Laser Application for Periodontal Surgical Therapy: A Literature Review
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Focused Questions and Process
- (1)
- If using lasers as an adjunctive has been proven to be effective, is there any type of surgical technique that shows more promising results than the rest?
3.2. Eligibility Criteria
- (i)
- Preclinical trials in animals;
- (ii)
- Systematic reviews and literature reviews of the same topic;
- (iii)
- Trials with underage patients;
- (iv)
- Trials with pregnant or lactating women;
- (v)
- Articles with laser application only in periodontal nonsurgical therapy;
- (vi)
- Studies where the patient number was less than 8;
- (vii)
- Articles published before 2008;
- (viii)
- Articles where no or insufficient information for any of the clinical parameter values (PD, CAL, BOP, GR, or pain assessment) was provided.
3.3. Screening Process
4. Results
4.1. Study Selection
4.2. Pocket Depth Reduction
4.3. Clinical Attachment Level
4.4. Gingival Recession
4.5. Bleeding on Probing
4.6. Pain Assessment
5. Discussion
5.1. Regarding Patient Count
5.2. Resective Surgery
5.3. Regenerative Surgery
5.4. Regenerative Plastic Surgery
5.5. Additional Beneficial Effects
5.6. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, J.; Ruan, J.; Weir, M.D.; Ren, K.; Schneider, A.; Wang, P.; Oates, T.W.; Chang, X.; Xu, H.H.K. Periodontal Bone-Ligament-Cementum Regeneration via Scaffolds and Stem Cells. Cells 2019, 8, 537. [Google Scholar] [CrossRef]
- Hernández-Monjaraz, B.; Santiago-Osorio, E.; Monroy-García, A.; Ledesma-Martínez, E.; Mendoza-Núñez, V.M. Mesenchymal Stem Cells of Dental Origin for Inducing Tissue Regeneration in Periodontitis: A Mini-Review. Int. J. Mol. Sci. 2018, 19, 944. [Google Scholar] [CrossRef] [PubMed]
- Nugala, B.; Kumar, B.S.; Sahitya, S.; Krishna, P.M. Biologic width and its importance in periodontal and restorative dentistry. J. Conserv. Dent. 2012, 15, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Pihlstrom, B.L.; Michalowicz, B.S.; Johnson, N.W. Periodontal diseases. Lancet 2005, 366, 1809–1820. [Google Scholar] [CrossRef] [PubMed]
- Cobb, C.M.; Williams, K.B.; Gerkovitch, M.M. Is the prevalence of periodontitis in the USA in decline? Periodontology 2000 2009, 50, 13–24. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 2018, 89, S159–S172. [Google Scholar] [CrossRef]
- Krishna, R.; De Stefano, J.A. Ultrasonic vs. hand instrumentation in periodontal therapy: Clinical outcomes. Periodontology 2000 2016, 71, 113–127. [Google Scholar] [CrossRef]
- Kwon, T.; Lamster, I.B.; Levin, L. Current Concepts in the Management of Periodontitis. Int. Dent. J. 2021, 71, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Ramfjord, S.P.; Nissle, R.R. The Modified Widman Flap. J. Periodontol. 1974, 45, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Jurado, C.A.; Parachuru, V.; Tinoco, J.V.; Guzman-Perez, G.; Tsujimoto, A.; Javvadi, R.; Afrashtehfar, K.I. Diagnostic Mock-Up as a Surgical Reduction Guide for Crown Lengthening: Technique Description and Case Report. Medicina 2022, 58, 1360. [Google Scholar] [CrossRef]
- Carnevale, G.; Kaldahl, W.B. Osseous resective surgery. Periodontology 2000 2000, 22, 59–87. [Google Scholar] [CrossRef] [PubMed]
- Friedman, N.; Levine, H.L. Mucogingival Surgery. Dent. Clin. N. Am. 1964, 8, 63–77. [Google Scholar] [CrossRef]
- Becker, W.; Becker, B.E.; Ochsenbein, C.; Kerry, G.; Caffesse, R.; Morrison, E.C.; Prichard, J. A Longitudinal Study Comparing Scaling, Osseous Surgery and Modified Widman Procedures: Results after one year. J. Periodontol. 1988, 59, 351–365. [Google Scholar] [CrossRef]
- Ramseier, C.A.; Rasperini, G.; Batia, S.; Giannobile, W.V. Advanced reconstructive technologies for periodontal tissue repair. Periodontology 2000 2012, 59, 185–202. [Google Scholar] [CrossRef]
- Cortellini, P.; Tonetti, M.S. Evaluation of the effect of tooth vitality on regenerative outcomes in infrabony defects. J. Clin. Periodontol. 2001, 28, 672–679. [Google Scholar] [CrossRef]
- Narita, L.E.; Mester, A.; Onisor, F.; Bran, S.; Onicas, M.I.; Voina-Tonea, A. The Outcomes of Enamel Matrix Derivative on Periodontal Regeneration under Diabetic Conditions. Medicina 2021, 57, 1071. [Google Scholar] [CrossRef]
- Murphy, K.G.; Gunsolley, J.C. Guided tissue regeneration for the treatment of periodontal intrabony and furcation defects. A systematic review. Ann. Periodontol. 2003, 8, 266–302. [Google Scholar] [CrossRef] [PubMed]
- Trombelli, L.; Heitz-Mayfield, L.J.; Needleman, I.; Moles, D.; Scabbia, A. A systematic review of graft materials and biological agents for periodontal intraosseous defects. J. Clin. Periodontol. 2002, 29, 117–135. [Google Scholar] [CrossRef]
- Van der Pauw, M.T.; Bos, T.V.D.; Everts, V.; Beertsen, W. Enamel matrix-derived protein stimulates attachment of periodontal ligament fibroblasts and enhances alkaline phosphatase activity and transforming growth factor β1 release of periodontal ligament and gingival fibroblasts. J. Periodontol. 2000, 71, 31–43. [Google Scholar] [CrossRef]
- Davenport, D.R.; Mailhot, J.M.; Wataha, J.C.; Billman, M.A.; Sharawy, M.M.; Shrout, M.K. Effects of enamel matrix protein application on the viability, proliferation, and attachment of human periodontal ligament fibroblasts to diseased root surfaces in vitro. J. Clin. Periodontol. 2003, 30, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Van Der Pauw, M.T.M.; Everts, V.; Beertsen, W. Expression of integrins by human periodontal ligament and gingival fibroblasts and their involvement in fibroblast adhesion to enamel matrix-derived proteins. J. Periodontal Res. 2002, 37, 317–323. [Google Scholar] [CrossRef]
- Lyngstadaas, S.P.; Lundberg, E.; Ekdahl, H.; Andersson, C.; Gestrelius, S. Autocrine growth factors in human periodontal ligament cells cultured on enamel matrix derivative. J. Clin. Periodontol. 2001, 28, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Grayson, R.E.; Yamakoshi, Y.; Wood, E.J.; Ågren, M.S. The effect of the amelogenin fraction of enamel matrix proteins on fibroblast-mediated collagen matrix reorganization. Biomaterials 2006, 27, 2926–2933. [Google Scholar] [CrossRef]
- Hoang, A.; Oates, T.; Cochran, D. In vitro wound healing responses to enamel matrix derivative. J. Periodontol. 2000, 71, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Aoki, A.; Mizutani, K.; Schwarz, F.; Sculean, A.; Yukna, R.A.; Takasaki, A.A.; Romanos, G.E.; Taniguchi, Y.; Sasaki, K.M.; Zeredo, J.L.; et al. Periodontal and peri-implant wound healing following laser therapy. Periodontology 2000 2015, 68, 217–269. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Aoki, A.; Becker, J.; Sculean, A. Laser application in non-surgical periodontal therapy: A systematic review. J. Clin. Periodontol. 2008, 35, 29–44. [Google Scholar] [CrossRef]
- Theodoro, L.H.; Marcantonio, R.A.C.; Wainwright, M.; Garcia, V.G. LASER in periodontal treatment: Is it an effective treatment or science fiction? Braz. Oral Res. 2021, 35, e099. [Google Scholar] [CrossRef]
- Sant’anna, E.F.; de Souza Araújo, M.T.; Nojima, L.I.; da Cunha, A.C.; da Silveira, B.L.; Marquezan, M. High-intensity laser application in Orthodontics. Dent. Press J. Orthod. 2017, 22, 99–109. [Google Scholar] [CrossRef]
- Tang, E.; Arany, P. Photobiomodulation and implants: Implications for dentistry. J. Periodontal Implant Sci. 2013, 43, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Tang, E.; Khan, I.; Andreana, S.; Arany, P.R. Laser-activated transforming growth factor-β1 induces human β-defensin 2: Implications for laser therapies for periodontitis and peri-implantitis. J. Periodontal Res. 2016, 52, 360–367. [Google Scholar] [CrossRef]
- Chambrone, L.; Ramos, U.D.; Reynolds, M.A. Infrared lasers for the treatment of moderate to severe periodontitis: An American Academy of Periodontology best evidence review. J. Periodontol. 2018, 89, 743–765. [Google Scholar]
- Qadri, T.; Javed, F.; Johannsen, G.; Gustafsson, A. Role of diode lasers (800–980 nm) as adjuncts to scaling and root planing in the treatment of chronic periodontitis: A systematic review. Photomed. Laser Surg. 2015, 33, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Frentzen, M.; Braun, A.; Aniol, D. Er:YAG Laser Scaling of Diseased Root Surfaces. J. Periodontol. 2002, 73, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Kirfel, G.; Berthold, M.; Frentzen, M.; Krause, F.; Braun, A. The impact of antimicrobial photodynamic therapy in an arti-ficial biofilm model. Lasers Med. Sci. 2012, 27, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.; Dehn, C.; Krause, F.; Jepsen, S. Short-term clinical effects of adjunctive antimicrobial photodynamic therapy in periodontal treatment: A randomized clinical trial. J. Clin. Periodontol. 2008, 35, 877–884. [Google Scholar] [CrossRef]
- Sgolastra, F.; Petrucci, A.; Severino, M.; Graziani, F.; Gatto, R.; Monaco, A. Adjunctive photodynamic therapy to non-surgical treatment of chronic periodontitis: A systematic review and meta-analysis. J. Clin. Periodontol. 2013, 40, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Behdin, S.; Monje, A.; Lin, G.; Edwards, B.; Othman, A.; Wang, H. Effectiveness of Laser Application for Periodontal Surgical Therapy: Systematic Review and Meta-Analysis. J. Periodontol. 2015, 86, 1352–1363. [Google Scholar] [CrossRef]
- Aoki, A.; Sasaki, K.M.; Watanabe, H.; Ishikawa, I. Lasers in nonsurgical periodontal therapy. Periodontology 2000 2004, 36, 59–97. [Google Scholar] [CrossRef] [PubMed]
- Mainster, M.A.; Sliney, D.H.; Belcher, C.D.; Buzney, S.M. Laser Photodisruptors: Damage Mechanisms, Instrument Design and Safety. Ophthalmology 1983, 90, 973–991. [Google Scholar] [CrossRef]
- Cochran, D.L.; Cobb, C.M.; Bashutski, J.D.; Chun, Y.P.; Lin, Z.; Mandelaris, G.A.; McAllister, B.S.; Murakami, S.; Rios, H.F. Emerging Regenerative Approaches for Periodontal Reconstruction: A Consensus Report From the AAP Regeneration Workshop. J. Periodontol. 2015, 86, S153–S156. [Google Scholar] [CrossRef] [PubMed]
- Cobb, C.M. Lasers and the treatment of periodontitis: The essence and the noise. Periodontology 2000 2017, 75, 205–295. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhang, J.; Zhang, Q.; Zhang, X.; Ji, K. Effectiveness of laser adjunctive therapy for surgical treatment of gingival recession with flap graft techniques: A systematic review and meta-analysis. Lasers Med. Sci. 2018, 33, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Stone, P.W. Popping the (PICO) question in research and evidence-based practice. Appl. Nurs. Res. 2002, 15, 197–198. [Google Scholar] [CrossRef] [PubMed]
- Aena, P.J.; Parul, A.; Siddharth, P.; Pravesh, G.; Vikas, D.; Vandita, A. The clinical efficacy of laser assisted modified Widman flap: A randomized split mouth clinical trial. Indian J. Dent. Res. 2015, 26, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Pradhan, S. Treatment of Infrabony Defects by Open Flap Debridement with or without Diode Laser. Kathmandu Univ. Med. J. 2022, 20, 461–466. [Google Scholar] [CrossRef]
- Crespi, R.; Cappare, P.; Gherlone, E.; Romanos, G.E. Comparison of modified widman and coronally advanced flap surgery combined with Co2 laser root irradiation in periodontal therapy: A 15-year follow-up. Int. J. Periodontics Restor. Dent. 2011, 31, 641–651. [Google Scholar]
- Dilsiz, A.; Aydin, T.; Canakci, V.; Cicek, Y. Root Surface Biomodification with Nd:YAG Laser for the Treatment of Gingival Recession with Subepithelial Connective Tissue Grafts. Photomed. Laser Surg. 2010, 28, 337–343. [Google Scholar] [CrossRef]
- Dilsiz, A.; Aydin, T.; Yavuz, M.S. Root Surface Biomodification with an Er:YAG Laser for the Treatment of Gingival Recession with Subepithelial Connective Tissue Grafts. Photomed. Laser Surg. 2010, 28, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Dilsiz, A.; Canakci, V.; Aydin, T. The Combined Use of Nd:YAG Laser and Enamel Matrix Proteins in the Treatment of Periodontal Infrabony Defects. J. Periodontol. 2010, 81, 1411–1418. [Google Scholar] [CrossRef]
- Doğan, G.E.; Demir, T.; Orbak, R. Effect of low-level laser on guided tissue regeneration performed with equine bone and membrane in the treatment of intrabony defects: A clinical study. Photomed. Laser Surg. 2014, 32, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Fernandes-Dias, S.B.; de Marco, A.C.; Santamaria, M.; Kerbauy, W.D.; Jardini, M.A.; Santamaria, M.P. Connective tissue graft associated or not with low laser therapy to treat gingival recession: Randomized clinical trial. J. Clin. Periodontol. 2014, 42, 54–61. [Google Scholar] [CrossRef]
- Santamaria, M.P.; Fernandes-Dias, S.B.; Araújo, C.F.; da Silva Neves, F.L.; Mathias, I.F.; Andere, N.M.R.B.; Jardini, M.A.N. 2-Year Assessment of Tissue Biostimulation With Low-Level Laser on the Outcomes of Connective Tissue Graft in the Treatment of Single Gingival Recession: A Randomized Clinical Trial. J. Periodontol. 2017, 88, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, S.R.; Padhye, A.M.; Byakod, G.; Jain, S.A.; Padbidri, V.; Shivaswamy, S. A comparative evaluation of the efficacy of diode laser as an adjunct to mechanical debridement versus conventional mechanical debridement in periodontal flap surgery: A clinical and microbiological study. Photomed. Laser Surg. 2012, 30, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, J.; Vijayalakshmi, R.; Mahendra, J.; Kanakamedala, A.K.; Chellathurai, B.N.K.; Selvarajan, S.; Namachivayam, A. Diode Laser as an Adjunct to Kirkland Flap Surgery—A Randomized Split-Mouth Clinical and Microbiological Study. Photobiomodul. Photomed. Laser Surg. 2019, 37, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Kolamala, N.; Nagarakanti, S.; Chava, V.K. Effect of diode laser as an adjunct to open flap debridement in treatment of periodontitis—A randomized clinical trial. J. Indian Soc. Periodontol. 2022, 26, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, O.; Haytac, M.C.; Seydaoglu, G. Enamel matrix derivative and low-level laser therapy in the treatment of intra-bony defects: A randomized placebo-controlled clinical trial. J. Clin. Periodontol. 2007, 35, 147–156. [Google Scholar] [CrossRef]
- Torkzaban, P.; Barati, I.; Faradmal, J.; Ansari-Moghadam, S.; Gholami, L. Efficacy of the Er,Cr:YSGG Laser Application Versus the Conventional Method in Periodontal Flap Surgery: A Split-Mouth Randomized Control Trial. J. Lasers Med. Sci. 2022, 13, e4. [Google Scholar] [CrossRef]
- Sanz-Moliner, J.D.; Nart, J.; Cohen, R.E.; Ciancio, S.G. The Effect of an 810-nm Diode Laser on Postoperative Pain and Tissue Response After Modified Widman Flap Surgery: A Pilot Study in Humans. J. Periodontol. 2013, 84, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.; Shetty, K.; Alghamdi, S.; Almehmadi, N.; Mukherjee, T. A comparative evaluation of laser assisted & conven-tional open flap surgical debridement procedure in patients with chronic periodontitis—A clinical and microbio-logical study-a pilot project. Int. J. Pharm. Sci. Res. 2020, 11, 4957–4965. [Google Scholar]
- Türer, Ç.C.; Ipek, H.; Kirtiloğlu, T.; Açikgöz, G. Dimensional changes in free gingival grafts: Scalpel versus Er:YAG laser—A preliminary study. Lasers Med. Sci. 2013, 30, 543–548. [Google Scholar] [CrossRef]
- Zingale, J.; Harpenau, L.; Chambers, D.; Lundergan, W. Effectiveness of Root Planing with Diode Laser Curettage for the Treatment of Periodontitis. J. Calif. Dent. Assoc. 2012, 40, 787–793. [Google Scholar] [CrossRef]
- Drisko, C.H. Nonsurgical periodontal therapy. Periodontology 2000 2001, 25, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Kerry, G. Tetracycline-Loaded Fibers as Adjunctive Treatment In Periodontal Disease. J. Am. Dent. Assoc. 1994, 125, 1199–1203. [Google Scholar] [CrossRef] [PubMed]
- Gunsolley, J.; Elswick, R.; Davenport, J. Equivalence and Superiority Testing in Regeneration Clinical Trials. J. Periodontol. 1998, 69, 521–527. [Google Scholar] [CrossRef]
- Oates, T.W.; Mumford, J.H.; Cochran, D.L. Characterization of proliferation and cellular wound fill in periodontal cells using an in vitro wound model. J. Periodontol. 2001, 72, 324–330. [Google Scholar] [CrossRef]
- Kreisler, M.; Meyer, C.; Stender, E.; Daubländer, M.; Willershausen-Zönnchen, B.; D’Hoedt, B. Effect of diode laser irradiation on the attachment rate of periodontal ligament cells: An in vitro study. J. Periodontol. 2001, 72, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Kreisler, M.; Christoffers, A.B.; Willershausen, B.; D’Hoedt, B. Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: An in vitro study. J. Clin. Periodontol. 2003, 30, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, Y.; Shimizu, N.; Abiko, Y. Low-energy diode laser irradiation reduced plasminogen activator activity in human periodontal ligament cells. Lasers Surg. Med. 1997, 21, 456–463. [Google Scholar] [CrossRef]
- Yu, W.; Naim, J.O.; Lanzafame, R.J. The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem. Photobiol. 1994, 59, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Enwemeka, C.S.; Parker, J.C.; Dowdy, D.S.; Harkness, E.E.; Harkness, L.E.; Woodruff, L.D. The efficacy of low-power lasers in tissue repair and pain control: A meta-analysis study. Photomed. Laser Surg. 2004, 22, 323–329. [Google Scholar] [CrossRef]
- Sato, T.; Kawatani, M.; Takeshige, C.; Matsumoto, I. Ga-Al-As laser irradiation inhibits neuronal activity associated with inflammation. Acupunct. Electro-Ther. Res. 1994, 19, 141–151. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Kawatani, M.; Takeshige, C.; Matsumoto, I. Laser irradiation abates neuronal responses to nociceptive stimulation of rat-paw skin. Brain Res. Bull. 1994, 34, 369–374. [Google Scholar] [CrossRef]
- Armida, T.; Mier, M. Lasertherapy and its applications in dentistry. Pract. Odontol. 1989, 10, 9–10, 13–14, 16. [Google Scholar]
- Ozcelik, O.; Haytac, M.C.; Seydaoglu, G. Immediate post-operative effects of different periodontal treatment modalities on oral health-related quality of life: A randomized clinical trial. J. Clin. Periodontol. 2007, 34, 788–796. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Fourmousis, I.; Suvan, J.; Cortellini, P.; Brägger, U.; Lang, N.P.; on behalf of the European Research Group on Periodontology (ERGOPERIO). Healing, post-operative morbidity and patient perception of outcomes following regenerative therapy of deep intrabony defects. J. Clin. Periodontol. 2004, 31, 1092–1098. [Google Scholar] [CrossRef]
- Qadri, T.; Miranda, L.; Tunér, J.; Gustafsson, A. The short-term effects of low-level lasers as adjunct therapy in the treatment of periodontal inflammation. J. Clin. Periodontol. 2005, 32, 714–719. [Google Scholar] [CrossRef]
- Oliver, R.C.; Holm-Pedersen, P.; Löe, H. The Correlation Between Clinical Scoring, Exudate Measurements and Microscopic Evaluation of Inflammation in the Gingiva. J. Periodontol. 1969, 40, 201–209. [Google Scholar] [CrossRef]
- Slots, J. Periodontitis: Facts, fallacies and the future. Periodontology 2000 2017, 75, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Chambrone, L.; Chambrone, D.; Pustiglioni, F.E.; Chambrone, L.A.; Lima, L.A. Can subepithelial connective tissue grafts be considered the gold standard procedure in the treatment of Miller Class I and II recession-type defects? J. Dent. 2008, 36, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Bertl, K.; Pifl, M.; Hirtler, L.; Rendl, B.; Nürnberger, S.; Stavropoulos, A.; Ulm, C. Relative Composition of Fibrous Connective and Fatty/Glandular Tissue in Connective Tissue Grafts Depends on the Harvesting Technique but not the Donor Site of the Hard Palate. J. Periodontol. 2015, 86, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Cairo, F. Periodontal plastic surgery of gingival recessions at single and multiple teeth. Periodontology 2000 2017, 75, 296–316. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Chang, H.; Kim, S.; Seol, Y.-J.; Kim, H.-I. Periodontal biotype modification using a volume-stable collagen matrix and autogenous subepithelial connective tissue graft for the treatment of gingival recession: A case series. J. Periodontal Implant Sci. 2018, 48, 395–404. [Google Scholar] [CrossRef]
- Ripoll, S.; de Velasco-Tarilonte, Á.F.; Bullón, B.; Ríos-Carrasco, B.; Fernández-Palacín, A. Complications in the Use of Deepithelialized Free Gingival Graft vs. Connective Tissue Graft: A One-Year Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2021, 18, 4504. [Google Scholar] [CrossRef]
- Trylovich, D.J.; Cobb, C.M.; Pippin, D.J.; Spencer, P.; Killoy, W.J. The effects of the Nd:YAG laser on in vitro fibroblast attachment to endotoxin-treated root surfaces. J. Periodontol. 1992, 63, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Cobb, C.M. Lasers in Periodontics: A Review of the Literature. J. Periodontol. 2006, 77, 545–564. [Google Scholar] [CrossRef] [PubMed]
- Chow, R.T.; Armati, P.J.; Laakso, E.-L.; Bjordal, J.M.; Baxter, G.D. Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: A systematic review. Photomed. Laser Surg. 2011, 29, 365–381. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.M.; Giannobile, W.V.; Feres, M.; Haffajee, A.D.; Smith, C.; Socransky, S.S. The Effect of Apically Repositioned Flap Surgery on Clinical Parameters and the Composition of the Subgingival Micro-biota: 12-Month Data. Int. J. Periodontics Restor. Dent. 2002, 22, 209. [Google Scholar]
- Ando, Y.; Aoki, A.; Watanabe, H.; Ishikawa, I. Bactericidal effect of erbium YAG laser on periodontopathic bacteria. Lasers Surg. Med. 1996, 19, 190–200. [Google Scholar] [CrossRef]
- Academy Report. Lasers in Periodontics. J. Periodontol. 2002, 73, 1231–1239. [Google Scholar] [CrossRef]
Reference | Type of Laser | Test Group Technique | Control Group Technique | Number of Patients | Laser Parameters | Last Follow Up |
---|---|---|---|---|---|---|
[44] | Diode | Laser + MWF | MWF alone | 25 | 810 nm, 1 W, 4 J/cm2 | 9 months |
[45] | Diode | Laser + OFD | OFD alone | 28 | ND wavelength, 1.5 W | 6 months |
[46] | CO2 | CO2 + CAF | MWF alone | 25 | ND | 15 years |
[47] | Nd:YAG | Laser + SCTG | SCTG alone | 17 | 1064 nm, 1 W, 10 Hz | 6 months |
[48] | Er:YAG | Laser + SCTG | SCTG alone | 12 | 2940 nm 2 Hz, 60 mJ/pulse | 6 months |
[49] | Nd:YAG | Laser + EMD | EDTA + EMD | 21 | 1064 nm 1 W, 10 Hz, 100 mJ, 141.54 J/cm2 | 12 months |
[50] | Nd:YAG | Laser + GTR | GTR alone | 13 | 1064 nm, 100 mW, 100 mJ, 4 J/cm2 | 6 months |
[51,52] | Diode | Laser + CTG | CTG alone | 40 | 660 nm | 6 months + 2 years |
[53] | Diode | Laser + OFD | OFD alone | 30 | 980 nm, 2.5 W, 50 J/cm2 | 3 months |
[54] | Diode | Laser + Kirkland flap | Kirkland flap alone | 20 | 970 nm, 7 W, 50 J/cm2 | 6 months |
[55] | Diode | Laser + OFD | OFD alone | 15 | 980 nm, 2 W | 6 months |
[56] | Diode | Laser + EMD | EMD alone | 22 | 588 nm, 4 J/cm2 | 12 months |
[57] | Er,Cr:YSGG | Laser + OFD | OFD alone | 8 | 2780 nm, 25–50 Hz, 2–3.5 W | 3 months |
[58] | Diode | Laser + MWF | MWF alone | 13 | 810 nm, 1 W, 4 J/cm2 | 1 week |
[59] | Diode | Laser + OFD | OFD alone | 15 | 980 nm, 2.5 W | 6 months |
[60] | Er:YAG | Laser + FGG | Scalpel + FGG | 20 | 3 W, 300 mJ, 10 Hz, 1000 μs for FGG and 1.20 W, 120 mJ, 10 Hz, 100 μs for root biomodification | 3 months |
[61] | Diode | laser + SRP | OFD alone | 25 | 810 nm, 0.8 W | 6 months |
Reference | Initial | PD (mm) | Final | PD (mm) | Initial | CAL (mm) | Final | CAL (mm) |
---|---|---|---|---|---|---|---|---|
Test Group | Control Group | Test Group | Control Group | Test Group | Control Group | Test Group | Control Group | |
[44] | 8.20 ± 6.2 | 7.40 ± 1.41 | 2.93 ± 0.80 | 3.67 ± 0.72 | 6.00 ± 0.85 | 6.13 ± 0.74 | 1.87 ± 0.64 | 0.93 ± 0.80 |
[45] | 6.71 ± 0.72 | 6.93 ± 1.26 | 3.32 ± 0.94 | 2.86 ± 0.77 | 6.86 ± 2.65 | 7.64 ± 2.73 | 4.64 ± 2.40 | 4.79 ± 1.67 |
[46] | ND | ND | ND | ND | ND | ND | ND | ND |
[47] | 1.38 ± 0.51 | 1.46 ± 0.63 | 1.50 ± 0.50 | 1.50 ± 0.50 | 4.67 ± 1.33 | 4.88 ± 1.12 | 3.75 ± 1.16 | 2.33 ± 1.25 |
[48] | 1.46 ± 0.43 | 1.58 ± 0.49 | 1.46 ± 0.66 | 1.63 ± 0.68 | 4.54 ± 0.90 | 4.67 ± 0.94 | 2.04 ± 0.59 | 2.08 ± 0.49 |
[49] | 7.3 ± 0.6 | 7.3 ± 0.7 | 3.3 ± 0.4 | 3 ± 0.4 | 9.5 ± 0.7 | 9.3 ± 0.8 | 6.9 ± 0.7 | 6.4 ± 0.5 |
[50] | 6.01 ± 0.47 | 5.95 ± 0.43 | 2.63 ± 0.29 | 2.93 ± 1.98 | 7.35 ± 0.48 | 7.43 ± 0.60 | 4.46 ± 0.57 | 5.18 ± 0.46 |
[51,52] | ND | ND | ND | ND | ND | ND | ND | ND |
[53] | 6.03 ± 1.22 | 5.80 ± 1.19 | 2.97 ± 0.72 | 3.00 ± 0.95 | 11.07 ± 1.57 | 11.5 ± 1.97 | 9.70 ± 1.62 | 9.80 ± 1.77 |
[54] | 6.45 ± 0.84 | 6.13 ± 0.80 | 1.72 ± 0.39 | 3.01 ± 0.47 | 6.74 ± 0.93 | 6.50 ± 0.94 | 2.05 ± 0.52 | 3.35 ± 0.72 |
[55] | 7.40 ± 1.76 | 7.00 ± 1.51 | 4.40 ± 0.91 | 5.20 ± 0.67 | 9.53 ± 1.72 | 9.26 ± 1.53 | 6.53 ± 0.83 | 7.46 ± 0.83 |
[56] | 5.9–6.8 | 5.9–6.7 | 1.2–2.3 | 1.3–3.3 | 6.8–7.5 | 6.5–7.5 | 2.4–3.7 | 2.8–4.7 |
[57] | 5.17 ± 0.19 | 5.51 ± 0.72 | 3.19 ± 0.41 | 3.37 ± 0.35 | 1.32 ± 0.16 | 1.12 ± 0.20 | 0.80 ± 0.16 | 0.76 ± 0.14 |
[58] | ND | ND | ND | ND | ND | ND | ND | ND |
[59] | 2.94 ± 0.67 | 2.98 ± 0.80 | 1.41 ± 0.54 | 1.53 ± 0.49 | 7.57 ± 1.38 | 7.00 ± 1.05 | 4.73 ± 1.37 | 4.97 ± 0.89 |
[60] | ND | ND | ND | ND | ND | ND | ND | ND |
[61] | 5.82 ± 1.16 | 5.80 ± 0.99 | 4.19 ± 1.12 | 4.24 ± 1.14 | ND | ND | ND | ND |
Reference | Initial | GR (mm) | Final | GR (mm) | Initial | BOP (%) | Final | BOP (%) | Pain Perception |
---|---|---|---|---|---|---|---|---|---|
Test Group | Control Group | Test Group | Control Group | Test Group | Control Group | Test Group | Control Group | ||
[44] | ND | ND | ND | ND | ND | ND | ND | ND | ND |
[45] | 1.14 ± 1.29 | 1.29 ± 1.13 | 2.00 ± 1.51 | 1.93 ± 1.32 | ND | ND | ND | ND | ND |
[46] | ND | ND | ND | ND | ND | ND | ND | ND | ND |
[47] | 3.29 ± 1.18 | 3.42 ± 1.04 | 2.25 ± 1.23 | 0.83 ± 1.34 | ND | ND | ND | ND | ND |
[48] | 3.08 ± 0.57 | 3.00 ± 0.71 | 0.58 ± 1.02 | 0.46 ± 0.75 | ND | ND | ND | ND | ND |
[49] | 2.2 ± 0.5 | 2 ± 0.4 | 3.6 ± 0.5 | 3.4 ± 0.3 | 100 | 100 | 9.52 | 4.76 | ND |
[50] | 1.33 ± 0.42 | 1.48 ± 0.55 | 1.82 ± 0.52 | 2.24 ± 0.43 | ND | ND | ND | ND | ND |
[51,52] | ND | ND | ND | ND | ND | ND | ND | ND | ND |
[53] | ND | ND | ND | ND | ND | ND | ND | ND | Insignificant in both groups |
[54] | ND | ND | ND | ND | 89.46 ± 12.45 | 85.62 ± 14.31 | 16.51 ± 5.98 | 37.05 ± 7.45 | ND |
[55] | ND | ND | ND | ND | ND | ND | ND | ND | Significantly lower in test group |
[56] | 1.1–2.4 | 1.8–3.0 | 1.1–2.8 | 2.4–3.8 | ND | ND | ND | ND | Significantly lower in test group |
[57] | 0.06 ± 0.25 | 0.12 ± 0.34 | 0.96 ± 0.63 | 1.36 ± 0.64 | ND | ND | ND | ND | ND |
[58] | ND | ND | ND | ND | ND | ND | ND | ND | Significantly lower in test group |
[59] | ND | ND | ND | ND | ND | ND | ND | ND | ND |
[60] | ND | ND | ND | ND | ND | ND | ND | ND | ND |
[61] | ND | ND | ND | ND | 100 | 100 | 35 | 29 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zisis, S.; Zisis, V.; Braun, A. Laser Application for Periodontal Surgical Therapy: A Literature Review. Oral 2025, 5, 11. https://doi.org/10.3390/oral5010011
Zisis S, Zisis V, Braun A. Laser Application for Periodontal Surgical Therapy: A Literature Review. Oral. 2025; 5(1):11. https://doi.org/10.3390/oral5010011
Chicago/Turabian StyleZisis, Stefanos, Vasileios Zisis, and Andreas Braun. 2025. "Laser Application for Periodontal Surgical Therapy: A Literature Review" Oral 5, no. 1: 11. https://doi.org/10.3390/oral5010011
APA StyleZisis, S., Zisis, V., & Braun, A. (2025). Laser Application for Periodontal Surgical Therapy: A Literature Review. Oral, 5(1), 11. https://doi.org/10.3390/oral5010011