Birds as Bioindicators: Revealing the Widespread Impact of Microplastics
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Description and Analysis of the Bibliographic Search
3.2. Techniques for Micro- and Nanoplastics Detection
3.3. Presence of Micro- and Nanoplastics in Birds
3.4. Health Consequences of Micro- and Nanoplastics in Birds
3.4.1. Physical and Physiological Impact
3.4.2. Chemical Toxicity
3.4.3. Trophic Transfer and Bioaccumulation
3.4.4. Interference in Natural Behavior
4. Study Limitations and Opportunities for Improvement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lavers, J.L.; Stivaktakis, G.; Hutton, I.; Bond, A.L. Detection of ultrafine plastics ingested by seabirds using tissue digestion. Mar. Pollut. Bull. 2019, 142, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, G.; Barros, Á.; Velando, A. The use of European shag pellets as indicators of microplastic fibres in the marine environment. Mar. Pollut. Bull. 2018, 137, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Taj, M.; Ul Hassan, H.; Yaqub, A.; Shah, M.I.A.; Sohail, M.; Rafiq, N.; Atique, U.; Abbas, M.; Sultana, S.; et al. First Report on Microplastics Quantification in Poultry Chicken and Potential Human Health Risks in Pakistan. Toxics 2023, 11, 612. [Google Scholar] [CrossRef] [PubMed]
- PlasticsEurope. European Association of Plastics Recycling and Revocery Organisations. Plastics—The Facts 2019. An Analysis of European Plastics Production, Demand and Waste Data. PlasticEurope. K2019, Düsseldorf, Germany. 2019. Available online: https://plasticseurope.org/wp-content/uploads/2021/10/2019-Plastics-the-facts.pdf (accessed on 16 December 2024).
- Masiá, P.; Ardura, A.; Garcia-Vazquez, E. Microplastics in special protected areas for migratory birds in the Bay of Biscay. Mar. Pollut. Bull. 2019, 146, 993–1001. [Google Scholar] [CrossRef]
- UNEP Marine Litter: An Analytical Overview. United Nations Environment Programme, Nairobi. 2005. Available online: https://digitallibrary.un.org/record/560878 (accessed on 16 December 2024).
- Fernández, C.E.; Luna-Jorquera, G.; Encinas, V.G.; Lancelloti, A.A.; Lantadilla, C.; Aguilar-Pulido, R.; Kiessling, T.; Knickmeier, K.; Varela, A.I.; Thiel, M. Seabirds as biovectors in the transport of plastic debris across ecosystem borders: A case study from the Humboldt Current Upwelling System. Sci. Total Environ. 2024, 952, 175938. [Google Scholar] [CrossRef] [PubMed]
- Golubev, S. Macroplastic in Seabirds at Mirny, Antarctica. Birds 2020, 1, 13–18. [Google Scholar] [CrossRef]
- Wilcox, C.; Van Sebille, E.; Hardesty, B.D. Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc. Natl. Acad. Sci. USA 2015, 112, 11899–11904. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Yaqub, A.; Hassan, H.U.; Akhtar, S.; Rafiq, N.; Ali Shah, M.I.; Hussain, I.; Salman Khan, M.; Nawaz, A.; Manoharadas, S.; et al. Microplastic Quantification in Aquatic Birds: Biomonitoring the Environmental Health of the Panjkora River Freshwater Ecosystem in Pakistan. Toxics 2023, 11, 972. [Google Scholar] [CrossRef]
- Fendall, L.S.; Sewell, M.A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 2009, 58, 1225–1228. [Google Scholar] [CrossRef]
- Barnes, D.K.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef]
- Barrows, A.P.W.; Neumann, C.A.; Berger, M.L.; Shaw, S.D. Grab vs. neuston tow net: A microplastic sampling performance comparison and possible advances in the field. Anal. Methods 2016, 9, 1446–1453. [Google Scholar] [CrossRef]
- Le Guen, C.; Suaria, G.; Sherley, R.B.; Ryan, P.G.; Aliani, S.; Boehme, L.; Brierley, A.S. Microplastic study reveals the presence of natural and synthetic fibres in the diet of King Penguins (Aptenodytes patagonicus) foraging from South Georgia. Environ. Int. 2020, 134, 105303. [Google Scholar] [CrossRef] [PubMed]
- Provencher, J.F.; Borrelle, S.B.; Bond, A.L.; Lavers, J.L.; Kühn, S.; Hammer, S.; Mallory, M.L.; Trevail, A.; Van Franeker, J.A. Quantifying ingested debris in marine megafauna: A review and recommendations for standardization. Anal. Methods 2017, 9, 1454–1469. [Google Scholar] [CrossRef]
- Bessa, F.; Frias, J.; Kögel, T.; Lusher, A.; Andrade, J.M.; Antunes, J.; Sobral, P.; Pagter, E.; Nash, R.; O’Connor, I.; et al. Harmonized Protocol for Monitoring Microplastics in Biota; JPI Oceans: Bremerhaven, Germany, 2019. [Google Scholar] [CrossRef]
- Gigault, J.; Halle, A.T.; Baudrimont, M.; Pascal, P.Y.; Gauffre, F.; Phi, T.L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current opinion: What is a nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Mansfield, I.; Reynolds, S.J.; Lynch, I.; Matthews, T.J.; Sadler, J.P. Birds as bioindicators of plastic pollution in terrestrial and freshwater environments: A 30-year review. Environ. Pollut. 2024, 348, 123790. [Google Scholar] [CrossRef]
- Li, Z.; Feng, C.; Pang, W.; Tian, C.; Zhao, Y. Nanoplastic-Induced Genotoxicity and Intestinal Damage in Freshwater Benthic Clams (Corbicula fluminea): Comparison with Microplastics. ACS Nano 2021, 15, 9469–9481. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S.; Rathore, C.; Naik, A.; Saha, M.; Tudu, P.; Dastidar, P.G.; Bhattacharyya, S.; de Boer, J.; Chaudhuri, P. Do microplastics accumulate in penguin internal organs? Evidence from Svenner island, Antarctica. Sci. Total Environ. 2024, 951, 175361. [Google Scholar] [CrossRef] [PubMed]
- Santo, N.; Fascio, U.; Torres, F.; Guazzoni, N.; Tremolada, P.; Bettinetti, R.; Mantecca, P.; Bacchetta, R. Toxic effects and ultrastructural damages to Daphnia magna of two differently sized ZnO nanoparticles: Does size matter? Water Res. 2014, 53, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Wayman, C.; Fernández-Piñas, F.; López-Márquez, I.; Fernández-Valeriano, R.; Iglesias-Lebrija, J.J.; González-González, F.; Rosal, R.; González-Pleiter, M. Unraveling Plastic Pollution in Protected Terrestrial Raptors Using Regurgitated Pellets. Microplastics 2024, 3, 671–684. [Google Scholar] [CrossRef]
- Jeong, I.Y.; Seo, J.H.; Yoo, J.C. First report on the detection of microplastics from the feathers of black-tailed gulls in South Korea. Mar. Pollut. Bull. 2023, 196, 115592. [Google Scholar] [CrossRef] [PubMed]
- Lato, K.A.; Thorne, L.H.; Fuirst, M.; Brownawell, B.J. Microplastic abundance in gull nests in relation to urbanization. Mar. Pollut. Bull. 2021, 164, 112058. [Google Scholar] [CrossRef] [PubMed]
- Jackson, G.D.; Buxton, N.G.; George, M.J. Diet of the southern opah Lampris immaculatus on the Patagonian Shelf; the significance of the squid Moroteuthis ingens and anthropogenic plastic. Mar. Ecol. Prog. Ser. 2000, 206, 261–271. [Google Scholar] [CrossRef]
- Nelms, S.E.; Galloway, T.S.; Godley, B.J.; Jarvis, D.S.; Lindeque, P.K. Investigating microplastic trophic transfer in marine top predators. Environ. Pollut. 2018, 238, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Murano, C.; Balestrieri, R.; Minichino, A.; Campioni, L.; Casotti, R. Macro-and micro-plastics detected in razorbill Alca torda in the western Mediterranean Sea. Mar. Pollut. Bull. 2024, 206, 116814. [Google Scholar] [CrossRef]
- Perold, V.; Ronconi, R.A.; Moloney, C.L.; Dilley, B.J.; Connan, M.; Ryan, P.G. Little change in plastic loads in South Atlantic seabirds since the 1980s. Sci. Total Environ. 2024, 950, 175343. [Google Scholar] [CrossRef]
- Porras-Parra, L.C.; Zavalaga, C.B.; Rios, A. The COVID-19 pandemic “anthropause” decreased plastic ingestion in neotropic cormorants Nannopterum brasilianus in Lima, Peru. PeerJ 2024, 12, e17407. [Google Scholar] [CrossRef]
- Gallo Neto, H.; Gomes Bantel, C.; Browning, J.; Della Fina, N.; Albuquerque Ballabio, T.; Teles de Santana, F.; de Karam E Britto, M.; Beatriz Barbosa, C. Mortality of a juvenile Magellanic penguin (Spheniscus magellanicus, Spheniscidae) associated with the ingestion of a PFF-2 protective mask during the Covid-19 pandemic. Mar. Pollut. Bull. 2021, 166, 112232. [Google Scholar] [CrossRef] [PubMed]
- Basto, M.N.; Nicastro, K.R.; Tavares, A.I.; McQuaid, C.D.; Casero, M.; Azevedo, F.; Zardi, G.I. Plastic ingestion in aquatic birds in Portugal. Mar. Pollut. Bull. 2019, 138, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Codina-García, M.; Militão, T.; Moreno, J.; González-Solís, J. Plastic debris in Mediterranean seabirds. Mar. Pollut. Bull. 2013, 77, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Holmes, L.A.; Thompson, R.C.; Turner, A. In vitro avian bioaccessibility of metals adsorbed to microplastic pellets. Environ. Pollut. 2020, 261, 114107. [Google Scholar] [CrossRef] [PubMed]
- Nicastro, K.R.; Lo Savio, R.; McQuaid, C.D.; Madeira, P.; Valbusa, U.; Azevedo, F.; Casero, M.; Lourenço, C.; Zardi, G.I. Plastic ingestion in aquatic-associated bird species in southern Portugal. Mar. Pollut. Bull. 2018, 126, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Tremolada, P.; Saliu, F.; Winkler, A.; Carniti, C.P.; Castelli, M.; Lasagni, M.; Andò, S.; Leandri-Breton, D.-J.; Gatt, M.C.; Ferrer Obiol, J.; et al. Indigo-dyed cellulose fibers and synthetic polymers in surface-feeding seabird chick regurgitates from the Gulf of Alaska. Mar. Pollut. Bull. 2024, 203, 116401. [Google Scholar] [CrossRef]
- Bessa, F.; Ratcliffe, N.; Otero, V.; Sobral, P.; Marques, J.C.; Waluda, C.M.; Trathan, P.N.; Xavier, J.C. Microplastics in gentoo penguins from the Antarctic region. Sci. Rep. 2019, 9, 14191. [Google Scholar] [CrossRef]
- Amélineau, F.; Bonnet, D.; Heitz, O.; Mortreux, V.; Harding, A.M.A.; Karnovsky, N.; Walkusz, W.; Fort, J.; Grémillet, D. Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds. Environ. Pollut. 2016, 219, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, P.M.; Serra-Gonçalves, C.; Ferreira, J.L.; Catry, T.; Granadeiro, J.P. Plastic and other microfibers in sediments, macroinvertebrates and shorebirds from three intertidal wetlands of southern Europe and west Africa. Environ. Pollut. 2017, 231, 123–133. [Google Scholar] [CrossRef] [PubMed]
- Browne, M.A.; Galloway, T.S.; Thompson, R.C. Spatial patterns of plastic debris along Estuarine shorelines. Environ. Sci. Technol. 2010, 44, 3404–3409. [Google Scholar] [CrossRef]
- Mattsson, K.; Johnson, E.V.; Malmendal, A.; Linse, S.; Hansson, L.A.; Cedervall, T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci. Rep. 2017, 7, 11452. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, H.; Jeong, M.S.; Kim, D.; Kim, J.; Jung, J.; Seo, H.M.; Han, H.J.; Lee, W.S.; Choi, C.Y. Microplastics in gastrointestinal tracts of gentoo penguin (Pygoscelis papua) chicks on King George Island, Antarctica. Sci. Rep. 2023, 13, 13016. [Google Scholar] [CrossRef] [PubMed]
- Leistenschneider, C.; Le Bohec, C.; Eisen, O.; Houstin, A.; Neff, S.; Primpke, S.; Zitterbart, D.P.; Burkhardt-Holm, P.; Gerdts, G. No evidence of microplastic ingestion in emperor penguin chicks (Aptenodytes forsteri) from the Atka Bay colony (Dronning Maud Land, Antarctica). Sci. Total Environ. 2022, 851 Pt 2, 158314. [Google Scholar] [CrossRef]
- Galgani, F.; Claro, F.; Depledge, M.; Fossi, C. Monitoring the impact of litter in large vertebrates in the Mediterranean Sea within the European Marine Strategy Framework Directive (MSFD): Constraints, specificities and recommendations. Mar. Environ. Res. 2014, 100, 3–9. [Google Scholar] [CrossRef] [PubMed]
- De Pascalis, F.; De Felice, B.; Parolini, M.; Pisu, D.; Pala, D.; Antonioli, D.; Perin, E.; Gianotti, V.; Ilahiane, L.; Masoero, G.; et al. The hidden cost of following currents: Microplastic ingestion in a planktivorous seabird. Mar. Pollut. Bull. 2022, 182, 114030. [Google Scholar] [CrossRef] [PubMed]
- De Souza, S.S.; Freitas, Í.N.; de Oliveira Gonçalves, S.; da Luz, T.M.; da Costa Araújo, A.P.; Rajagopal, R.; Balasubramani, G.; Rahman, M.M.; Malafaia, G. Toxicity induced via ingestion of naturally-aged polystyrene microplastics by a small-sized terrestrial bird and its potential role as vectors for the dispersion of these pollutants. J. Hazard. Mater. 2022, 434, 128814. [Google Scholar] [CrossRef] [PubMed]
- Essoufi, C.; Santini, S.; Sforzi, L.; Martellini, T.; Chelazzi, D.; Ayari, R.; Chelazzi, L.; Cincinelli, A.; Hamdi, N. First evidence of microplastics and their characterization in yellow-legged gull (Larus michahellis michahellis, Naumann, 1840) pellets collected from the Sfax salina, southeastern Tunisia. Mar. Pollut. Bull. 2024, 205, 116628. [Google Scholar] [CrossRef] [PubMed]
- Weitzel, S.L.; Feura, J.M.; Rush, S.A.; Iglay, R.B.; Woodrey, M.S. Availability and assessment of microplastic ingestion by marsh birds in Mississippi Gulf Coast tidal marshes. Mar. Pollut. Bull. 2021, 166, 112187. [Google Scholar] [CrossRef]
- Collard, F.; Strøm, H.; Fayet, M.O.; Guðmundsson, F.Þ.; Herzke, D.; Hotvedt, Å.; Løchen, A.; Malherbe, C.; Eppe, G.; Gabrielsen, G.W. Evaluation of meso- and microplastic ingestion by the northern fulmar through a non-lethal sampling method. Mar. Pollut. Bull. 2023, 196, 115646. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, M.S.; Archuby, D.I.; Castresana, G.; Lunardelli, M.; Montalti, D.; Ibañez, A.E. Microplastic ingestion by common terns (Sterna hirundo) and their prey during the non-breeding season. Environ. Pollut. 2023, 327, 121627. [Google Scholar] [CrossRef]
- Caldwell, A.; Brander, S.; Wiedenmann, J.; Clucas, G.; Craig, E. Incidence of microplastic fiber ingestion by Common Terns (Sterna hirundo) and Roseate Terns (S. dougallii) breeding in the Northwestern Atlantic. Mar. Pollut. Bull. 2022, 177, 113560. [Google Scholar] [CrossRef] [PubMed]
- Carlin, J.; Craig, C.; Little, S.; Donnelly, M.; Fox, D.; Zhai, L.; Walters, L. Microplastic accumulation in the gastrointestinal tracts in birds of prey in central Florida, USA. Environ. Pollut. 2020, 264, 114633. [Google Scholar] [CrossRef] [PubMed]
- Fragão, J.; Bessa, F.; Otero, V.; Barbosa, A.; Sobral, P.; Waluda, C.M.; Guímaro, H.R.; Xavier, J.C. Microplastics and other anthropogenic particles in Antarctica: Using penguins as biological samplers. Sci. Total Environ. 2021, 788, 147698. [Google Scholar] [CrossRef]
- Hamilton, B.M.; Bourdages, M.P.T.; Geoffroy, C.; Vermaire, J.C.; Mallory, M.L.; Rochman, C.M.; Provencher, J.F. Microplastics around an Arctic seabird colony: Particle community composition varies across environmental matrices. Sci. Total Environ. 2021, 773, 145536. [Google Scholar] [CrossRef] [PubMed]
- Hoang, T.C.; Mitten, S. Microplastic accumulation in the gastrointestinal tracts of nestling and adult migratory birds. Sci. Total Environ. 2022, 838 Pt 1, 155827. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.; Nessi, A.; Antonioli, D.; Laus, M.; Santo, N.; Parolini, M.; Tremolada, P. Occurrence of microplastics in pellets from the common kingfisher (Alcedo atthis) along the Ticino River, North Italy. Environ. Sci. Pollut. Res. Int. 2020, 27, 41731–41739. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.T.; Cai, Y.F.; Chen, Y.X.; Yang, Y.W.; Xing, S.C.; Liao, X.D. Occurrence of microplastic in livestock and poultry manure in South China. Environ. Pollut. 2021, 277, 116790. [Google Scholar] [CrossRef] [PubMed]
- Keys, B.C.; Grant, M.L.; Rodemann, T.; Mylius, K.A.; Pinfold, T.L.; Rivers-Auty, J.; Lavers, J.L. New Methods for the Quantification of Ingested Nano- and Ultrafine Plastics in Seabirds. Environ. Sci. Technol. 2022, 57, 310–320. [Google Scholar] [CrossRef]
- Mylius, K.A.; Lavers, J.L.; Woehler, E.J.; Rodemann, T.; Keys, B.C.; Rivers-Auty, J. Foraging strategy influences the quantity of ingested micro- and nanoplastics in shorebirds. Environ. Pollut. 2022, 319, 120844. [Google Scholar] [CrossRef]
- Sherlock, C.; Fernie, K.J.; Munno, K.; Provencher, J.; Rochman, C. The potential of aerial insectivores for monitoring microplastics in terrestrial environments. Sci. Total Environ. 2022, 807 Pt 1, 150453. [Google Scholar] [CrossRef] [PubMed]
- Bourdages, M.P.T.; Provencher, J.F.; Baak, J.E.; Mallory, M.L.; Vermaire, J.C. Breeding seabirds as vectors of microplastics from sea to land: Evidence from colonies in Arctic Canada. Sci. Total Environ. 2020, 764, 142808. [Google Scholar] [CrossRef]
- Provencher, J.F.; Vermaire, J.C.; Avery-Gomm, S.; Braune, B.M.; Mallory, M.L. Garbage in guano? Microplastic debris found in faecal precursors of seabirds known to ingest plastics. Sci. Total Environ. 2018, 644, 1477–1484. [Google Scholar] [CrossRef]
- Savoca, M.S.; Wohlfeil, M.E.; Ebeler, S.E.; Nevitt, G.A. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Sci. Adv. 2016, 2, e1600395. [Google Scholar] [CrossRef]
- Terepocki, A.K.; Brush, A.T.; Kleine, L.U.; Shugart, G.W.; Hodum, P. Size and dynamics of microplastic in gastrointestinal tracts of Northern Fulmars (Fulmarus glacialis) and Sooty Shearwaters (Ardenna grisea). Mar. Pollut. Bull. 2017, 116, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Piatt, J.F.; Harding, A.M.; Shultz, M.; Speckman, S.G.; Van Pelt, T.I.; Drew, G.S.; Kettle, A.B. Seabirds as indicators of marine food supplies: Cairns revisited. Mar. Ecol. Prog. Ser. 2007, 352, 221–234. [Google Scholar] [CrossRef]
- Recabarren-Villalón, T.; Ronda, A.C.; La Sala, L.; Sanhueza, C.; Díaz, L.; Rodríguez Pirani, L.S.; Picone, A.L.; Romano, R.M.; Petracci, P.; Arias, A.H. First assessment of debris pollution in the gastrointestinal content of juvenile Magellanic penguins (Spheniscus magellanicus) stranded on the west south Atlantic coasts. Mar. Pollut. Bull. 2023, 188, 114628. [Google Scholar] [CrossRef] [PubMed]
- Robards, M.D.; Piatt, J.F.; Wohl, K.D. Increasing frequency of plastic particles ingested by seabirds in the subarctic North Pacific. Mar. Pollut. Bull. 1995, 30, 151–157. [Google Scholar] [CrossRef]
- McMullen, K.; Calle, P.; Alvarado-Cadena, O.; Kowal, M.D.; Espinoza, E.; Domínguez, G.A.; Tirapé, A.; Vargas, F.H.; Grant, E.; Hunt, B.P.V.; et al. Ecotoxicological Assessment of Microplastics and Cellulose Particles in the Galápagos Islands and Galápagos Penguin Food Web. Environ. Toxicol. Chem. 2024, 43, 1442–1457. [Google Scholar] [CrossRef]
- Schutten, K.; Chandrashekar, A.; Dougherty, L.; Stevens, B.; Parmley, E.J.; Pearl, D.; Provencher, J.F.; Jardine, C.M. How do life history and behaviour influence plastic ingestion risk in Canadian freshwater and terrestrial birds? Environ. Pollut. 2024, 347, 123777. [Google Scholar] [CrossRef]
- Senes, G.P.; Barboza, L.G.A.; Nunes, L.M.; Otero, X.L. Microplastics in feces and pellets from yellow-legged gull (Larus michahellis) in the Atlantic Islands National Park of Galicia (NW Spain). Mar. Pollut. Bull. 2023, 195, 115531. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Sanhueza, S.; Torres, M.; Pozo, K.; Del Aguila, G.; Hernandez, F.; Jacobsen, C.; Echeverry, D. Microplastics in Seabird Feces from Coastal Areas of Central Chile. Animals 2023, 13, 2840. [Google Scholar] [CrossRef] [PubMed]
- Collard, F.; Bangjord, G.; Herzke, D.; Gabrielsen, G.W. Plastic burdens in northern fulmars from Svalbard: Looking back 25 years. Mar. Pollut. Bull. 2022, 185 Pt B, 114333. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.B.; Kim, M.; Hong, M.J.; Kwon, Y.S. Plastic debris ingestion by seabirds on the Korean Peninsula. Mar. Pollut. Bull. 2021, 166, 112240. [Google Scholar] [CrossRef]
- Navarro, A.; Luzardo, O.P.; Gómez, M.; Acosta-Dacal, A.; Martínez, I.; Felipe de la Rosa, J.; Macías-Montes, A.; Suárez-Pérez, A.; Herrera, A. Microplastics ingestion and chemical pollutants in seabirds of Gran Canaria (Canary Islands, Spain). Mar. Pollut. Bull. 2023, 186, 114434. [Google Scholar] [CrossRef]
- Athira, T.R.; Rubeena, K.A.; Reshi, O.R.; Jishnu, K.; Jobiraj, T.; Thejass, P.; Manokaran, S.; Aarif, K.M. Shorebird droppings analysis: Microplastics and heavy metals in a key conservation reserve and adjoining sand beaches in the west coast of India. Mar. Pollut. Bull. 2024, 207, 116929. [Google Scholar] [CrossRef]
- Sühring, R.; Baak, J.E.; Letcher, R.J.; Braune, B.M.; de Silva, A.; Dey, C.; Fernie, K.; Lu, Z.; Mallory, M.L.; Avery-Gomm, S.; et al. Co-contaminants of microplastics in two seabird species from the Canadian Arctic. Environ. Sci. Ecotechnol. 2022, 12, 100189. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Chen, X.; Liang, T.; Mu, T.; Ding, Y.; Liu, Y.; Liu, X. Varying abundance of microplastics in tissues associates with different foraging strategies of coastal shorebirds in the Yellow Sea. Sci. Total Environ. 2023, 866, 161417. [Google Scholar] [CrossRef]
- Matos, D.M.; Ramos, J.A.; Brandão, A.L.C.; Baeta, A.; Rodrigues, I.; Dos Santos, I.; Coentro, J.; Fernandes, J.O.; Batista de Carvalho, L.A.E.; Marques, M.P.M.; et al. Microplastics ingestion and endocrine disrupting chemicals (EDCs) by breeding seabirds in the east tropical Atlantic: Associations with trophic and foraging proxies (δ15N and δ13C). Sci. Total Environ. 2024, 912, 168664. [Google Scholar] [CrossRef]
- Jiang, H.; Cheng, H.; Wu, S.; Li, H.; Chen, H.; Li, Z.; Yao, X.; Zhang, Y.; Chen, Y.; Chen, S.; et al. Microplastics footprint in nature reserves-a case study on the microplastics in the guano from Yancheng Wetland Rare Birds National Nature Reserve, China. Environ. Res. 2024, 256, 119252. [Google Scholar] [CrossRef] [PubMed]
- Holland, E.R.; Mallory, M.L.; Shutler, D. Plastics and other anthropogenic debris in freshwater birds from Canada. Sci. Total Environ. 2016, 571, 251–258. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, H.; Ali, W.; Zhuang, T.; Sun, J.; Wang, T.; Song, J.; Ma, Y.; Yuan, Y.; Bian, J.; et al. Co-exposure of polyvinyl chloride microplastics with cadmium promotes nonalcoholic fatty liver disease in female ducks through oxidative stress and glycolipid accumulation. Poult. Sci. 2024, 103, 104152. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Chen, Y.; Shah, M.G.; Buriro, R.S.; Sun, J.; Liu, Z.; Zou, H. Ferroptosis: First evidence in premature duck ovary induced by polyvinyl chloride microplastics. Sci. Total Environ. 2024, 933, 173032. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.; Ryan, P.G. Micro-plastic ingestion by waterbirds from contaminated wetlands in South Africa. Mar. Pollut. Bull. 2018, 126, 330–333. [Google Scholar] [CrossRef]
- D’Souza, J.M.; Windsor, F.M.; Santillo, D.; Ormerod, S.J. Food web transfer of plastics to an apex riverine predator. Glob. Change Biol. 2020, 26, 3846–3857. [Google Scholar] [CrossRef]
- De Souza-Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef]
- Costanzo, A.; Ambrosini, R.; Manica, M.; Casola, D.; Polidori, C.; Gianotti, V.; Conterosito, E.; Roncoli, M.; Parolini, M.; De Felice, B. Microfibers in the Diet of a Highly Aerial Bird, the Common Swift Apus apus. Toxics 2024, 12, 408. [Google Scholar] [CrossRef]
- Tulatz, F.; Gabrielsen, G.W.; Bourgeon, S.; Herzke, D.; Krapp, R.; Langset, M.; Neumann, S.; Lippold, A.; Collard, F. Implications of Regurgitative Feeding on Plastic Loads in Northern Fulmars (Fulmarus glacialis): A Study from Svalbard. Environ. Sci. Technol. 2023, 57, 3562–3570. [Google Scholar] [CrossRef]
- Tokunaga, Y.; Okochi, H.; Tani, Y.; Niida, Y.; Tachibana, T.; Saigawa, K.; Katayama, K.; Moriguchi, S.; Kato, T.; Hayama, S.I. Airborne microplastics detected in the lungs of wild birds in Japan. Chemosphere 2023, 321, 138032. [Google Scholar] [CrossRef]
- Deoniziak, K.; Cichowska, A.; Niedźwiecki, S.; Pol, W. Thrushes (Aves: Passeriformes) as indicators of microplastic pollution in terrestrial environments. Sci. Total Environ. 2022, 853, 158621. [Google Scholar] [CrossRef]
- Wayman, C.; González-Pleiter, M.; Fernández-Piñas, F.; Sorribes, E.L.; Fernández-Valeriano, R.; López-Márquez, I.; González-González, F.; Rosal, R. Accumulation of microplastics in predatory birds near a densely populated urban area. Sci. Total Environ. 2024, 917, 170604. [Google Scholar] [CrossRef]
- Gamarra-Toledo, V.; Plaza, P.I.; Peña, Y.A.; Bermejo, P.A.; López, J.; Cano, G.L.; Barreto, S.; Cáceres-Medina, S.; Lambertucci, S.A. High incidence of plastic debris in Andean condors from remote areas: Evidence for marine-terrestrial trophic transfer. Environ. Pollut. 2023, 317, 120742. [Google Scholar] [CrossRef]
- Pietrelli, L.; Dodaro, G.; Pelosi, I.; Menegoni, P.; Battisti, C.; Coccia, C.; Scalici, M. Microplastic in an apex predator: Evidence from Barn owl (Tyto alba) pellets in two sites with different levels of anthropization. Environ. Sci. Pollut. Res. 2024, 31, 33155–33162. [Google Scholar] [CrossRef]
- Teampanpong, J.; Duengkae, P. Terrestrial wildlife as indicators of microplastic pollution in western Thailand. PeerJ 2024, 12, e17384. [Google Scholar] [CrossRef]
- Zhao, S.; Zhu, L.; Li, D. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. Sci. Total Environ. 2016, 550, 1110–1115. [Google Scholar] [CrossRef]
- Santini, S.; De Beni, E.; Martellini, T.; Sarti, C.; Randazzo, D.; Ciraolo, R.; Scopetani, C.; Cincinelli, A. Occurrence of natural and synthetic micro-fibers in the mediterranean sea: A review. Toxics 2022, 10, 391. [Google Scholar] [CrossRef]
- Collard, F.; Benjaminsen, S.C.; Herzke, D.; Husabø, E.; Sagerup, K.; Tulatz, F.; Gabrielsen, G.W. Life starts with plastic: High occurrence of plastic pieces in fledglings of northern fulmars. Mar. Pollut. Bull. 2024, 202, 116365. [Google Scholar] [CrossRef]
- Grace, J.K.; Duran, E.; Ottinger, M.A.; Woodrey, M.S.; Maness, T.J. Microplastics in the Gulf of Mexico: A bird’s eye view. Sustainability 2022, 14, 7849. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- Nanthini Devi, K.; Raju, P.; Santhanam, P.; Dinesh Kumar, S.; Krishnaveni, N.; Roopavathy, J.; Perumal, P. Biodegradation of low-density polyethylene and polypropylene by microbes isolated from Vaigai River, Madurai, India. Arch. Microbiol. 2021, 203, 6253–6265. [Google Scholar] [CrossRef]
- Wayman, C.; Fernández-Pinas, F.; Fernández-Valeriano, R.; García-Baquero, G.A.; López-Márquez, I.; González-González, F.; Rosal, R.; González-Pleiter, M. The potential use of birds as bioindicators of suspended atmospheric microplastics and artificial fibers. Ecotoxicol. Environ. Saf. 2024, 282, 116744. [Google Scholar] [CrossRef]
- Barboza, L.G.A.; Lopes, C.; Oliveira, P.; Bessa, F.; Otero, V.; Henriques, B.; Raimundo, J.; Caetano, M.; Vale, C.; Guilhermino, L. Microplastics in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Sci. Total Environ. 2020, 717, 134625. [Google Scholar] [CrossRef]
- Rivers-Auty, J.; Bond, A.L.; Grant, M.L.; Lavers, J.L. The one-two punch of plastic exposure: Macro- and micro-plastics induce multi-organ damage in seabirds. J. Hazard. Mater. 2023, 442, 130117. [Google Scholar] [CrossRef]
- Puskic, P.S.; Slocombe, R.; Ploeg, R.; Roman, L.; Lea, M.A.; Hutton, I.; Bridle, A.R. Exploring the pathology of liver, kidney, muscle, and stomach of fledgling seabirds associated with plastic ingestion. J. Hazard. Mater. 2024, 465, 133306. [Google Scholar] [CrossRef]
- Zitouni, N.; Cappello, T.; Missawi, O.; Boughattas, I.; De Marco, G.; Belbekhouche, S.; Mokni, M.; Alphonse, V.; Guerbej, H.; Bousserrhine, N.; et al. Metabolomic disorders unveil hepatotoxicity of environmental microplastics in wild fish Serranus scriba (Linnaeus 1758). Sci. Total Environ. 2022, 838 Pt 1, 155872. [Google Scholar] [CrossRef]
- Jing, L.; Zhang, Y.; Zhang, Q.; Zhao, H. Polystyrene microplastics disrupted physical barriers, microbiota composition and immune responses in the cecum of developmental Japanese quails. J. Environ. Sci. 2024, 144, 225–235. [Google Scholar] [CrossRef]
- Monclús, L.; McCann Smith, E.; Ciesielski, T.M.; Wagner, M.; Jaspers, V.L.B. Microplastic Ingestion Induces Size-Specific Effects in Japanese Quail. Environ. Sci. Technol. 2022, 56, 15902–15911. [Google Scholar] [CrossRef]
- Li, A.; Wang, Y.; Kulyar, M.F.; Iqbal, M.; Lai, R.; Zhu, H.; Li, K. Environmental microplastics exposure decreases antioxidant ability, perturbs gut microbial homeostasis and metabolism in chicken. Sci. Total Environ. 2023, 856 Pt 1, 159089. [Google Scholar] [CrossRef]
- McCann Smith, E.; Bartosova, Z.; Wagner, M.; Jaspers, V.L.B.; Monclús, L. Exposure to microplastics affects fatty acid composition in the Japanese quail depending on sex and particle size. Sci. Total Environ. 2024, 912, 169019. [Google Scholar] [CrossRef]
- Chen, J.; Chen, G.; Peng, H.; Qi, L.; Zhang, D.; Nie, Q.; Zhang, X.; Luo, W. Microplastic exposure induces muscle growth but reduces meat quality and muscle physiological function in chickens. Sci. Total Environ. 2023, 882, 163305. [Google Scholar] [CrossRef] [PubMed]
- Chatman, C.C.; Olson, E.G.; Freedman, A.J.; Dittoe, D.K.; Ricke, S.C.; Majumder, E.L. Co-exposure to polyethylene fiber and Salmonella enterica serovar Typhimurium alters microbiome and metabolome of in vitro chicken cecal mesocosms. Appl. Environ. Microbiol. 2024, 90, e00915-24. [Google Scholar] [CrossRef]
- Liu, B.; Yu, D.; Ge, C.; Luo, X.; Du, L.; Zhang, X.; Hui, C. Combined effects of microplastics and chlortetracycline on the intestinal barrier, gut microbiota, and antibiotic resistome of Muscovy ducks (Cairina moschata). Sci. Total Environ. 2023, 887, 164050. [Google Scholar] [CrossRef]
- Fackelmann, G.; Pham, C.K.; Rodríguez, Y.; Mallory, M.L.; Provencher, J.F.; Baak, J.E.; Sommer, S. Current levels of microplastic pollution impact wild seabird gut microbiomes. Nat. Ecol. Evol. 2023, 7, 698–706. [Google Scholar] [CrossRef]
- Yin, K.; Wang, D.; Zhang, Y.; Lu, H.; Wang, Y.; Xing, M. Dose-effect of polystyrene microplastics on digestive toxicity in chickens (Gallus gallus): Multi-omics reveals critical role of gut-liver axis. J. Adv. Res. 2023, 52, 3–18. [Google Scholar] [CrossRef]
- Saha, S.C.; Saha, G. Effect of microplastics deposition on human lung airways: A review with computational benefits and challenges. Heliyon 2024, 10, e24355. [Google Scholar] [CrossRef]
- Lu, H.; Yin, K.; Su, H.; Wang, D.; Zhang, Y.; Hou, L.; Li, J.B.; Wang, Y.; Xing, M. Polystyrene microplastics induce autophagy and apoptosis in birds lungs via PTEN/PI3K/AKT/mTOR. Environ. Toxicol. 2022, 38, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Guo, T.; Zhang, Y.; Liu, D.; Hou, L.; Ma, C.; Xing, M. Endoplasmic reticulum stress-induced NLRP3 inflammasome activation as a novel mechanism of polystyrene microplastics (PS-MPs)-induced pulmonary inflammation in chickens. J. Zhejiang Univ. Sci. B 2024, 25, 233–243. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, K.; Wang, D.; Wang, Y.; Lu, H.; Zhao, H.; Xing, M. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κB-NLRP3-GSDMD and AMPK-PGC-1α axes. Sci. Total Environ. 2022, 840, 156727. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Yin, K.; Zhao, H.; Lu, H.; Meng, X.; Hou, L.; Li, J.; Xing, M. Endoplasmic reticulum stress-controlled autophagic pathway promotes polystyrene microplastics-induced myocardial dysplasia in birds. Environ. Pollut. 2022, 311, 119963. [Google Scholar] [CrossRef]
- Hou, L.; Wang, D.; Yin, K.; Zhang, Y.; Lu, H.; Guo, T.; Li, J.; Zhao, H.; Xing, M. Polystyrene microplastics induce apoptosis in chicken testis via crosstalk between NF-κB and Nrf2 pathways. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2022, 262, 109444. [Google Scholar] [CrossRef]
- Gligorijevic, N.; Lujic, T.; Mutic, T.; Vasovic, T.; de Guzman, M.K.; Acimovic, J.; Stanic-Vucinic, S.; Cirkovic, T.; Velickovic, T.C. Ovalbumin interaction with polystyrene and polyethylene terephthalate microplastics alters its structural properties. Int. J. Biol. Macromol. 2024, 267, 131564. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xue, N.; Li, W.; Wufuer, R.; Zhang, D. Ecotoxicological Effects of Microplastics on Bird Embryo Development by Hatching without Eggshell. J. Vis. Exp. JoVE 2021, 174, e61696. [Google Scholar] [CrossRef]
- Meng, X.; Yin, K.; Zhang, Y.; Wang, D.; Lu, H.; Hou, L.; Zhao, H.; Xing, M. Polystyrene microplastics induced oxidative stress, inflammation and necroptosis via NF-κB and RIP1/RIP3/MLKL pathway in chicken kidney. Toxicology 2022, 478, 153296. [Google Scholar] [CrossRef]
- Guo, T.; Geng, X.; Zhang, Y.; Hou, L.; Lu, H.; Xing, M.; Wang, Y. New insights into the spleen injury by mitochondrial dysfunction of chicken under polystyrene microplastics stress. Poult. Sci. 2024, 103, 103674. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, Y.; Jing, L.; Zhao, H. Microplastics induced inflammation in the spleen of developmental Japanese quail (Coturnix japonica) via ROS-mediated p38 MAPK and TNF signaling pathway activation1. Environ. Pollut. 2023, 341, 122891. [Google Scholar] [CrossRef] [PubMed]
- Ceccopieri, C.; Madej, J.P. Chicken Secondary Lymphoid Tissues-Structure and Relevance in Immunological Research. Animals 2024, 14, 2439. [Google Scholar] [CrossRef] [PubMed]
- Turner, A. Mobilisation kinetics of hazardous elements in marine plastics subject to an avian physiologically-based extraction test. Environ. Pollut. 2018, 236, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Wallerstein, C.; Arnold, R. Identification, origin and characteristics of bio-bead microplastics from beaches in western Europe. Sci. Total Environ. 2019, 664, 938–947. [Google Scholar] [CrossRef] [PubMed]
- Nøst, T.H.; Helgason, L.B.; Harju, M.; Heimstad, E.S.; Gabrielsen, G.W.; Jenssen, B.M. Halogenated organic contaminants and their correlations with circulating thyroid hormones in developing Arctic seabirds. Sci. Total Environ. 2012, 414, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Matos, D.M.; Ramos, J.A.; Brandão, A.L.C.; Baptista, F.; Rodrigues, I.; Fernandes, J.O.; Batista de Carvalho, L.A.E.; Marques, M.P.M.; Cunha, S.C.; Antunes, S.; et al. Influence of paternal factors on plastic ingestion and brominated chemical exposure in East Tropical Atlantic Procellariid chicks. Sci. Total Environ. 2024, 945, 173815. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, I.A. Endocrine-disrupting potential of polybrominated diphenyl ethers (PBDEs) on androgen receptor signaling: A structural insight. Struct. Chem. 2021, 32, 887–897. [Google Scholar] [CrossRef]
- Collard, F.; Tulatz, F.; Harju, M.; Herzke, D.; Bourgeon, S.; Gabrielsen, G.W. Can plastic related chemicals be indicators of plastic ingestion in an Arctic seabird? Chemosphere 2024, 355, 141721. [Google Scholar] [CrossRef]
- Feo, M.L.; Barón, E.; Eljarrat, E.; Barceló, D. Dechlorane Plus and related compounds in aquatic and terrestrial biota: A review. Anal. Bioanal. Chem. 2012, 404, 2625–2637. [Google Scholar] [CrossRef] [PubMed]
- De Wit, C.A.; Bossi, R.; Dietz, R.; Dreyer, A.; Faxneld, S.; Garbus, S.E.; Hellström, P.; Koschorreck, J.; Lohmann, N.; Roos, A.; et al. Organohalogen compounds of emerging concern in Baltic Sea biota: Levels, biomagnification potential and comparisons with legacy contaminants. Environ. Int. 2020, 144, 106037. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Su, F.; Chen, Y.; Wang, T.; Ali, W.; Jin, H.; Xiong, L.; Ma, Y.; Liu, Z.; Zou, H. Co-exposure to PVC microplastics and cadmium induces oxidative stress and fibrosis in duck pancreas. Sci. Total Environ. 2024, 927, 172395. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, X.; Zheng, Q.; Mai, B.X.; Qiu, R. Transfer of Microplastics in Terrestrial and Aquatic Food Webs: The Impact of E-Waste Debris and Ecological Traits. Environ. Sci. Technol. 2023, 57, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Shelver, W.L.; McGarvey, A.M.; Billey, L.O.; Banerjee, A. Fate and disposition of [14C]-polystyrene microplastic after oral administration to laying hens. Sci. Total Environ. 2024, 909, 168512. [Google Scholar] [CrossRef] [PubMed]
- Trevail, A.M.; Kühn, S.; Gabrielsen, G.W. The State of Marine Microplastic Pollution in the Arctic. Brief Report No.033; Norwegian Polar Institute: Tromso, Norway, 2015; ISBN 978-82-7666-321-1. Available online: https://depotbib.bib.no/cgi-bin/m2?tnr=505808 (accessed on 16 December 2024).
- Zhang, D.; Cui, Y.; Zhou, H.; Jin, C.; Yu, X.; Xu, Y.; Li, Y.; Zhang, C. Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma’an Archipelago, Shengsi, China. Sci. Total Environ. 2020, 703, 134768. [Google Scholar] [CrossRef]
- Chen, Q.; Li, Y.; Li, B. Is color a matter of concern during microplastic exposure to Scenedesmus obliquus and Daphnia magna ? J. Hazard. Mater. 2020, 383, 121224. [Google Scholar] [CrossRef] [PubMed]
- Savoca, M.S.; Nevitt, G.A. Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators. Proc. Natl. Acad. Sci. USA 2014, 111, 4157–4161. [Google Scholar] [CrossRef]
- Seymour, J.R.; Simó, R.; Ahmed, T.; Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 2010, 329, 342–345. [Google Scholar] [CrossRef]
- Nevitt, G.; Veit, R.; Kareiva, P. Dimethyl sulphide as a foraging cue for Antarctic Procellariiform seabirds. Nature 2002, 376, 680–682. [Google Scholar] [CrossRef]
- Lobelle, D.; Cunliffe, M. Early microbial biofilm formation on marine plastic debris. Mar. Pollut. Bull. 2011, 62, 197–200. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco, L.; Jiménez-Mora, E.; Utrilla, M.J.; Pizarro, I.T.; Reglero, M.M.; Rico-San Román, L.; Martin-Maldonado, B. Birds as Bioindicators: Revealing the Widespread Impact of Microplastics. Birds 2025, 6, 10. https://doi.org/10.3390/birds6010010
Carrasco L, Jiménez-Mora E, Utrilla MJ, Pizarro IT, Reglero MM, Rico-San Román L, Martin-Maldonado B. Birds as Bioindicators: Revealing the Widespread Impact of Microplastics. Birds. 2025; 6(1):10. https://doi.org/10.3390/birds6010010
Chicago/Turabian StyleCarrasco, Lara, Eva Jiménez-Mora, Maria J. Utrilla, Inés Téllez Pizarro, Marina M. Reglero, Laura Rico-San Román, and Barbara Martin-Maldonado. 2025. "Birds as Bioindicators: Revealing the Widespread Impact of Microplastics" Birds 6, no. 1: 10. https://doi.org/10.3390/birds6010010
APA StyleCarrasco, L., Jiménez-Mora, E., Utrilla, M. J., Pizarro, I. T., Reglero, M. M., Rico-San Román, L., & Martin-Maldonado, B. (2025). Birds as Bioindicators: Revealing the Widespread Impact of Microplastics. Birds, 6(1), 10. https://doi.org/10.3390/birds6010010