ball lightning. Phys. Rev. E 2019, 99, 043203:1–043203:6. [Google Scholar] [CrossRef]
- Enoto, T.; Wada, T.; Furuta, Y.; Nakazawa, K.; Yuasa, T.; Okuda, K.; Makishima, K.; Sato, M.; Nakano, T.; Umemoto, D.; et al. Photonuclear reactions triggered by lightning discharge. Nature 2017, 551, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Chum, J.; Langer, R.; Baše, J.; Kollárik, M.; Strhárský, I.; Diendorfer, G.; Rusz, J. Significant enhancement of secondary cosmic rays and electric field at the high mountain peak of Lomnický Štít in High Tatras during thunderstorms. EarthPlanets Space 2020, 72, 28:1–28:20. [Google Scholar] [CrossRef] [Green Version]
- Chilingarian, A. High energy physics in the Earth’s atmosphere. Priroda 2021, 3, 11–25. [Google Scholar]
- Shmatov, M.L. Possible detection of visible light and γ rays from a swarm of ball lightning. Phys Rev. E 2020, 102, 013208:1–013208:6. [Google Scholar] [CrossRef] [PubMed]
- Rutjes, C.; Diniz, G.; Ferreira, I.S.; Ebert, U. TGF afterglows: A new radiation mechanism from thunderstorms. Geophys. Res. Lett. 2017, 44, 10702–10712. [Google Scholar] [CrossRef]
- Shmatov, M.L. Possible scenarios for the initial acceleration of electrons of the core of ball lightning. J. Plasma Phys. 2015, 81, 905810607:1–905810607:13. [Google Scholar] [CrossRef]
- Shmatov, M.L.; Stephan, K.D. Advances in ball lightning research. J. Atmos. Sol. Terr. Phys. 2019, 195, 105115:1–105115:17. [Google Scholar] [CrossRef]
- Dwyer, J.R. Implications of x-ray emission from lightning. Geophys Res. Lett. 2004, 31, L12102:1–L12102:4. [Google Scholar] [CrossRef]
- Tavani, M.; Marisaldi, M.; Labanti, C.; Fuschino, F.; Agran, A.; Trois, A.; Giommi, P.; Colafrancesco, S.; Pittori, C.; Palma, F.; et al. Terrestrial gamma-ray flashes as powerful particle accelerators. Phys. Rev. Lett. 2011, 106, 018501:1–018501:5. [Google Scholar] [CrossRef]
- Xu, W.; Celestin, S.; Pasko, V.P. Source altitudes of terrestrial gamma-ray flashes produced by lightning leaders. Geophys. Res. Lett. 2012, 39, L08801:1–L08801:5. [Google Scholar] [CrossRef] [Green Version]
- Celestin, S.; Wu, W.; Pasko, V.P. Terrestrial gamma ray flashes with energies up to 100 MeV produced by nonequilibrium acceleration of electrons in lightning. J. Geophys. Res. 2012, 117, A05315:1–A05315:9. [Google Scholar] [CrossRef]
- Shmatov, M.L. New model of initial acceleration of electrons of terrestrial gamma-ray flashes with a hard spectrum. Phys. Lett. A. 2015, 379, 1358–1360. [Google Scholar] [CrossRef]
- Gurevich, A.V. On the theory of runaway electrons. ZhETF 1960, 39, 1296–1308. [Google Scholar]
- Babich, L.P. High-Energy Phenomena in Electric Discharges on Dense Gases: Theory, Experiment and Natural Phenomena; Futureplast: Arlington, VA, USA, 2003. [Google Scholar]
- Kutsyk, I.M.; Babich, L.P.; Donskoii, E.N. Self-sustained relativistic-runaway-electron avalanches in the transverse field of lightning leader as sources of terrestrial gamma-ray flashes. Pis’ma V ZhETF 2011, 94, 647–650. [Google Scholar] [CrossRef]
- Dwyer, J.; Smith, D.M.; Uman, M.A.; Saleh, Z.; Grefenstette, B.; Hazelton, B.; Rassoul, H.K. Estimation of the fluence of high-energy electron bursts produced by thunderclouds and the resulting radiation doses received in aircraft. J. Geophys. Res. D 2010, 115, D09206:1–D09206:10. [Google Scholar] [CrossRef]
- Meier, M.M.; Copeland, K.; Klöble, K.E.J.; Matthiä, D.; Plettenberg, M.C.; Schennetten, K.; Wirtz, M.; Helleg, Ch. E. Radiation in the atmosphere—A hazard to aviation safety? Atmosphere 2020, 11, 1358:1–1358:31. [Google Scholar] [CrossRef]
- Makowski, D.; Grecki, M.; Mukherjee, B.; Simrock, S.; Swiercz, B.; Napieralski, A. The application of a SRAM chip as a novel neutron detector. J. Exp. Nanosci. 2006, 1, 261–268. [Google Scholar] [CrossRef]
- Abrahamson, J.; Bychkov, A.V.; Bychkov, V.L. Recently reported sightings of ball lightning: Observations collected by correspondence and Russian and Ukranian sightings. Phil. Trans. Roy. Soc. Lond. A 2002, 360, 11–35. [Google Scholar] [CrossRef] [PubMed]
- Smirnov, B.M. The properties and the nature of ball lightning. Phys. Rep. 1987, 152, 177–236. [Google Scholar] [CrossRef]
- Stenhoff, M. Ball Lightning: An Unsolved Problem in Atmospheric Physics; Kluwer/Plenum Press: New York, NY, USA, 1999. [Google Scholar]
- Barry, J.D. Ball Lightning and Bead Lightning: Extreme Forms of Atmospheric Electricity; Plenum Press: New York, NY, USA; London, UK, 1980. [Google Scholar]
- Stakhanov, I.P. About the Physical Nature of Ball Lightning, 3rd ed.; Nauchnyi Mir: Moscow, Russia, 1996. [Google Scholar]
- Boerner, H. Ball Lightning: A Popular Guide to a Longstanding Mystery in Atmospheric Electricity; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Bychkov, V.L.; Nikitin, A.I. Ball lightning: A new step in understanding. In The Atmosphere and Ionosphere: Elementary Processes, Monitoring, and Ball Lightning Physics of Earth and Space Environments; Springer: Heidelberg, Germany, 2014; pp. 201–367. [Google Scholar]
- Selvaggi, G.; Monstrey, S.; von Heimburg, D.; Hamdi, M.; Van Landuyt, K.; Blondeel, P. Ball lightning burn. Annals Plastic Surg. 2003, 50, 541–544. [Google Scholar] [CrossRef]
- García, M.A.C.; Tovilla, Y.M.; Barreto, C.A.J.; Robles, J.J.S.; Lorenzo, I.E.G. Burn by ball lightning. Case report. Rev. Pediatr. Aten. Primaria. 2018, 20, 157–161. [Google Scholar]
- Dmitriev, M.T.; Lakshin, A.M.; Morozov, S.S. Specific features of injuries by ball lightning. Ortop. Travmatol. Protez. 1986, 11, 66–67. [Google Scholar]
- Cohen, M.A. Clinical peals: Struck by lightning. Acad. Emerg. Med. 2001, 8, 929–931. [Google Scholar] [CrossRef]
- Cherington, M.; Yarnell, P.R. Ball lightning encephalopathy. J. Burn Care Rehabil. 2003, 24, 175. [Google Scholar] [CrossRef] [PubMed]
- Shmatov, M.L. New model and estimation of the danger of ball lightning. J. Plasma Phys. 2003, 69, 507–527. [Google Scholar] [CrossRef]
- Garfield, E. When citation analysis strikes ball lightning. Essays Inf. Sci. 1976, 2, 479–490. [Google Scholar]
- Bocharov, G. Drama in a valley. Lit. Gaz. 1983, 51, 12. [Google Scholar]
- Carpenter, D.G. Plasma Theory Applied to Ball Lightning. Ph.D. Thesis, Iowa State University of Science and Technology, Ames, IA, USA, 1962. [Google Scholar]
- Stephan, K.D.; Krajcik, R.; Martin, R.J. Fluorescence caused by ionizing radiation from ball lightning: Observation and quantitative analysis. J. Atmos. Sol. Terr. Phys. 2016, 148, 32–38. [Google Scholar] [CrossRef]
- Dmitriev, M.T. Stability mechanism for ball lightning. ZhTF 1969, 39, 387–394. [Google Scholar]
- Cowgill, W. Curious phenomenon in Venezuela. Sci. Am. 1886, 55, 389. [Google Scholar]
- Shmatov, M.L. Ball lightning with the nonrelativistic electrons of the core. J. Plasma Phys. 2015, 81, 905810406:1–905810406:19. [Google Scholar] [CrossRef]
- Brand, W. Der Kugelblitz; Grand: Hamburg, Germany, 1923. [Google Scholar]
- Imyanitov, I.; Tikhii, D. Za Gran’yu Zakona (Outside the Verge of Law); Gidrometeoizdat: Leningrad, USSR, 1967. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stephan, K.D.; Shmatov, M.L. Hazards to Aircraft Crews, Passengers, and Equipment from Thunderstorm-Generated X-rays and Gamma-Rays. Radiation 2021, 1, 162-173. https://doi.org/10.3390/radiation1030015
Stephan KD, Shmatov ML. Hazards to Aircraft Crews, Passengers, and Equipment from Thunderstorm-Generated X-rays and Gamma-Rays. Radiation. 2021; 1(3):162-173. https://doi.org/10.3390/radiation1030015
Chicago/Turabian StyleStephan, Karl D., and Mikhail L. Shmatov. 2021. "Hazards to Aircraft Crews, Passengers, and Equipment from Thunderstorm-Generated X-rays and Gamma-Rays" Radiation 1, no. 3: 162-173. https://doi.org/10.3390/radiation1030015
APA StyleStephan, K. D., & Shmatov, M. L. (2021). Hazards to Aircraft Crews, Passengers, and Equipment from Thunderstorm-Generated X-rays and Gamma-Rays. Radiation, 1(3), 162-173. https://doi.org/10.3390/radiation1030015