Why Do Birds False Alarm Flight?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Practicing Escape Is Adaptive
3.2. Practicing Motor Aspects of Escape vs. Reducing False Information Use
3.3. The Fire Drill Hypothesis of False Alarm Flighting
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Buchanan, J.B.; Schick, C.T.; Brennan, L.A.; Herman, S.G. Merlin predation on wintering dunlins: Hunting success and dunlin escape tactics. Willson Bull. 1988, 100, 108–118. [Google Scholar]
- Zoratto, F.; Carrere, C.; Chiarotti, F.; Santucci, D.; Alleva, E. Aerial hunting behavior and predation success by peregrine falcons Falco peregrinus on starling flocks Sturnus vulgaris. J. Avian Biol. 2010, 41, 427–433. [Google Scholar] [CrossRef]
- Haftorn, S. Contexts and possible functions of alarm calling in the willow tit, Parus montanus; the principle of ‘better safe than sorry’. Behaviour 1999, 137, 437–449. [Google Scholar] [CrossRef]
- Quinn, J.L.; Cresswell, W. Personality, anti-predation behaviour and behavioural plasticity in the chaffinch Fringilla coelebs. Behaviour 2005, 1, 1377–1402. [Google Scholar] [CrossRef]
- Cresswell, W.; Hilton, G.M.; Ruxton, G.D. Evidence for a rule governing the avoidance of superfluous escape flights. Proc. R. Soc. Lond. Ser. B 2000, 267, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G. Flock size and density influence speed of escape waves in semipalmated sandpipers. Anim. Behav. 2012, 83, 1125–1129. [Google Scholar] [CrossRef]
- Lorenz, K.Z. The companion in the bird’s world. Auk 1937, 54, 245–273. [Google Scholar] [CrossRef]
- Andrew, R.J. Intention movements of flight in certain passerines, and their use in systematics. Behaviour 1956, 10, 179–204. [Google Scholar] [CrossRef]
- Davis, J.M. Social induced flight reactions in pigeons. Anim. Behav. 1975, 23, 597–601. [Google Scholar] [CrossRef]
- Giraldeau, L.-A.; Valone, T.J.; Templeton, J.J. Potential disadvantages of using socially acquired information. Philos. Trans. R. Soc. Lond. Ser. B 2002, 357, 1559–1566. [Google Scholar] [CrossRef] [Green Version]
- Rieucau, G.; Giraldeau, L.-A. Exploring the costs and benefits of social information use: An appraisal of current experimental evidence. Philos. Trans. R. Soc. Lond. Ser. B 2011, 366, 949–957. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, J. The early warning function of flocking in birds: An experimental study with captive quelea. Anim. Behav. 1979, 27, 855–865. [Google Scholar] [CrossRef]
- Lima, S.L. Collective detection of predatory attack by birds in the absence of alarm signals. J. Avian Biol. 1994, 25, 319–326. [Google Scholar] [CrossRef]
- Roberts, G.; Evans, P.R. Responses of foraging sanderlings to human approaches. Behaviour 1993, 126, 29–43. [Google Scholar]
- Clarke, M.F.; Burke da Silva, K.; Lair, H.; Pocklington, R.; Kramer, D.L.; McLaughlin, R.L. Site familiarity affects escape behaviour of the eastern chipmunk, Tamias striatus. Oikos 1993, 66, 533–537. [Google Scholar] [CrossRef]
- Lima, S.L. Collective detection of predatory attack by social foragers: Fraught with ambiguity? Anim. Behav. 1995, 50, 1097–1108. [Google Scholar] [CrossRef]
- Preuss, T.; Gilly, W.F. Role of prey-capture experience in the development of the escape response in the squid Loligo opalescens: A physiological correlation in an identified neuron. J. Exp. Biol. 2000, 203, 559–565. [Google Scholar] [CrossRef]
- Diego-Rasilla, F.J. Influence of predation pressure on the escape behavior of Podarcis muralis lizards. Behav. Proc. 2003, 63, 1–7. [Google Scholar] [CrossRef]
- Stankowich, T.; Blumstein, D.T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. Lond. Ser. B 2005, 272, 2627–2634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misanin, J.R.; Brownback, T.; Shaughnessy, L.D.; Hinderliter, C.F. Acquisition and retention of multidirectional escape behavior in preweanling rats. Dev. Psychobiol. 1980, 13, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Stamps, J. Motor learning and the value of familiar space. Am. Nat. 1995, 46, 41–58. [Google Scholar] [CrossRef]
- Fernández-Juricic, E.; Blumstein, D.T.; Abrica, G.; Manriquez, L.; Bandy Adams, L.; Adams, R.; Daneshrad, M.; Rodriguez-Prieto, I. Relationships of anti-predator escape and post-escape responses with body mass and morphology: A comparative avian study. Evol. Ecol. Res. 2006, 8, 731–752. [Google Scholar]
- Ravelling, D.G. Preflight and flight behavior of Canada Geese. Auk 1969, 86, 671–681. [Google Scholar] [CrossRef]
- Evans, S.M.; Patterson, G.R. The synchronization of behaviour in flocks of Estrildine finches. Anim. Behav. 1971, 19, 429–438. [Google Scholar] [CrossRef]
- Black, J.M. Preflight signalling in swans: A mechanism for group cohension and flock formation. Ethology 1988, 79, 143–157. [Google Scholar] [CrossRef]
- Couzin, I.D.; Krause, J. Self-organization and collective behavior in vertebrates. In Advances in the Study of Behavior; Elsevier: London, UK, 2003; Volume 32, pp. 1–75. [Google Scholar]
- Lorenz, K.Z. King Solomon’s Ring; Signet: New York, NY, USA, 1952. [Google Scholar]
- Hingee, M.; Magrath, R.D. Flights of fear: A mechanical wing whistle sounds the alarm in a flocking bird. Proc. R. Soc. Lond. Ser. B 2009, 276, 4173–4179. [Google Scholar] [CrossRef] [Green Version]
- Hilton, G.M.; Cresswell, W.; Ruxton, G.D. Intraflock variation in the speed of escape-flight response on attack by an avian predator. Behav. Ecol. 1999, 10, 391–395. [Google Scholar] [CrossRef]
- Macleod, R. Why does diurnal mass change not appear to affect the flight performance of alarmed birds? Anim. Behav. 2006, 71, 523–530. [Google Scholar] [CrossRef]
- Lee, S.J.; Witter, M.S.; Cuthill, I.C.; Goldsmith, A.R. Reduction in escape performance as a cost of reproduction in gravid starlings, Sturnus vulgaris. Proc. R. Soc. Lond. Ser. B 1996, 263, 619–623. [Google Scholar]
- Kullberg, C. Does diurnal variation in body mass affect take-off ability in wintering willow tits? Anim Behav. 1998, 56, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Krams, I. Mass-dependent take-off ability in wintering great tits (Parus major): Comparison of top-ranked adult males and subordinate juvenils females. Behav. Ecol. Sociobiol. 2002, 51, 345–349. [Google Scholar] [CrossRef]
- Kullberg, C.; Jakobsson, S.; Fransson, T. Predator-induced take-off strategy in great tits (Parus major). Proc. R. Soc. Lond. Ser. B 1998, 265, 1659–1664. [Google Scholar] [CrossRef] [Green Version]
- Van den Hout, P.J.; Piersma, T.; Dekinga, A.; Lubbe, S.K.; Visser, G.H. Ruddy turnstones Arenaria interpres rapidly build pectoral muscle after raptor scares. J. Avian Biol. 2006, 3, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Van de Hout, P.J.; Mathot, K.J.; Mass, L.R.M.; Piersma, T. Predator escape tactics in birds: Linking ecology and aerodynamics. Behav. Ecol. 2009, 21, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Lay, B.S.; Sparrow, W.A.; Hughes, K.M.; O’Dwyer, N.J. Practice effects on coordination and control, metabolic energy expenditure, and muscle activation. Hum. Mov. Sci. 2002, 21, 807–830. [Google Scholar] [CrossRef]
- Hogstad, O. Subordination in mixed-aged bird flocks—A removal study. Ibis 1987, 131, 128–134. [Google Scholar] [CrossRef]
- Hogstad, O. Advantages of social foraging of Willow Tits Parus montanus. Ibis 1988, 130, 275–283. [Google Scholar] [CrossRef]
- Ekman, J.; Cederholm, G.; Askenmo, C. Spacing and survival in winter groups of Willow Tit Parus montanus and Crested Tit P. cristatus—A removal study. J. Anim. Ecol. 1981, 1, 1–9. [Google Scholar] [CrossRef]
- Schleidt, W.; Shalter, M.D.; Moura-Neto, H. The hawk/goose story: The classical ethological experiments of Lorenz and Tinbergen, revisited. J. Comp. Psychol. 2011, 125, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A. Adjusting movements in greylag geese during pre-roosting and mass fleeing. Bird Behav. 1991, 9, 41–48. [Google Scholar]
- Rajala, M.; Kareksela, S.; Rätti, O.; Suhonen, J. Age-dependent responses to alarm calls depend on foraging activity in Willow Tits Poecile montanus. Ibis 2012, 154, 189–194. [Google Scholar] [CrossRef]
- Rajala, M.; Rätti, O.; Suhonen, J. Age differences in the response of willow tits (Parus montanus) to conspecific alarm calls. Ethology 2003, 109, 501–509. [Google Scholar] [CrossRef]
- Davis, G.J. Seasonal changes in flocking behavior of starlings as correlated with gonadal development. Wilson Bull. 1970, 84, 391–399. [Google Scholar]
- Proctor, C.J.; Broom, M.; Ruxton, G.D. Modelling antipredator vigilance and flight response in group foragers when warning signals are ambiguous. J. Theor. Biol. 2001, 211, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchamp, G.; Ruxton, G.D. Time of day and flightiness in flocks of semipalmated sandpipers. Condor 2008, 110, 269–275. [Google Scholar] [CrossRef]
- Edelaar, P.I.M.; Wright, J. Potential prey make excellent ornithologists: Adaptive, flexible responses towards avian predation threat by Arabian Babblers Turdoides squamiceps living at a migratory hotspot. Ibis 2006, 148, 664–671. [Google Scholar] [CrossRef]
- Root-Bernstein, M. The challenges of mixing associational learning theory with information-based decision-making theory. Behav. Ecol. 2012, 23, 940–943. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, G.; Ruxton, G.D. False alarms and the evolution of antipredator vigilance. Anim. Behav. 2007, 74, 1199–1206. [Google Scholar] [CrossRef]
- Sirot, E. Social information, antipredatory vigilance and flight in bird flocks. Anim. Behav. 2006, 72, 373–382. [Google Scholar] [CrossRef]
- Roberts, G. How many birds does it take to put a flock to flight? Anim. Behav. 1997, 54, 1517–1522. [Google Scholar] [CrossRef] [Green Version]
- Silva Rochefort, B.; Root-Bernstein, M. History of canids in Chile and impacts on prey adaptations. Ecol. Evol. 2021, 11, 9892–9903. [Google Scholar] [CrossRef] [PubMed]
- Devereux, C.L.; Fernández-Juricic, E.; Krebs, J.R.; Wittingham, M.J. Habitat affects escape behaviour and alarm calling in Common Starlings Sturnus vulgaris. Ibis 2008, 150 (Suppl. 1), 191–198. [Google Scholar] [CrossRef]
- Jenni-Eiermann, S.; Jenni, L.; Kvist, A.; Lindström, Å.; Piersma, T.; Visser, G.H. Fuel use and metabolic response to endurance exercise: A wind tunnel study of a long-distance migrant shorebird. J. Exp. Biol. 2002, 205, 2453–2460. [Google Scholar] [CrossRef]
- Yap, K.N.; Serota, M.W.; Williams, T.D. The physiology of exercise in free-living vertebrates: What can we learn from current model systems? Integr. Comp. Biol. 2017, 57, 195–206. [Google Scholar] [CrossRef]
- Larcombe, S.D.; Coffey, J.S.; Bann, D.; Alexander, L.; Arnold, K.E. Impacts of dietary antioxidants and flight training on post-exercise oxidative damage in adult parrots. Comp. Biochem. Physiol. B 2010, 155, 49–53. [Google Scholar] [CrossRef]
- Tätte, K.; Møller, A.P.; Mänd, R. Towards an integrated view of escape decisions in birds: Relation between flight initiation distance and distance fled. Anim. Behav. 2018, 136, 75–86. [Google Scholar] [CrossRef]
- Tätte, K.; Ibáñez-Álamo, J.D.; Markó, G.; Mänd, R.; Møller, A.P. Antipredator function of vigilance re-examined: Vigilant birds delay escape. Anim. Behav. 2019, 156, 97–110. [Google Scholar] [CrossRef]
- Morelli, F.; Benedetti, Y.; Díaz, M.; Grim, T.; Ibáñez-Álamo, J.D.; Jokimäki, J.; Kaisanlahti-Jokimäki, M.L.; Tätte, K.; Markó, G.; Jiang, Y.; et al. Contagious fear: Escape behavior increases with flock size in European gregarious birds. Ecol. Evol. 2019, 9, 6096–6104. [Google Scholar] [CrossRef]
- Yu, J.; Xing, X.; Jiang, Y.; Liang, W.; Wang, H.; Møller, A.P. Alarm call-based discrimination between common cuckoo and Eurasian sparrowhawk in a Chinese population of great tits. Ethology 2017, 123, 542–550. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Root-Bernstein, M. Why Do Birds False Alarm Flight? Birds 2022, 3, 29-37. https://doi.org/10.3390/birds3010002
Root-Bernstein M. Why Do Birds False Alarm Flight? Birds. 2022; 3(1):29-37. https://doi.org/10.3390/birds3010002
Chicago/Turabian StyleRoot-Bernstein, Meredith. 2022. "Why Do Birds False Alarm Flight?" Birds 3, no. 1: 29-37. https://doi.org/10.3390/birds3010002
APA StyleRoot-Bernstein, M. (2022). Why Do Birds False Alarm Flight? Birds, 3(1), 29-37. https://doi.org/10.3390/birds3010002