In Vitro Radioenhancement Using Ultrasound-Stimulated Microbubbles: A Comparison of Suspension and Adherent Cell States
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Culture Conditions
2.2. Plating and MTS Assay Optimisation
2.3. Treatments
2.4. MTS Readings
2.5. Statistical Analysis
3. Results
3.1. NCI-H727 Cells
3.2. FTC-238 Cells
4. Discussion
4.1. Baseline Sensitivity to USMB In Vitro Is Also Influenced by Cell Adherence
4.2. Baseline Cell Radiosensitivity In Vitro May Also Be Influenced by Cell Adherence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czarnota, G.J.; Karshafian, R.; Burns, P.N.; Wong, S.; Al Mahrouki, A.; Lee, J.W.; Caissie, A.; Tran, W.; Kim, C.; Furukawa, M.; et al. Tumor radiation response enhancement by acoustical stimulation of the vasculature. Proc. Natl. Acad. Sci. USA 2012, 109, E2033–E2041. [Google Scholar] [CrossRef] [PubMed]
- Daecher, A.; Stanczak, M.; Liu, J.-B.; Zhang, J.; Du, S.; Forsberg, F.; Leeper, D.B.; Eisenbrey, J.R. Localized microbubble cavitation-based antivascular therapy for improving HCC treatment response to radiotherapy. Cancer Lett. 2017, 411, 100–105. [Google Scholar] [CrossRef] [PubMed]
- El Kaffas, A.; Czarnota, G.J. Biomechanical effects of microbubbles: From radiosensitization to cell death. Future Oncol. 2015, 11, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Xu, S.; Matula, T.; Wan, M. Cavitation-Enhanced Mechanical Effects and Applications. In Cavitation in Biomedicine: Principles and Techniques; Wan, M., Feng, Y., Haar, G., Eds.; Springer: Dodrecht, The Netherlands, 2015; pp. 207–263. [Google Scholar] [CrossRef]
- Unger, E.C.; Matsunaga, T.O.; McCreery, T.; Schumann, P.; Sweitzer, R.; Quigley, R. Therapeutic applications of microbubbles. Eur. J. Radiol. 2002, 42, 160–168. [Google Scholar] [CrossRef]
- Goertz, D.E.; Todorova, M.; Mortazavi, O.; Agache, V.; Chen, B.; Karshafian, R.; Hynynen, K. Antitumor effects of combining docetaxel (taxotere) with the antivascular action of ultrasound stimulated microbubbles. PLoS ONE 2012, 7, e52307. [Google Scholar] [CrossRef]
- Pu, C.; Chang, S.; Sun, J.; Zhu, S.; Liu, H.; Zhu, Y.; Wang, Z.; Xu, R.X. Ultrasound-mediated destruction of LHRHa-targeted and paclitaxel-loaded lipid microbubbles for the treatment of intraperitoneal ovarian cancer xenografts. Mol. Pharm. 2014, 11, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, X.; Liu, P.; Yang, W.; Li, L.; Li, P.; Liu, Z.; Zhuo, Z. Microbubbles coupled to methotrexate-loaded liposomes for ultrasound-mediated delivery of methotrexate across the blood-brain barrier. Int. J. Nanomed. 2014, 9, 4899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Li, S.; Liu, Z.; Tang, Y.; Wang, Z.; Gong, J.; Liu, C. Ultrasound-targeted microbubble destruction mediated herpes simplex virus-thymidine kinase gene treats hepatoma in mice. J. Exp. Clin. Cancer Res. 2010, 29, 170–175. [Google Scholar] [CrossRef]
- Dimcevski, G.; Kotopoulis, S.; Bjånes, T.; Hoem, D.; Schjøtt, J.; Gjertsen, B.T.; Biermann, M.; Molven, A.; Sorbye, H.; McCormack, E.; et al. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J. Control. Release 2016, 243, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Lyon, P.C.; Gray, M.D.; Mannaris, C.; Folkes, L.K.; Stratford, M.; Campo, L.; Chung, D.Y.F.; Scott, S.; Anderson, M.; Goldin, R.; et al. Safety and feasibility of ultrasound-triggered targeted drug delivery of doxorubicin from thermosensitive liposomes in liver tumours (TARDOX): A single-centre, open-label, phase 1 trial. Lancet Oncol. 2018, 19, 1027–1039. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Xu, L. Cell experimental studies on sonoporation: State of the art and remaining problems. J. Control. Release 2014, 174, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Hynynen, K. Key factors that affect sonoporation efficiency in in vitro settings: The importance of standing wave in sonoporation. Biochem. Biophys. Res. Commun. 2007, 359, 860–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Azuma, T.; Sasaki, A.; Yoshinaka, K.; Takagi, S.; Matsumoto, Y. Ultrasound-mediated gene transfection: A comparison between cells irradiated in suspension and attachment status. AIP Conf. Proc. 2012, 1481, 481–487. [Google Scholar] [CrossRef]
- Zhou, Q.; Chen, J.-L.; Chen, Q.; Wang, X.; Deng, Q.; Hu, B.; Guo, R.-Q. Optimization of transfection parameters for ultrasound/SonoVue microbubble-mediated hAng-1 gene delivery in vitro. Mol. Med. Rep. 2012, 6, 1460–1464. [Google Scholar] [CrossRef] [PubMed]
- Eisenbrey, J.R.; Shraim, R.; Liu, J.-B.; Li, J.; Stanczak, M.; Oeffinger, B.; Leeper, D.B.; Keith, S.W.; Jablonowski, L.J.; Forsberg, F.; et al. Sensitization of Hypoxic Tumors to Radiation Therapy Using Ultrasound-Sensitive Oxygen Microbubbles. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 88–96. [Google Scholar] [CrossRef]
- Nande, R.; Greco, A.; Gossman, M.S.; Lopez, J.P.; Claudio, L.; Salvatore, M.; Brunetti, A.; Denvir, J.; Howard, C.M.; Claudio, P.P. Microbubble-assisted p53, RB, and p130 gene transfer in combination with radiation therapy in prostate cancer. Curr. Gene Ther. 2013, 13, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Karshafian, R.; Giles, A.; Burns, P.N.; Czarnota, G.J. Ultrasound-activated microbubbles as novel enhancers of radiotherapy in leukemia cells in vitro. In Proceedings of the IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 September 2009; pp. 1792–1794. [Google Scholar] [CrossRef]
- Karshafian, R.; Tchouala, J.I.N.; Al-Mahrouki, A.; Giles, A.; Czarnota, G.J. Enhancement of radiation therapy by ultrasonically-stimulated microbubbles in vitro: Effects of treatment scheduling on cell viability and production of ceramide. In Proceedings of the IEEE International Ultrasonics Symposium, San Diego, CA, USA, 11–14 October 2010; pp. 2115–2118. [Google Scholar] [CrossRef]
- Al-Mahrouki, A.A.; Karshafian, R.; Giles, A.; Czarnota, G.J. Bioeffects of Ultrasound-Stimulated Microbubbles on Endothelial Cells: Gene Expression Changes Associated with Radiation Enhancement In Vitro. Ultrasound Med. Biol. 2012, 38, 1958–1969. [Google Scholar] [CrossRef]
- Nofiele, J.I.T.; Karshafian, R.; Furukawa, M.; Al Mahrouki, A.; Giles, A.; Wong, S.; Czarnota, G.J. Ultrasound-Activated Microbubble Cancer Therapy: Ceramide Production Leading to Enhanced Radiation Effect In Vitro. Technol. Cancer Res. Treat. 2013, 12, 53–60. [Google Scholar] [CrossRef]
- Al-Mahrouki, A.A.; Wong, E.; Czarnota, G.J. Ultrasound-stimulated microbubble enhancement of radiation treatments: Endothelial cell function and mechanism. Oncoscience 2015, 2, 944–957. [Google Scholar] [CrossRef] [Green Version]
- Lammertink, B.H.A.; Bos, C.; van der Wurff-Jacobs, K.M.; Storm, G.; Moonen, C.T.; Deckers, R. Increase of intracellular cisplatin levels and radiosensitization by ultrasound in combination with microbubbles. J. Control. Release 2016, 238, 157–165. [Google Scholar] [CrossRef]
- Al-Mahrouki, A.; Giles, A.; Hashim, A.; Kim, H.C.; El-Falou, A.; Rowe-Magnus, D.; Farhat, G.; Czarnota, G.J. Microbubble-based enhancement of radiation effect: Role of cell membrane ceramide metabolism. PLoS ONE 2017, 12, e0181951. [Google Scholar] [CrossRef] [Green Version]
- Deng, H.; Cai, Y.; Feng, Q.; Wang, X.; Tian, W.; Qiu, S.; Wang, Y.; Li, Z.; Wu, J. Ultrasound-Stimulated Microbubbles Enhance Radiosensitization of Nasopharyngeal Carcinoma. Cell. Physiol. Biochem. 2018, 48, 1530–1542. [Google Scholar] [CrossRef]
- McCorkell, G.; Nakayama, M.; Feltis, B.; Piva, T.; Geso, M. Ultrasound-Stimulated Microbubbles Enhance Radiation-Induced Cell Killing. Ultrasound Med. Biol. 2022, 48, 2449–2460. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, M.; Paget, V.; Ben Kacem, M.; Trompier, F.; Benadjaoud, M.A.; François, A.; Guipaud, O.; Benderitter, M.; Milliat, F. Importance of dosimetry protocol for cell irradiation on a low X-rays facility and consequences for the biological response. Int. J. Radiat. Biol. 2018, 94, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Goretzki, P.; Frilling, A.; Simon, D.; Roeher, H.-D. Growth regulation of normal thyroids and thyroid tumors in man. In Hormone-Related Malignant Tumors; Springer: Berlin/Heidelberg, Germany, 1990; pp. 48–63. [Google Scholar]
- Takahashi, T.; Nau, M.M.; Chiba, I.; Birrer, M.J.; Rosenberg, R.K.; Vinocour, M.; Levitt, M.; Pass, H.; Gazdar, A.F.; Minna, J.D. p53: A Frequent Target for Genetic Abnormalities in Lung Cancer. Science 1989, 246, 491. [Google Scholar] [CrossRef]
- Promega Corporation. CellTiter 96® AQueous One Solution Cell Proliferation Assay; Promega Corporation: Madison, WI, USA, 2012. [Google Scholar]
- Lantheus DEFINITY® RT (Perflutren Lipid Microsphere) Injectable Suspension. 2023. Available online: https://www.definityimaging.com/sites/default/files/pdf/definity-rt-pi.pdf (accessed on 7 August 2023).
- Laerd Statistics. Testing for Normality Using SPSS Statistics When You Have Only One Independent Variable. 2018. Available online: https://statistics.laerd.com/spss-tutorials/testing-for-normality-using-spss-statistics.php (accessed on 23 May 2023).
- Gignac, G.E. How2statsbook 2019. Available online: https://sites.google.com/site/how2statsbook1/Table%20of%20Contents%20-%202019.pdf?attredirects=0&d=1 (accessed on 23 May 2023).
- Bakeman, R. Recommended effect size statistics for repeated measures designs. Behav. Res. Methods 2005, 37, 379–384. [Google Scholar] [CrossRef]
- Blanca, M.J.; Alarcón, R.; Arnau, J. Non-normal data: Is ANOVA still a valid option? Psicothema 2017, 29, 552–557. [Google Scholar] [CrossRef] [PubMed]
- One-Way ANOVA—Violations to the Assumptions of This Test and How to Report the Results|Laerd Statistics n.d. Available online: https://statistics.laerd.com/statistical-guides/one-way-anova-statistical-guide-3.php (accessed on 9 October 2020).
- Lee, H.; Kim, H.; Han, H.; Lee, M.; Lee, S.; Yoo, H.; Chang, J.H.; Kim, H. Microbubbles used for contrast enhanced ultrasound and theragnosis: A review of principles to applications. Biomed. Eng. Lett. 2017, 7, 59–69. [Google Scholar] [CrossRef]
- Zenych, A.; Fournier, L.; Chauvierre, C. Nanomedicine progress in thrombolytic therapy. Biomaterials 2020, 258, 120297. [Google Scholar] [CrossRef]
- Lattwein, K.R.; Shekhar, H.; Kouijzer, J.J.P.; van Wamel, W.J.B.; Holland, C.K.; Kooiman, K. Sonobactericide: An Emerging Treatment Strategy for Bacterial Infections. Ultrasound Med. Biol. 2020, 46, 193–215. [Google Scholar] [CrossRef]
- Panje, C.M.; Wang, D.S.; Willmann, J.K. Ultrasound and Microbubble–Mediated Gene Delivery in Cancer: Progress and Perspectives. Investig. Radiol. 2013, 48, 755–769. [Google Scholar] [CrossRef] [PubMed]
- Deprez, J.; Lajoinie, G.; Engelen, Y.; De Smedt, S.C.; Lentacker, I. Opening doors with ultrasound and microbubbles: Beating biological barriers to promote drug delivery. Adv. Drug Deliv. Rev. 2021, 172, 9–36. [Google Scholar] [CrossRef] [PubMed]
- Fournier, L.; De La Taille, T.; Chauvierre, C. Microbubbles for human diagnosis and therapy. Biomaterials 2023, 294, 122025. [Google Scholar] [CrossRef]
- Padilla, F.; Puts, R.; Vico, L.; Guignandon, A.; Raum, K. Stimulation of Bone Repair with Ultrasound. In Therapeutic Ultrasound; Escoffre, J.-M., Bouakaz, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 385–427. [Google Scholar] [CrossRef]
- Whitney, N.P.; Lamb, A.C.; Louw, T.M.; Subramanian, A. Integrin-Mediated Mechanotransduction Pathway of Low-Intensity Continuous Ultrasound in Human Chondrocytes. Ultrasound Med. Biol. 2012, 38, 1734–1743. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Zhang, Y.; Zhou, J.; Li, J.; Deng, F.; Wang, Z.; Song, J. Low-Intensity Pulsed Ultrasound Stimulation Facilitates Osteogenic Differentiation of Human Periodontal Ligament Cells. PLoS ONE 2014, 9, e95168. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, A.P. Anoikis. Cell Death Differ. 2005, 12, 1473–1477. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Rescorla, F.J. Cell surface adhesion molecules and adhesion-initiated signaling: Understanding of anoikis resistance mechanisms and therapeutic opportunities. Cell. Signal. 2012, 24, 393–401. [Google Scholar] [CrossRef]
- Simpson, C.D.; Anyiwe, K.; Schimmer, A.D. Anoikis resistance and tumor metastasis. Cancer Lett. 2008, 272, 177–185. [Google Scholar] [CrossRef]
Radiation Dose | Culture State | NCI-H727 Cell Line | FTC-238 Cell Line | ||
---|---|---|---|---|---|
RT-Alone | USMB + RT | RT-Alone | USMB + RT | ||
0 Gy | Suspended | 1.00 ± 0.07 | 0.68 ± 0.22 | 1.00 ± 0.07 | 1.00 ± 0.05 |
Adhered | 1.00 ± 0.08 | 1.11 ± 0.10 | 1.00 ± 0.08 | 1.03 ± 0.02 | |
3 Gy | Suspended | 0.66 ± 0.06 | 0.36 ± 0.16 | 0.83 ± 0.06 | 0.82 ± 0.06 |
Adhered | 0.73 ± 0.22 | 0.73 ± 0.05 | 0.83 ± 0.13 | 0.78 ± 0.01 | |
6 Gy | Suspended | 0.53 ± 0.07 | 0.35 ± 0.07 | 0.62 ± 0.08 | 0.60 ± 0.05 |
Adhered | 0.55 ± 0.07 | 0.65 ± 0.14 | 0.79 ± 0.01 | 0.74 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCorkell, G.; Nakayama, M.; Feltis, B.; Piva, T.J.; Geso, M. In Vitro Radioenhancement Using Ultrasound-Stimulated Microbubbles: A Comparison of Suspension and Adherent Cell States. Radiation 2023, 3, 153-164. https://doi.org/10.3390/radiation3030013
McCorkell G, Nakayama M, Feltis B, Piva TJ, Geso M. In Vitro Radioenhancement Using Ultrasound-Stimulated Microbubbles: A Comparison of Suspension and Adherent Cell States. Radiation. 2023; 3(3):153-164. https://doi.org/10.3390/radiation3030013
Chicago/Turabian StyleMcCorkell, Giulia, Masao Nakayama, Bryce Feltis, Terrence J. Piva, and Moshi Geso. 2023. "In Vitro Radioenhancement Using Ultrasound-Stimulated Microbubbles: A Comparison of Suspension and Adherent Cell States" Radiation 3, no. 3: 153-164. https://doi.org/10.3390/radiation3030013
APA StyleMcCorkell, G., Nakayama, M., Feltis, B., Piva, T. J., & Geso, M. (2023). In Vitro Radioenhancement Using Ultrasound-Stimulated Microbubbles: A Comparison of Suspension and Adherent Cell States. Radiation, 3(3), 153-164. https://doi.org/10.3390/radiation3030013