Enhancing Mitochondrial Maturation in iPSC-DerivedCardiomyocytes: Strategies for Metabolic Optimization
Abstract
1. Introduction
1.1. Current Knowledge and Limitations
1.2. Need for a Comprehensive Systematic Review
1.3. Objectives and Methodological Framework
- (1)
- Metabolic Preconditioning Approaches: (a) Substrate optimization, (b) Fatty acid supplementation, and (c) Hypoxia/reoxygenation cycles;
- (2)
- Genetic and Pharmacological Modulation: (a) PGC-1α overexpression, (b) AMPK activation, (c) mTOR inhibition; and (d) Other mitochondrial biogenesis inducers;
- (3)
- Biophysical and Electrical Stimulation Strategies: (a) Mechanical stress, (b) Extracellular matrix composition, and (c) Electrical pacing;
- (4)
- Computational and Systems Biology Approaches: (a) Multi-omics profiling, and (b) Predictive modeling for metabolic pathway optimization.
2. Methods
2.1. Data Compilation
2.2. Data Extraction and Analysis
- Metabolic flux assays (e.g., Seahorse extracellular flux analysis);
- Mitochondrial morphology and function assessment (e.g., electron microscopy (EM), ROS quantification, and ATP production assays);
- In vivo transplantation models assessing iPSC-CM engraftment and metabolic function;
- Bioinformatics approaches, including transcriptomic and proteomic analyses, to identify key regulators of metabolic maturation;
- Computational modeling studies exploring metabolic pathway optimization.
2.2.1. Integration of Bioinformatics and Computational Modeling
2.2.2. Clinical Translation Considerations
- Preprint repositories (bioRxiv, medRxiv) for emerging strategies;
- Clinical trial databases (ClinicalTrials.gov) for ongoing iPSC-CM transplantation studies;
- Regulatory reports (FDA, EMA, PMDA) for GMP-compliant iPSC-CM manufacturing.
3. Results
3.1. Pooled Findings from Eligible Studies
3.1.1. Study Selection Overview
3.1.2. Study Characteristics
3.1.3. Thematic Synthesis of Findings
Metabolic Preconditioning Approaches
- Substrate optimizationModulating the substrate environment plays a pivotal role in facilitating mitochondrial maturation in iPSC-CMs. Prolonged culture duration (Dai et al., 2017 [22]) induced elevated OXPHOS and ATP synthesis through increased ETC complex activity and PGC-1α expression. Glucose-rich conditions, conversely, triggered ROS accumulation and mitochondrial fragmentation (Canfield et al., 2016 [62]), underscoring the necessity of tightly controlled metabolic inputs. Long-term metabolic conditioning (Vuckovic et al., 2022 [26]) further emphasized that despite enhanced oxidative signaling, pathological contexts may inherently constrain mitochondrial outcomes.
- Fatty acid supplementation (FAO activation, glycolysis suppression)Fatty acid-enriched media consistently activated FAO pathways, improved cristae morphology, and elevated mitochondrial biogenesis markers. Palmitate and oleic acid supplementation (Yang et al., 2019 [58]), with or without L-carnitine or PPARα agonists (Rana et al., 2012 [59]; Horikoshi et al., 2019 [34]), led to significant gains in ATP production, OCR, and contractile function. Correia et al. (2017) [60] and Feyen et al. (2020) [61] integrated glucose deprivation with FAO stimulation, enhancing PGC-1α-mediated respiratory efficiency and sarcomeric maturity. Conversely, perturbation of lipid metabolism enzymes such as HADHA (Miklas et al., 2019) [63] markedly disrupted mitochondrial structure and energy output, affirming the critical role of intact β-oxidation machinery in cardiomyocyte energetics.
- Hypoxia/reoxygenation cyclesTransient hypoxia followed by reoxygenation has emerged as a potent stimulator of mitochondrial biogenesis. PGC-1α overexpression during these cycles (Uche et al., 2023 [64]) promoted mtDNA replication, complex activity, and mitochondrial mass. Peters et al. (2022) [48] demonstrated that coupling hypoxia with fatty acid media enhanced OXPHOS while suppressing glycolysis, although signs of mitochondrial damage, such as TOMM20 downregulation post-reoxygenation, indicated the importance of dosage and timing in such protocols.
Genetic and Pharmacological Modulation
- PGC-1α overexpressionPGC-1α overexpression remains a central strategy for inducing mitochondrial biogenesis and function in iPSC-derived cardiomyocytes. Uche et al., 2023 [64] demonstrated that coupling periodic hypoxia-reoxygenation with PGC-1α induction markedly elevated expression of TFAM and NRF1, enriched mtDNA content, and enhanced ETC complex activity and membrane potential. Zhou et al. (2021) [53] further validated these findings, reporting simultaneous improvements in FAO, ATP production, and calcium handling upon PGC-1α overexpression during differentiation.
- AMPK activationAMPK, a key energy sensor, has been effectively targeted to drive mitochondrial biogenesis. Ye et al. (2021) [57] applied AMPK activators such as metformin and AICAR, resulting in elevated FAO rates and increased CPT1α expression, reinforcing metabolic maturation through enhanced fatty acid oxidation.
- MTOR inhibitionTargeting the mTOR pathway introduces a complementary avenue to promote oxidative metabolism. Chirico et al. (2022) [52] utilized mTOR-modulatory compounds like Asiatic acid and GW501516, which synergistically enhanced OXPHOS, TCA cycle activity, and mitochondrial respiratory capacity, while also boosting expression of mitochondrial ATP synthase subunits and ETC components.
- Other mitochondrial biogenesis inducersComplementary strategies such as ECM-mediated signaling and computational modeling offer indirect but powerful enhancements of mitochondrial maturity. Ozcebe et al. (2025) [71] showed that proteomic mapping of adult human ECM led to improved cristae density, OCR, and ATP levels via outside-in signaling. Similarly, Gentillon et al. (2019) [68] demonstrated that a combination of HIF-1α inhibition, PPARα activation, and postnatal biochemical cues promoted complex cristae architecture and downregulated glycolysis. Collectively, these multimodal approaches reinforce the central role of mitochondrial biogenesis in achieving functional iPSC-CM maturation.
Biophysical and Electrical Stimulation Strategies
- Mechanical stressMechanical loading and cyclic stretching have been shown to enhance mitochondrial structure and function in iPSC-CMs. Ulmer et al. (2018) [74] and Ronaldson-Bouchard et al. (2018) [66] demonstrated that these physical cues promote mitochondrial respiratory capacity, increase cristae complexity, and support ATP production, alongside improved sarcomere organization and upregulation of oxidative genes such as CPT1B and ETFDH. However, findings by Vacek et al. (2011) [70] underline the importance of dose sensitivity, as excessive stimulation led to compromised cristae integrity, emphasizing the need for precise modulation of mechanical inputs.
- Extracellular matrix compositionIntegration of adult heart-derived extracellular matrix (ECM) components has been shown to significantly support mitochondrial maturity. Ozcebe et al. (2025) [71] highlighted that ECM signals, particularly from fibronectin and galectin-1, regulate mitochondrial morphology, increase oxidative phosphorylation capacity, and enhance ATP output through outside-in signaling mechanisms that elevate mitochondrial membrane potential and cristae density.
- Electrical pacingElectrical stimulation, particularly through bioreactor platforms as explored by Nunes et al. (2013), [69] has proven effective in augmenting mitochondrial respiration and ATP synthesis. This approach also contributed to functional maturation by improving calcium handling and aligning sarcomeres, underscoring the synergistic benefit of electrophysiological conditioning in fostering energy-efficient cardiac phenotypes.
Computational and Systems Biology Approaches
- Multi-omics profilingOzcebe et al. (2025) [71] demonstrated that extracellular matrix components derived from adult human hearts can enhance mitochondrial morphology and function in iPSC-CMs through integrin-mediated signaling, leading to increased ATP production, oxidative capacity, and cristae density. Similarly, Nam et al. (2024) [73] employed mitochondrial transfer from heart, liver, and brain tissues to chemically induced cardiomyocyte-like cells, achieving improvements in mitochondrial mass, membrane potential, and complex I and II activities. These studies underscore the role of integrated proteomic and metabolic profiling in guiding functional mitochondrial maturation.
- Computational and predictive modeling for metabolic pathway optimizationYang et al. (2024) [72] leveraged optical voltage and calcium imaging data to develop individualized metabolic models, allowing in silico prediction of key bioenergetic parameters such as ATP output and OXPHOS potential in iPSC-CMs. These individualized metabolic models are computational representations tailored to the unique electrophysiological and calcium handling profiles for individual iPSC-derived cardiomyocytes, rather than using population-averaged parameters. These models integrate high-resolution optical voltage and calcium imaging data to reconstruct cell-specific energy demands and mitochondrial performance, enabling in silico predictions of ATP output, oxidative phosphorylation efficiency, and metabolic reserve capacity with precision. Complementing this, Jiang et al. (2024) [56] highlighted the limitations of current metabolic assessment methods and advocated for integrated, multi-parametric approaches to better emulate adult cardiac energy metabolism. Together, these computational frameworks enable precision-guided strategies for advancing metabolic fidelity in stem cell-derived cardiomyocytes.
3.2. Metabolic Immaturity of iPSC-CMs: A Limiting Factor in Regeneration
- Underdeveloped cristae morphology, compromising electron transport chain (ETC) capacity;
- Elevated ROS levels, resulting from immature antioxidant systems, combined with a deficient antioxidant response (e.g., reduced SOD2, PRDX3);
- Lower expression of key mitochondrial regulators, such as PGC-1α, SIRT1, and NRF1/NRF2;
- Inefficient calcium handling and diminished contractile capacity linked to insufficient mitochondrial-Ca2+ coupling.
Baseline Bioenergetic Features of iPSC-CMs
4. Discussion
4.1. Metabolic Maturity as a Prerequisite for Effective Regeneration
4.2. Experimental Approaches and Limitations in iPSC-CM Maturation
4.3. Advancing iPSC-CM Translation: Computational and Multi-Omics Approaches
4.3.1. Challenges in Translating In Vitro Advances to In Vivo Applications
4.3.2. Future Directions for Enhancing iPSC-CM Maturation
4.4. Bridging Bench to Bedside: Translational Roadmap for Clinical Applications
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
iPSC | Induced pluripotent stem cell |
CM | Cardiomyocyte |
ABC transporters | ATP-binding cassette transporters |
AMPK | Adenosine monophosphate-activated protein kinase |
AP | Action potential |
APD90 | Action potential duration at 90% repolarization |
ATAC-seq | Action Assay for transposase-accessible chromatin sequencing |
Cox7A2L | Cytochrome c oxidase subunit 7A-related protein |
EHT | Engineered heart tissue |
EMA | European Medicines Agency |
ETC | Electron transport chain |
FDA | U.S. Food and Drug Administration |
FAO | Fatty acid oxidation |
GPx | Glutathione peroxidase |
GR | Glutathione reductase |
MCU | Mitochondrial calcium uniporter |
MICU1 | Mitochondrial calcium uptake 1 |
MFN2 | Mitofusin 2 |
mTOR | Mammalian target of rapamycin |
NDUFA10 | NADH-Ubiquinone oxidoreductase subunit A10 |
NHP | Non-human primate |
OPA1 | Optic atrophy 1 |
PGC-1α | Peroxisome-activated receptor gamma coactivator 1-alpha |
Prx3 | Peroxiredoxin 3 |
ROS | Reactive oxygen species |
scRNA-seq | Single-cell RNA sequencing |
Trx2 | Thioredoxin 2 |
TrxR2 | Thioreductase 2 |
UCP2/3 | Uncoupling protein 2/3 |
8-OHdG | 8-hydroxy-2’-deoxyguanosine |
MDA | Malondialdehyde |
References
- Di Cesare, M.; Perel, P.; Taylor, S.; Kabudula, C.; Bixby, H.; Gaziano, T.A.; McGhie, D.V.; Mwangi, J.; Pervan, B.; Narula, J.; et al. The heart of the world. Glob. Heart 2024, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Muharram, F.R.; Multazam, C.E.C.Z.; Mustofa, A.; Socha, W.; Andrianto; Martini, S.; Aminde, L.; Yi-Li, C. The 30 years of Shifting in the Indonesian Cardiovascular Burden—Analysis of the Global Burden of Disease Study. J. Epidemiol. Glob. Health 2024, 14, 193–212. [Google Scholar] [CrossRef]
- Hu, H.; Nakagawa, T.; Honda, T.; Yamamoto, S.; Kochi, T.; Okazaki, H.; Miyamoto, T.; Ogasawara, T.; Gommori, N.; Yamamoto, M.; et al. Development and validation of a cardiovascular disease risk prediction model for the Japanese working population: The Japan Epidemiology Collaboration on Occupational Health Study. J. Atheroscler. Thromb. 2025, 32, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Joseph, P.; Lanas, F.; Roth, G.; Lopez-Jaramillo, P.; Lonn, E.; Miller, V.; Mente, A.; Leong, D.; Schwalm, J.-D.; Yusuf, S. Cardiovascular disease in the Americas: The epidemiology of cardiovascular disease and its risk factors. Lancet Reg. Health-Am. 2025, 42, 100960. [Google Scholar] [CrossRef]
- Alfian, S.D.; Permata, P.G.R.; Griselda, M.; Puspitasari, I.M.; Abdulah, R. Comparing the association between depressive symptoms and cardiovascular disease among the Middle-Aged and elderly population: A national survey of 9049 subjects based on the Indonesian Family Life Survey-5. Vasc. Health Risk Manag. 2025, 21, 85–95. [Google Scholar] [CrossRef]
- World Economic Forum. More Than 1 in 10 People in Japan Are Aged 80 or Over. Here’s How Its Ageing Population is Reshaping the Country. World Economic Forum. September 2023. Available online: https://www.weforum.org/stories/2023/09/elderly-oldest-population-world-japan/ (accessed on 20 April 2025).
- Central for Disease Control [CDC]. About Heart Failure. Heart Disease. 15 May 2024. Available online: https://www.cdc.gov/heart-disease/about/heart-failure.html#:~:text=Facts%20about%20heart%20failure%20in,3 (accessed on 20 April 2025).
- Ali, S.A.; Mahmood, Z.; Mubarak, Z.; Asad, M.; Chaudhri, M.T.S.; Bilal, L.; Ashraf, T.; Khalifa, T.N.; Ashraf, T.; Saleem, F.; et al. Assessing the potential benefits of stem cell therapy in cardiac regeneration for patients with ischemic heart disease. Cureus 2025, 17, e76770. [Google Scholar] [CrossRef]
- Sugiura, T.; Nawaz, S.; Shahannaz, D.C.; Ferrell, B.E.; Yoshida, T. From injury to repair: The therapeutic potential of induced pluripotent stem cells in heart failure. Regener. Med. Rep. 2025, 2, 22–30. [Google Scholar] [CrossRef]
- Sugiura, T.; Shahannaz, D.C.; Ferrell, B.E. Current status of cardiac regenerative therapy using induced pluripotent stem cells. Int. J. Mol. Sci. 2024, 25, 5772. [Google Scholar] [CrossRef]
- Jubaidi, F.F.; Zainalabidin, S.; Mariappan, V.; Budin, S.B. Mitochondrial dysfunction in diabetic cardiomyopathy: The possible therapeutic roles of phenolic acids. Int. J. Mol. Sci. 2020, 21, 6043. [Google Scholar] [CrossRef]
- Krogulec, E.; Dobosz, A.M.; Stefanowski, N.; Kendziorek, M.E.; Janikiewicz, J.; Dobrzyń, A. From potential to practice: Overcoming the immaturity of iPSC-derived cardiomyocytes for regenerative medicine. Kardiol. Pol. 2025, 83, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Piven, O.O.; Vaičiulevičiūtė, R.; Bernotiene, E.; Dobrzyn, P. Cardiomyocyte engineering: The meeting point of transcription factors, signaling networks, metabolism and function. Acta Physiol. 2025, 241, e14271. [Google Scholar] [CrossRef]
- Lesmana, R.; Prasetyo, W.B.; Ray, H.R.D.; Tarawan, V.M.; Goenawan, H.; Setiawan, I.; Pratiwi, Y.S.; Juliati, N.S.; Supratman, U. Exercise serum alters genes related mitochondria in cardiomyocyte culture cell. J. Pendidik. Jasmani Olahraga 2020, 5, 102–110. [Google Scholar] [CrossRef]
- Sada, T.; Kimura, W. Transition from fetal to postnatal state in the heart: Crosstalk between metabolism and regeneration. Dev. Growth Differ. 2024, 66, 438–451. [Google Scholar] [CrossRef]
- Mendelsohn, D.H.; Schnabel, K.; Mamilos, A.; Sossalla, S.; Pabel, S.; Duerr, G.D.; Keller, K.; Schmitt, V.H.; Barsch, F.; Walter, N.; et al. Structural Analysis of Mitochondrial Dynamics—From cardiomyocytes to Osteoblasts: A Critical review. Int. J. Mol. Sci. 2022, 23, 4571. [Google Scholar] [CrossRef]
- Bishop, S.P.; Zhang, J.; Ye, L. Cardiomyocyte Proliferation from Fetal- to Adult- and from Normal- to Hypertrophy and Failing Hearts. Biology 2022, 11, 880. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Jaswal, J.S. Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation. J. Cardiovasc. Pharmacol. 2010, 56, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ye, L.; Xu, H.; Zhou, Q.; Tan, B.; Yi, Q.; Yan, L.; Xie, M.; Zhang, Y.; Tian, J.; et al. NRF2 is required for structural and metabolic maturation of human induced pluripotent stem cell-derived ardiomyocytes. Stem Cell Res. Ther. 2021, 12, 208. [Google Scholar] [CrossRef]
- Yoshida, S.; Miyagawa, S.; Fukushima, S.; Kawamura, T.; Kashiyama, N.; Ohashi, F.; Toyofuku, T.; Toda, K.; Sawa, Y. Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes by Soluble Factors from Human Mesenchymal Stem Cells. Mol. Ther. 2018, 26, 2681–2695. [Google Scholar] [CrossRef] [PubMed]
- Ly, O.T.; Brown, G.E.; Han, Y.D.; Darbar, D.; Khetani, S.R. Bioengineering approaches to mature induced pluripotent stem cell-derived atrial cardiomyocytes to model atrial fibrillation. Exp. Biol. Med. 2021, 246, 1816–1828. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.F.; Danoviz, M.E.; Wiczer, B.; Laflamme, M.A.; Tian, R. Mitochondrial maturation in human pluripotent stem cell derived cardiomyocytes. Stem Cells Int. 2017, 2017, 5153625. [Google Scholar] [CrossRef]
- Adams, R.A.; Liu, Z.; Hsieh, C.; Marko, M.; Lederer, W.J.; Jafri, M.S.; Mannella, C. Structural Analysis of Mitochondria in Cardiomyocytes: Insights into Bioenergetics and Membrane Remodeling. Curr. Issues Mol. Biol. 2023, 45, 6097–6115. [Google Scholar] [CrossRef] [PubMed]
- Riva, A.; Tandler, B.; Loffredo, F.; Vazquez, E.; Hoppel, C. Structural differences in two biochemically defined populations of cardiac mitochondria. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H868–H872. [Google Scholar] [CrossRef]
- Razeghi, P.; Young, M.E.; Alcorn, J.L.; Moravec, C.S.; Frazier, O.H.; Taegtmeyer, H. Metabolic gene expression in fetal and failing human heart. Circulation 2001, 104, 2923–2931. [Google Scholar] [CrossRef]
- Vučković, S.; Dinani, R.; Nollet, E.E.; Kuster, D.W.D.; Buikema, J.W.; Houtkooper, R.H.; Nabben, M.; van der Velden, J.; Goversen, B. Characterization of cardiac metabolism in iPSC-derived cardiomyocytes: Lessons from maturation and disease modeling. Stem Cell Res. Ther. 2022, 13, 332. [Google Scholar] [CrossRef]
- Malandraki-Miller, S.; Lopez, C.A.; Al-Siddiqi, H.; Carr, C.A. Changing metabolism in differentiating cardiac Progenitor Cells—Can stem cells become metabolically flexible cardiomyocytes? Front. Cardiovasc. Med. 2018, 5, 119. [Google Scholar] [CrossRef]
- Funakoshi, S.; Fernandes, I.; Mastikhina, O.; Wilkinson, D.; Tran, T.; Dhahri, W.; Mazine, A.; Yang, D.; Burnett, B.; Lee, J.; et al. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells. Nat. Commun. 2021, 12, 3155. [Google Scholar] [CrossRef]
- Waypa, G.B.; Smith, K.A.; Mungai, P.T.; Dudley, V.J.; Helmin, K.A.; Singer, B.D.; Peek, C.B.; Bass, J.; Nelson, L.; Shah, S.J.; et al. Mitochondria regulate proliferation in adult cardiac myocytes. J. Clin. Investig. 2024, 134, e165482. [Google Scholar] [CrossRef]
- Sugiura, T.; Shahannaz, D.C.; Ferrell, B.E.; Yoshida, T. Advancements in cardiac regenerative therapy: Scalable human iPSC-derived cardiomyocyte differentiation and maturation. Glob. Transl. Med. 2025, 4, 5745. [Google Scholar] [CrossRef]
- Pei, J.; Wang, F.; Pei, S.; Bai, R.; Cong, X.; Nie, Y.; Chen, X. Hydrogen sulfide promotes cardiomyocyte proliferation and heart regeneration via ROS scavenging. Oxid. Med. Cell. Longev. 2020, 2020, 1412696. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Cong, X. The effect of reactive oxygen species on cardiomyocyte differentiation of pluripotent stem cells. Free Radical Res. 2017, 52, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Bhattarai, S.; Ara, H.; Sun, G.; Clair, D.K.S.; Bhuiyan, S.; Kevil, C.; Watts, M.N.; Dominic, P.; Shimizu, T.; et al. SOD2 deficiency in cardiomyocytes defines defective mitochondrial bioenergetics as a cause of lethal dilated cardiomyopathy. Redox Biol. 2020, 37, 101740. [Google Scholar] [CrossRef]
- Horikoshi, Y.; Yan, Y.; Terashvili, M.; Wells, C.; Horikoshi, H.; Fujita, S.; Bosnjak, Z.J.; Bai, X. Fatty Acid-Treated induced pluripotent stem Cell-Derived human cardiomyocytes exhibit adult Cardiomyocyte-Like energy metabolism phenotypes. Cells 2019, 8, 1095. [Google Scholar] [CrossRef]
- Vishnyakova, P.A.; Tarasova, N.V.; Volodina, M.A.; Tsvirkun, D.V.; Sukhanova, I.A.; Kurchakova, T.A.; Kan, N.E.; Medzidova, M.K.; Sukhikh, G.T.; Vysokikh, M.Y. Gestation age-associated dynamics of mitochondrial calcium uniporter subunits expression in feto-maternal complex at term and preterm delivery. Sci. Rep. 2019, 9, 5501. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhang, J.; Li, S.; Fu, W.; Liu, Y.; Liu, M.; Dong, J.; Zhao, X.; Li, X. TAB2 deficiency induces dilated cardiomyopathy by promoting mitochondrial calcium overload in human iPSC-derived cardiomyocytes. Mol. Med. 2025, 31, 42. [Google Scholar] [CrossRef]
- Silbernagel, N.; Richter, B.; Jaggy, M.; Bertels, S.; Bastmeyer, M.; Ullrich, N.D. Novel microarchitecture induces functional remodeling of the calcium signaling mechanisms in restructured IPSC-Cardiomyocytes. Biophys. J. 2017, 112, 537a. [Google Scholar] [CrossRef]
- Ernst, P.; Bidwell, P.A.; Dora, M.; Thomas, D.D.; Kamdar, F. Cardiac calcium regulation in human induced pluripotent stem cell cardiomyocytes: Implications for disease modeling and maturation. Front. Cell Dev. Biol. 2023, 10, 986107. [Google Scholar] [CrossRef]
- Diaz-Juarez, J.; Suarez, J.; Cividini, F.; Scott, B.T.; Diemer, T.; Dai, A.; Dillmann, W.H. Expression of the mitochondrial calcium uniporter in cardiac myocytes improves impaired mitochondrial calcium handling and metabolism in simulated hyperglycemia. Am. J. Physiol. Cell Physiol. 2016, 311, C1005–C1013. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Xu, S.; Xu, J.; Xin, Y.; Lu, Y.; Zhang, H.; Zhou, B.; Xu, H.; Sheu, S.-S.; Tian, R.; et al. Elevated MCU expression by CAMKIIδB limits pathological cardiac remodeling. Circulation 2022, 145, 1067–1083. [Google Scholar] [CrossRef]
- Dedkova, E.N.; Blatter, L.A. Calcium signaling in cardiac mitochondria. J. Mol. Cell. Cardiol. 2013, 58, 125–133. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Ng, K.-M.; Lai, W.-H.; Chan, Y.-C.; Lau, Y.-M.; Lian, Q.; Tse, H.-F.; Siu, C.-W. Calcium homeostasis in human induced pluripotent stem Cell-Derived cardiomyocytes. Stem Cell Rev. Rep. 2011, 7, 976–986. [Google Scholar] [CrossRef]
- Minor, A.J.; Coulombe, K.L.K. Stimulating calcium handling in hiPSC-Derived engineered cardiac tissues enhances force production. Stem Cells Transl. Med. 2022, 11, 97–106. [Google Scholar] [CrossRef]
- Kumar, N.; Bagri, K.; Malik, S.M.; Deshmukh, R.; Singh, T.G. Role of Mitochondria in Ischemic-Reperfusion Injury. In Ischemic Injury; Apple Academic Press: Burlington, ON, Canada, 2024; pp. 79–97. [Google Scholar] [CrossRef]
- Inferrera, F.; Marino, Y.; Genovese, T.; Cuzzocrea, S.; Fusco, R.; Di Paola, R. Mitochondrial quality control: Biochemical mechanism of cardiovascular disease. Biochim. Biophys. Acta, Mol. Cell Res. 2025, 1872, 119906. [Google Scholar] [CrossRef]
- Ni, D.; Lin, X.; Deng, C.; Yuan, L.; Li, J.; Liu, Y.; Liang, P.; Jiang, B. Energy metabolism: From physiological changes to targets in sepsis-induced cardiomyopathy. Hellenic J. Cardiol. 2024, 80, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Sheeran, F.L.; Pepe, S. Mitochondrial bioenergetics and dysfunction in failing heart. Adv. Exp. Med. Biol. 2017, 982, 65–80. [Google Scholar] [CrossRef]
- Peters, M.C.; Maas, R.G.C.; van Adrichem, I.; Doevendans, P.A.M.; Mercola, M.; Šarić, T.; Buikema, J.W.; van Mil, A.; Chamuleau, S.A.J.; Sluijter, J.P.G.; et al. Metabolic maturation increases susceptibility to hypoxia-induced damage in human iPSC-derived cardiomyocytes. Stem Cells Transl. Med. 2022, 11, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Kamath, G.S.; Bhole, U.; Choudhury, A.R.; Talukdar, I. Advances in myogenic differentiation: Role of stem cells, RNA-binding proteins, Molecular pathways, and Detection techniques. Indian J. Biochem. Biophys. 2025, 62, 301–320. [Google Scholar] [CrossRef]
- Aycinena, J.A.; Tefera, A.E.; Perea-Gil, I.; Holbrook-Smith, D.; Williams, K.; Shenwai, R.; Farshidfar, F.; Ryback, B.; Foppe, K.; Wu, I.; et al. Plakophilin-2 Coordinates Energy Metabolism and Contractility in Cardiomyocytes, Revealing Its Roles beyond Desmosomes. bioRxiv 2025. [Google Scholar] [CrossRef]
- Pohjolainen, L.; Kinnunen, S.M.; Auno, S.; Kiriazis, A.; Pohjavaara, S.; Kari-Koskinen, J.; Zore, M.; Jumppanen, M.; Yli-Kauhaluoma, J.; Talman, V.; et al. Switching of hypertrophic signalling towards enhanced cardiomyocyte identity and maturity by a GATA4-targeted compound. Stem Cell Res. Ther. 2024, 15, 5. [Google Scholar] [CrossRef]
- Chirico, N.; Kessler, E.L.; Maas, R.G.C.; Fang, J.; Qin, J.; Dokter, I.; Daniels, M.; Šarić, T.; Neef, K.; Buikema, J.-W.; et al. Small molecule-mediated rapid maturation of human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Res. Ther. 2022, 13, 531. [Google Scholar] [CrossRef]
- Zhou, Q.; Xu, H.; Yan, L.; Ye, L.; Zhang, X.; Tan, B.; Yi, Q.; Tian, J.; Zhu, J. PGC-1α promotes mitochondrial respiration and biogenesis during the differentiation of hiPSCs into cardiomyocytes. Genes Dis. 2021, 8, 891–906. [Google Scholar] [CrossRef] [PubMed]
- Pandit, S.; Jamal, T.; Ali, A.; Parthasarathi, R. Multiscale computational and machine learning models for designing stem cell-based regenerative medicine therapies. In Computational Biology for Stem Cell Research; Elsevier: Amsterdam, The Netherlands, 2024; pp. 433–442. [Google Scholar] [CrossRef]
- Jalali, S.N.; Fathi, Z.; Mohebbi, S. Innovative platforms in regenerative Medicine: Bridging research and clinical solutions. Jentashapir J. Cell. Mol. Biol. 2025, 16, e158285. [Google Scholar] [CrossRef]
- Jiang, X.; Lian, X.; Wei, K.; Zhang, J.; Yu, K.; Li, H.; Ma, H.; Cai, Y.; Pang, L. Maturation of pluripotent stem cell-derived cardiomyocytes: Limitations and challenges from metabolic aspects. Stem Cell Res. Ther. 2024, 15, 354. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, X.; Zhou, Q.; Tan, B.; Xu, H.; Yi, Q.; Yan, L.; Xie, M.; Zhang, Y.; Tian, J.; et al. Activation of AMPK promotes maturation of cardiomyocytes derived from human induced pluripotent stem cells. Front. Cell Dev. Biol. 2021, 9, 644667. [Google Scholar] [CrossRef]
- Yang, X.; Rodriguez, M.L.; Leonard, A.; Sun, L.; Fischer, K.A.; Wang, Y.; Ritterhoff, J.; Zhao, L.; Kolwicz, S.C., Jr.; Pabon, L.; et al. Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Rep. 2019, 13, 657–668. [Google Scholar] [CrossRef]
- Rana, P.; Anson, B.; Engle, S.; Will, Y. Characterization of Human-Induced Pluripotent stem Cell–Derived cardiomyocytes: Bioenergetics and utilization in safety screening. Toxicol. Sci. 2012, 130, 117–131. [Google Scholar] [CrossRef]
- Correia, C.; Koshkin, A.; Duarte, P.; Hu, D.; Teixeira, A.; Domian, I.; Serra, M.; Alves, P.M. Distinct carbon sources affect structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Sci. Rep. 2017, 7, 8590. [Google Scholar] [CrossRef] [PubMed]
- Feyen, D.A.M.; McKeithan, W.L.; Bruyneel, A.A.N.; Spiering, S.; Hörmann, L.; Ulmer, B.; Zhang, H.; Briganti, F.; Schweizer, M.; Hegyi, B.; et al. Metabolic maturation media improve physiological function of human iPSC-Derived cardiomyocytes. Cell Rep. 2020, 32, 107925. [Google Scholar] [CrossRef] [PubMed]
- Canfield, S.G.; Zaja, I.; Godshaw, B.; Twaroski, D.; Bai, X.; Bosnjak, Z.J. High glucose attenuates anesthetic cardioprotection in Stem-Cell–Derived cardiomyocytes: The role of reactive oxygen species and mitochondrial fission. Anesth. Analg. 2016, 122, 1269–1279. [Google Scholar] [CrossRef]
- Miklas, J.W.; Clark, E.; Levy, S.; Detraux, D.; Leonard, A.; Beussman, K.; Showalter, M.R.; Smith, A.T.; Hofsteen, P.; Yang, X.; et al. TFPa/HADHA is required for fatty acid beta-oxidation and cardiolipin re-modeling in human cardiomyocytes. Nat. Commun. 2019, 10, 4671. [Google Scholar] [CrossRef]
- Uche, N.; Dai, Q.; Lai, S.; Kolander, K.; Thao, M.; Schibly, E.; Sendaydiego, X.; Zielonka, J.; Benjamin, I.J. Carvedilol phenocopies PGC-1A overexpression to alleviate oxidative stress, mitochondrial dysfunction and prevent Doxorubicin-Induced toxicity in human IPSC-Derived cardiomyocytes. Antioxidants 2023, 12, 1585. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, B.M.; Eschenhagen, T. Human pluripotent stem cell-derived cardiomyocytes for studying energy metabolism. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1867, 118471. [Google Scholar] [CrossRef]
- Ronaldson-Bouchard, K.; Ma, S.P.; Yeager, K.; Chen, T.; Song, L.; Sirabella, D.; Morikawa, K.; Teles, D.; Yazawa, M.; Vunjak-Novakovic, G. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 2018, 556, 239–243. [Google Scholar] [CrossRef]
- Xu, X.; Jin, K.; Bais, A.S.; Zhu, W.; Yagi, H.; Feinstein, T.N.; Nguyen, P.K.; Criscione, J.D.; Liu, X.; Beutner, G.; et al. Uncompensated mitochondrial oxidative stress underlies heart failure in an iPSC-derived model of congenital heart disease. Cell Stem Cell 2022, 29, 840–855.E7. [Google Scholar] [CrossRef]
- Gentillon, C.; Li, D.; Duan, M.; Yu, W.-M.; Preininger, M.K.; Jha, R.; Rampoldi, A.; Saraf, A.; Gibson, G.C.; Qu, C.-K.; et al. Targeting HIF-1α in combination with PPARα activation and postnatal factors promotes the metabolic maturation of human induced pluripotent stem cell-derived cardiomyocytes. J. Mol. Cell. Cardiol. 2019, 132, 120–135. [Google Scholar] [CrossRef] [PubMed]
- Nunes, S.S.; Miklas, J.W.; Liu, J.; Aschar-Sobbi, R.; Xiao, Y.; Zhang, B.; Jiang, J.; Massé, S.; Gagliardi, M.; Hsieh, A.; et al. Biowire: A platform for maturation of human pluripotent stem cell–derived cardiomyocytes. Nat. Methods 2013, 10, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Vacek, T.P.; Metreveli, N.; Tyagi, N.; Vacek, J.C.; Pagni, S.; Tyagi, S.C. Electrical stimulation of cardiomyocytes activates mitochondrial matrix metalloproteinase causing electrical remodeling. Biochem. Biophys. Res. Commun. 2010, 404, 762–766. [Google Scholar] [CrossRef]
- Ozcebe, S.G.; Tristan, M.; Zorlutuna, P. Adult Human Heart ECM improves human iPSC-CM function via mitochondrial and metabolic maturation. Stem Cells 2025, 43, sxaf005. [Google Scholar] [CrossRef]
- Yang, J.; Daily, N.J.; Pullinger, T.K.; Wakatsuki, T.; Sobie, E.A. Creating cell-specific computational models of stem cell-derived cardiomyocytes using optical experiments. PLoS Comput. Biol. 2024, 20, e1011806. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.; Song, Y.; Seo, S.J.; Ko, G.R.; Lee, S.H.; Cha, E.; Kwak, S.M.; Kim, S.; Shin, M.; Jin, Y.; et al. Metabolic reprogramming via mitochondrial delivery for enhanced maturation of chemically induced cardiomyocyte-like cells. MedComm 2024, 5, e70005. [Google Scholar] [CrossRef]
- Ulmer, B.M.; Stoehr, A.; Schulze, M.L.; Patel, S.; Gucek, M.; Mannhardt, I.; Funcke, S.; Murphy, E.; Eschenhagen, T.; Hansen, A. Contractile work contributes to maturation of energy metabolism in HIPSC-Derived cardiomyocytes. Stem Cell Rep. 2018, 10, 834–847. [Google Scholar] [CrossRef]
- Dato, V.A.; Lange, S.; Cho, Y. Metabolic flexibility of the heart: The role of fatty acid metabolism in health, heart failure, and cardiometabolic diseases. Int. J. Mol. Sci. 2024, 25, 1211. [Google Scholar] [CrossRef]
- Persad, K.L.; Lopaschuk, G.D. Energy metabolism on mitochondrial maturation and its effects on cardiomyocyte cell fate. Front. Cell Dev. Biol. 2022, 10, 886393. [Google Scholar] [CrossRef]
- Li, W.; Luo, X.; Strano, A.; Arun, S.; Gamm, O.; Poetsch, M.S.; Hasse, M.; Steiner, R.-P.; Fischer, K.; Pöche, J.; et al. Comprehensive promotion of iPSC-CM maturation by integrating metabolic medium with nanopatterning and electrostimulation. Nat. Commun. 2025, 16, 2785. [Google Scholar] [CrossRef]
- Vicente, P.; Inocêncio, L.R.; Ullate-Agote, A.; Louro, A.F.; Jacinto, J.; Gamelas, B.; Iglesias-García, O.; Martin-Uriz, P.S.; Aguirre-Ruiz, P.; Ríos-Muñoz, G.R.; et al. Billion-Scale expansion of functional HIPSC-Derived cardiomyocytes in bioreactors through oxygen control and continuous WNT activation. Adv. Sci. 2025, 12, e2410510. [Google Scholar] [CrossRef]
- Guan, X.; Xu, W.; Zhang, H.; Wang, Q.; Yu, J.; Zhang, R.; Chen, Y.; Xia, Y.; Wang, J.; Wang, D. Transplantation of human induced pluripotent stem cell-derived cardiomyocytes improves myocardial function and reverses ventricular remodeling in infarcted rat hearts. Stem Cell Res. Ther. 2020, 11, 73. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Sato, N.; Hong, S.; Nakamura, K.; Ferrante, E.A.; Yu, Z.X.; Chen, M.Y.; Nakamura, D.S.; Yang, X.; Clevenger, R.R.; et al. Long-term engraftment and maturation of autologous iPSC-derived cardiomyocytes in two rhesus macaques. Cell Stem Cell 2024, 31, 974–988.e5. [Google Scholar] [CrossRef]
- Hoekstra, M.; Mummery, C.L.; Wilde, A.A.M.; Bezzina, C.R.; Verkerk, A.O. Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias. Front. Physiol. 2012, 3, 27708. [Google Scholar] [CrossRef]
- Ma, J.; Guo, L.; Fiene, S.J.; Anson, B.D.; Thomson, J.A.; Kamp, T.J.; Kolaja, K.L.; Swanson, B.J.; January, C.T. High purity human-induced pluripotent stem cell-derived cardiomyocytes: Electrophysiological properties of action potentials and ionic currents. Am. J. Physiol. Heart Circ. Physiol. 2011, 301, H2006–H2017. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, N.M.; Sachs, D.; Shewale, B.; Gonzalez, D.M.; Dhanan-Krishnan, P.; Torre, D.; LaMarca, E.; Raimo, S.; Dariolli, R.; Serasinghe, M.N.; et al. PPARdelta activation induces metabolic and contractile maturation of human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2022, 29, 559–576.e7. [Google Scholar] [CrossRef] [PubMed]
- Amo, T.; Yadava, N.; Oh, R.; Nicholls, D.G.; Brand, M.D. Experimental assessment of bioenergetic differences caused by the common European mitochondrial DNA haplogroups H and T. Gene 2008, 411, 69–76. [Google Scholar] [CrossRef]
- Lee, S.-G.; Rhee, J.; Seok, J.; Kim, J.; Kim, M.W.; Song, G.-E.; Park, S.; Jeong, K.S.; Lee, S.; Lee, Y.H.; et al. Promotion of maturation of human pluripotent stem cell-derived cardiomyocytes via treatment with the peroxisome proliferator-activated receptor alpha agonist Fenofibrate. Stem Cells Transl. Med. 2024, 13, 750–762. [Google Scholar] [CrossRef]
- Li, L.; Wan, Z.; Wang, R.; Zhao, Y.; Ye, Y.; Yang, P.; Qi, Y.; Jiang, W.; Cai, L.; Zhang, D. Generation of high-performance human cardiomyocytes and engineered heart tissues from extended pluripotent stem cells. Cell Discov. 2022, 8, 105. [Google Scholar] [CrossRef]
- Chong, J.J.H.; Yang, X.; Don, C.W.; Minami, E.; Liu, Y.W.; Weyers, J.J.; Mahoney, W.M.; Van Biber, B.; Cook, S.M.; Palpant, N.J.; et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 2014, 510, 273–277. [Google Scholar] [CrossRef]
- Duelen, R.; Costamagna, D.; Gilbert, G.; De Waele, L.; Goemans, N.; Desloovere, K.; Verfaillie, C.M.; Sipido, K.R.; Buyse, G.M.; Sampaolesi, M. Human IPSC-Based model reveals NOX4 as therapeutic target in Duchenne cardiomyopathy. bioRxiv 2021. [Google Scholar] [CrossRef]
- Li, A.; Gao, M.; Liu, B.; Qin, Y.; Chen, L.; Liu, H.; Gong, G. Inhibition of mitochondrial superoxide promotes the development of hiPS-CMs during differentiation. Free Radical Biol. Med. 2022, 190, 94–104. [Google Scholar] [CrossRef]
- Shiba, Y.; Fernandes, S.; Zhu, W.-Z.; Filice, D.; Muskheli, V.; Kim, J.; Palpant, N.J.; Gantz, J.; Moyes, K.W.; Reinecke, H.; et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 2012, 489, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Dwenger, M.; Kowalski, W.J.; Ye, F.; Yuan, F.; Tinney, J.P.; Setozaki, S.; Nakane, T.; Masumoto, H.; Campbell, P.; Guido, W.; et al. Chronic optical pacing conditioning of h-iPSC engineered cardiac tissues. J. Tissue Eng. 2019, 10, 2041731419841748. [Google Scholar] [CrossRef]
- Spurlock, B.M.; Xie, Y.; Song, Y.; Ricketts, S.N.; Hua, J.R.; Chi, H.R.; Nishtala, M.; Salmenov, R.; Liu, J.; Qian, L. Mitochondrial fusion and cristae reorganization facilitate acquisition of cardiomyocyte identity during reprogramming of murine fibroblasts. Cell Rep. 2025, 44, 115377. [Google Scholar] [CrossRef] [PubMed]
- Garbern, J.C.; Lee, R.T. Mitochondria and metabolic transitions in cardiomyocytes: Lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res. Ther. 2021, 12, 177. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Sun, Q.; Zhou, L.; Liu, K.; Jiao, K. Complex regulation of mitochondrial function during cardiac development. J. Am. Heart Assoc. 2019, 8, e012731. [Google Scholar] [CrossRef]
- Liu, B.; Li, A.; Qin, Y.; Tian, X.; Gao, M.; Jiang, W.; Gong, G. Comparative study on isolation and mitochondrial function of adult mouse and rat cardiomyocytes. J. Mol. Cell. Cardiol. 2019, 136, 64–71. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, X.; Gong, K.; Xu, Z.; Chen, L.; Zhang, F. M6A demethylase FTO regulates the oxidative stress, mitochondrial biogenesis of cardiomyocytes and PGC-1a stability in myocardial ischemia-reperfusion injury. Redox Rep. 2025, 30, 2454892. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Löbel, W.; Finklea, F.; Halloin, C.; Ritzenhoff, K.; Manstein, F.; Mohammadi, S.; Hashemi, M.; Zweigerdt, R.; Lipke, E.; et al. Prediction of human induced pluripotent stem cell cardiac differentiation outcome by multifactorial process modeling. Front. Bioeng. Biotechnol. 2020, 8, 851. [Google Scholar] [CrossRef]
- Li, X.; Michaeloudes, C.; Zhang, Y.; Wiegman, C.H.; Adcock, I.M.; Lian, Q.; Mak, J.C.; Bhavsar, P.K.; Chung, K.F. Mesenchymal stem cells alleviate oxidative stress–induced mitochondrial dysfunction in the airways. J. Allergy Clin. Immunol. 2017, 141, 1634–1645.e5. [Google Scholar] [CrossRef]
- Jiang, Y.; Park, P.; Hong, S.M.; Ban, K. Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Mol. Cells 2018, 41, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Piquereau, J.; Caffin, F.; Novotova, M.; Lemaire, C.; Veksler, V.; Garnier, A.; Ventura-Clapier, R.; Joubert, F. Mitochondrial dynamics in the adult cardiomyocytes: Which roles for a highly specialized cell? Front. Physiol. 2013, 4, 102. [Google Scholar] [CrossRef]
- Yancey, D.M.; Guichard, J.L.; Ahmed, M.I.; Zhou, L.; Murphy, M.P.; Johnson, M.S.; Benavides, G.A.; Collawn, J.; Darley-Usmar, V.; Dell’Italia, L.J. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H651–H663. [Google Scholar] [CrossRef]
- Naeem, A.; Abbas, S.H.; Yousaf, M.; Ishtiaq, A.; Murtaza, I. Global Impact and Strategies to Reduce the Mortality from Cardiovascular Diseases. In Integrated Science for Sustainable Development Goal 3: Empowering Global Wellness Initiatives; Springer Nature: Cham, Switzerland, 2024; pp. 283–306. [Google Scholar] [CrossRef]
- Bur, H.; Haapasaari, K.-M.; Turpeenniemi-Hujanen, T.; Kuittinen, O.; Auvinen, P.; Marin, K.; Koivunen, P.; Sormunen, R.; Soini, Y.; Karihtala, P. Oxidative stress markers and mitochondrial antioxidant enzyme expression are increased in aggressive Hodgkin lymphomas. Histopathology 2014, 65, 319–327. [Google Scholar] [CrossRef]
- Lo, E.K.W.; Velazquez, J.J.; Peng, D.; Kwon, C.; Ebrahimkhani, M.R.; Cahan, P. Platform-agnostic CellNet enables cross-study analysis of cell fate engineering protocols. Stem Cell Rep. 2023, 18, 1721–1742. [Google Scholar] [CrossRef]
- Tseng, W.W.; Wei, A.C. Kinetic mathematical modeling of oxidative phosphorylation in cardiomyocyte mitochondria. Cells 2022, 11, 4020. [Google Scholar] [CrossRef] [PubMed]
- Nollet, E.E.; Duursma, I.; Rozenbaum, A.; Eggelbusch, M.; Wüst, R.C.I.; Schoonvelde, S.A.C.; Michels, M.; Jansen, M.; van der Wel, N.N.; Bedi, K.C.; et al. Mitochondrial dysfunction in human hypertrophic cardiomyopathy is linked to cardiomyocyte architecture disruption and corrected by improving NADH-driven mitochondrial respiration. Eur. Heart J. 2023, 44, 1170–1185. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Bai, H.; Guo, F.; Thai, P.N.; Luo, X.; Zhang, P.; Yang, C.; Feng, X.; Zhu, D.; Guo, J.; et al. PGC-1α activator ZLN005 promotes maturation of cardiomyocytes derived from human embryonic stem cells. Aging 2020, 12, 7411–7430. [Google Scholar] [CrossRef]
- Song, H.; Thompson, L.P. Effects of gestational hypoxia on PGC1α and mitochondrial acetylation in fetal guinea pig hearts. Reprod. Sci. 2023, 30, 2996–3009. [Google Scholar] [CrossRef]
- Neubauer, S. The failing heart—An engine out of fuel. N. Engl. J. Med. 2007, 356, 1140–1151. [Google Scholar] [CrossRef]
- Koklesova, L.; Mazurakova, A.; Samec, M.; Kudela, E.; Biringer, K.; Kubatka, P.; Golubnitschaja, O. Mitochondrial health quality control: Measurements and interpretation in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022, 13, 177–193. [Google Scholar] [CrossRef]
- Sonn, S.K.; Song, E.J.; Seo, S.; Kim, Y.Y.; Um, J.-H.; Yeo, F.J.; Lee, D.S.; Jeon, S.; Lee, M.-N.; Jin, J.; et al. Peroxiredoxin 3 deficiency induces cardiac hypertrophy and dysfunction by impaired mitochondrial quality control. Redox Biol. 2022, 51, 102275. [Google Scholar] [CrossRef] [PubMed]
- Shewale, B.; Ebrahim, T.; Samal, A.; Dubois, N. Molecular regulation of cardiomyocyte maturation. Curr. Cardiol. Rep. 2025, 27, 32. [Google Scholar] [CrossRef]
- Schraps, N.; Tirre, M.; Pyschny, S.; Reis, A.; Schlierbach, H.; Seidl, M.; Kehl, H.-G.; Schänzer, A.; Heger, J.; Jux, C.; et al. Cardiomyocyte maturation alters molecular stress response capacities and determines cell survival upon mitochondrial dysfunction. Free Radical Biol. Med. 2024, 213, 248–265. [Google Scholar] [CrossRef] [PubMed]
- Tashkandi, A.J.; Gorman, A.; Mathers, E.M.; Carney, G.; Yacoub, A.; Setyaningsih, W.A.W.; Kuburas, R.; Margariti, A. Metabolic and mitochondrial dysregulations in diabetic cardiac complications. Int. J. Mol. Sci. 2025, 26, 3016. [Google Scholar] [CrossRef]
- Kunkel, G.H.; Chaturvedi, P.; Tyagi, S.C. Mitochondrial pathways to cardiac recovery: TFAM. Heart Failure Rev. 2016, 21, 499–517. [Google Scholar] [CrossRef]
- Sarikhani, M.; Garbern, J.C.; Ma, S.; Sereda, R.; Conde, J.; Krähenbühl, G.; Escalante, G.O.; Ahmed, A.; Buenrostro, J.D.; Lee, R.T. Sustained activation of AMPK enhances differentiation of human IPSC-Derived cardiomyocytes via sirtuin activation. Stem Cell Rep. 2020, 15, 498–514. [Google Scholar] [CrossRef]
- Peng, B.; Wang, Y.; Zhang, H. Mitonuclear communication in stem cell function. Cell Prolif. 2024, 58, e13796. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.A.; Dwyer, K.D.; Coulombe, K.L.K. Advancing Human iPSC-Derived Cardiomyocyte Hypoxia Resistance for Cardiac Regenerative Therapies through a Systematic Assessment of In Vitro Conditioning. Int. J. Mol. Sci. 2024, 25, 9627. [Google Scholar] [CrossRef]
- Häkli, M.; Kreutzer, J.; Mäki, A.-J.; Välimäki, H.; Lappi, H.; Huhtala, H.; Kallio, P.; Aalto-Setälä, K.; Pekkanen-Mattila, M. Human induced pluripotent stem cell-based platform for modeling cardiac ischemia. Sci. Rep. 2021, 11, 4153. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.A.; Al-Siddiqi, H.H.A.A.; Purnama, U.; Iftekhar, S.; Bruyneel, A.A.N.; Kerr, M.; Nazir, R.; Fialho, M.d.L.S.; Malandraki-Miller, S.; Alonaizan, R.; et al. Physiological and pharmacological stimulation for in vitro maturation of substrate metabolism in human induced pluripotent stem cell-derived cardiomyocytes. Sci. Rep. 2021, 11, 7802. [Google Scholar] [CrossRef]
- Li, D.; Armand, L.C.; Sun, F.; Hwang, H.; Wolfson, D.; Rampoldi, A.; Liu, R.; Forghani, P.; Hu, X.; Yu, W.-M.; et al. AMPK activator-treated human cardiac spheres enhance maturation and enable pathological modeling. Stem Cell Res. Ther. 2023, 14, 322. [Google Scholar] [CrossRef]
- Detraux, D.; Renard, P. Succinate as a new actor in pluripotency and early development? Metabolites 2022, 12, 651. [Google Scholar] [CrossRef]
- Nit, K.; Tyszka-Czochara, M.; Bobis-Wozowicz, S. Oxygen as a master regulator of human pluripotent stem cell function and metabolism. J. Pers. Med. 2021, 11, 905. [Google Scholar] [CrossRef]
- Giardinelli, S.; Meliota, G.; Mentino, D.; D’Amato, G.; Faienza, M.F. Molecular basis of cardiomyopathies in Type 2 Diabetes. Int. J. Mol. Sci. 2024, 25, 8280. [Google Scholar] [CrossRef] [PubMed]
- Hamledari, H.; Asghari, P.; Jayousi, F.; Aguirre, A.; Maaref, Y.; Barszczewski, T.; Ser, T.; Moore, E.; Wasserman, W.; Geltink, R.K.; et al. Using human induced pluripotent stem cell-derived cardiomyocytes to understand the mechanisms driving cardiomyocyte maturation. Front. Cardiovasc. Med. 2022, 9, 967659. [Google Scholar] [CrossRef] [PubMed]
- Lamberto, F.; Peral-Sanchez, I.; Muenthaisong, S.; Zana, M.; Willaime-Morawek, S.; Dinnyés, A. Environmental Alterations during Embryonic Development: Studying the Impact of Stressors on Pluripotent Stem Cell-Derived Cardiomyocytes. Genes 2021, 12, 1564. [Google Scholar] [CrossRef]
- Xiang, H.; Xu, H.; Tan, B.; Yi, Q.; Zhang, X.; Wang, R.; Chen, T.; Xie, Q.; Tian, J.; Zhu, J. AKAP1 Regulates Mitochondrial Dynamics during the Fatty-Acid-Promoted Maturation of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Indicated by Proteomics Sequencing. Int. J. Mol. Sci. 2023, 24, 8112. [Google Scholar] [CrossRef]
- Hu, X.; Yu, S.P.; Fraser, J.L.; Lu, Z.; Ogle, M.E.; Wang, J.-A.; Wei, L. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. J. Thorac. Cardiovasc. Surg. 2008, 135, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Deogharia, M.; Venegas-Zamora, L.; Agrawal, A.; Shi, M.; Jain, A.K.; McHugh, K.J.; Altamirano, F.; Marian, A.J.; Gurha, P. Histone demethylase KDM5 regulates cardiomyocyte maturation by promoting fatty acid oxidation, oxidative phosphorylation, and myofibrillar organization. Cardiovasc. Res. 2024, 120, 630–643. [Google Scholar] [CrossRef]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2017, 19, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Drake, J.C.; Wilson, R.J.; Laker, R.C.; Guan, Y.; Spaulding, H.R.; Nichenko, A.S.; Shen, W.; Shang, H.; Dorn, M.V.; Huang, K.; et al. Mitochondria-localized AMPK responds to local energetics and contributes to exercise and energetic stress-induced mitophagy. Proc. Natl. Acad. Sci. USA 2021, 118, e2025932118. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.R.; Giri, S.R.; Trivedi, C.; Bhoi, B.; Rath, A.; Vanage, G.; Vyas, P.; Ranvir, R.; Patel, P.R. Saroglitazar, a novel PPARα/γ agonist with predominant PPARα activity, shows lipid-lowering and insulin-sensitizing effects in preclinical models. Pharmacol. Res. Perspect. 2015, 3, e00136. [Google Scholar] [CrossRef]
- Lee, Y.J.; Zhao, Z.S.; Kim, S.K.; Kim, H.J.; Shim, W.S.; Ahn, C.W.; Lee, H.C.; Cha, B.S. Effects of PPAR-α and -γ Agonists on Fatty Acid Metabolism of Muscle Cells in Hyperlipidemic and Hyperglycemic Conditions. J. Korean Diabetes Assoc. 2006, 30, 324. [Google Scholar] [CrossRef]
- Warren, J.S.; Oka, S.I.; Zablocki, D.; Sadoshima, J. Metabolic reprogramming via PPARα signaling in cardiac hypertrophy and failure: From metabolomics to epigenetics. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H584–H596. [Google Scholar] [CrossRef]
- Finck, B.N.; Lehman, J.J.; Leone, T.C.; Welch, M.J.; Bennett, M.J.; Kovacs, A.; Han, X.; Gross, R.W.; Kozak, R.; Lopaschuk, G.D.; et al. The cardiac phenotype induced by PPARα overexpression mimics that caused by diabetes mellitus. J. Clin. Investig. 2002, 109, 121–130. [Google Scholar] [CrossRef]
- Lee, T.W.; Bai, K.J.; Lee, T.I.; Chao, T.F.; Kao, Y.H.; Chen, Y.J. PPARs modulate cardiac metabolism and mitochondrial function in diabetes. J. Biomed. Sci. 2017, 24, 5. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, X.X.; Jiao, S.Y.; Qi, D.; Yu, B.Q.; Xie, G.M.; Liu, Y.; Song, Y.T.; Xu, Q.; Xu, Q.B.; et al. Cardiomyocyte peroxisome proliferator-activated receptor α is essential for energy metabolism and extracellular matrix homeostasis during pressure overload-induced cardiac remodeling. Acta Pharmacol. Sin. 2021, 43, 1231–1242. [Google Scholar] [CrossRef]
- Beard, D.A.; Marzban, B.; Li, O.Y.; Campbell, K.S.; Janssen, P.M.; Chesler, N.C.; Baker, A.J. Reduced cardiac muscle power with low ATP simulating heart failure. Biophys. J. 2022, 121, 3213–3223. [Google Scholar] [CrossRef]
- Zolezzi, J.M.; Silva-Alvarez, C.; Ordenes, D.; Godoy, J.A.; Carvajal, F.J.; Santos, M.J.; Inestrosa, N.C.; Ferreira, S.T. Peroxisome Proliferator-Activated Receptor (PPAR) γ and PPARα Agonists Modulate Mitochondrial Fusion-Fission Dynamics: Relevance to Reactive Oxygen Species (ROS)-Related Neurodegenerative Disorders? PLoS ONE 2013, 8, e64019. [Google Scholar] [CrossRef] [PubMed]
- Birket, M.J.; Casini, S.; Kosmidis, G.; Elliott, D.A.; Gerencser, A.A.; Baartscheer, A.; Schumacher, C.; Mastroberardino, P.G.; Elefanty, A.G.; Stanley, E.G.; et al. PGC-1α and reactive oxygen species regulate human embryonic stem Cell-Derived cardiomyocyte function. Stem Cell Rep. 2013, 1, 560–574. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.; Cho, Y.S. Peroxisome Proliferator-Activated Receptor α Agonist and Its Target Nanog Cooperate to Induce Pluripotency. J. Clin. Med. 2018, 7, 488. [Google Scholar] [CrossRef]
- Portman, M.A.; Standaert, T.A.; Ning, X.H. Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo. J. Clin. Investig. 1995, 95, 2134–2142. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Liu, Y.; Sun, W.; Zhao, L.; Zhang, L.; Liu, X.; Yu, T. Genome-Wide expression profiling of Anoxia/Reoxygenation in rat cardiomyocytes uncovers the role of MitoKATP in energy homeostasis. Oxid. Med. Cell. Longev. 2015, 2015, 756576. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.C.; Chen, C.; Wu, Y.N.; Ahmed, M.; Kitmitto, A.; Greenstein, A.S.; Kim, S.J.; Shao, Y.F.; Zhang, Y.H. Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation. Pflug. Arch. Eur. J. Physiol. 2020, 472, 367–374. [Google Scholar] [CrossRef]
- Morash, A.J.; Kotwica, A.O.; Murray, A.J. Tissue-specific changes in fatty acid oxidation in hypoxic heart and skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R534–R541. [Google Scholar] [CrossRef]
- Querceto, S.; Santoro, R.; Gowran, A.; Grandinetti, B.; Pompilio, G.; Regnier, M.; Tesi, C.; Poggesi, C.; Ferrantini, C.; Pioner, J.M. The harder the climb the better the view: The impact of substrate stiffness on cardiomyocyte fate. J. Mol. Cell. Cardiol. 2022, 166, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-H.; Kim, K.M.; Oh, H.T.; Yoo, G.D.; Jeong, M.G.; Lee, H.; Park, J.; Jeong, K.; Kim, Y.K.; Ko, Y.-G.; et al. TAZ links exercise to mitochondrial biogenesis via mitochondrial transcription factor A. Nat. Commun. 2022, 13, 653. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, X.; Wu, X.; Yu, J.; Li, J.; Huang, X.; Zhu, C.; Ge, H. Yap regulates mitochondrial structural remodeling during myoblast differentiation. Am. J. Physiol. Cell Physiol. 2018, 315, C474–C484. [Google Scholar] [CrossRef]
- Vinarsky, V.; Pagliari, S.; Martino, F.; Mazzotti, C.; Jirakova, K.; Garlikova, Z.; Iuri, E.D.; Kytyr, D.; Benzoni, P.; Arici, M.; et al. YAP1 contributes to the development of contractile force and sarcomere maturation in human pluripotent stem cell derived cardiomyocytes. bioRxiv 2024. [Google Scholar] [CrossRef]
- Körner, A.; Mosqueira, M.; Hecker, M.; Ullrich, N.D. Substrate stiffness influences structural and functional remodeling in induced pluripotent stem Cell-Derived cardiomyocytes. Front. Physiol. 2021, 12, 710619. [Google Scholar] [CrossRef]
- Xiong, Q.; Ye, L.; Zhang, P.; Lepley, M.; Tian, J.; Li, J.; Zhang, L.; Swingen, C.; Vaughan, J.T.; Kaufman, D.S.; et al. Functional consequences of human induced pluripotent stem cell therapy. Circulation 2013, 127, 997–1008. [Google Scholar] [CrossRef]
- Wai, T. Is mitochondrial morphology important for cellular physiology? Trends Endocrinol. Metab. 2024, 35, 854–871. [Google Scholar] [CrossRef]
- Kawano, I.; Bazila, B.; Ježek, P.; Dlasková, A. Mitochondrial dynamics and cristae shape changes during metabolic reprogramming. Antioxid. Redox Signal. 2023, 39, 684–707. [Google Scholar] [CrossRef]
- Seo, B.J.; Yoon, S.H.; Do, J.T. Mitochondrial dynamics in stem cells and differentiation. Int. J. Mol. Sci. 2018, 19, 3893. [Google Scholar] [CrossRef]
- Hoque, A.; Sivakumaran, P.; Bond, S.T.; Ling, N.X.Y.; Kong, A.M.; Scott, J.W.; Bandara, N.; Hernández, D.; Liu, G.-S.; Wong, R.C.B.; et al. Mitochondrial fission protein Drp1 inhibition promotes cardiac mesodermal differentiation of human pluripotent stem cells. Cell Death Discov. 2018, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- Butler, D.; Reyes, D.R. Heart-on-a-chip systems: Disease modeling and drug screening applications. Lab Chip 2024, 24, 1494–1528. [Google Scholar] [CrossRef]
- Tsui, J.H.; Leonard, A.; Camp, N.D.; Long, J.T.; Nawas, Z.Y.; Chavanachat, R.; Smith, A.S.; Choi, J.S.; Dong, Z.; Ahn, E.H.; et al. Tunable electroconductive decellularized extracellular matrix hydrogels for engineering human cardiac microphysiological systems. Biomaterials 2021, 272, 120764. [Google Scholar] [CrossRef]
- Barnes, A.M.; Holmstoen, T.B.; Bonham, A.J.; Rowland, T.J. Differentiating human pluripotent stem cells to cardiomyocytes using purified extracellular matrix proteins. Bioengineering 2022, 9, 720. [Google Scholar] [CrossRef]
- Smandri, A.; Al-Masawa, M.E.; Hwei, N.M.; Fauzi, M.B. ECM-derived biomaterials for regulating tissue multicellularity and maturation. iScience 2024, 27, 109141. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, Z.; Guo, K.; Xie, Q.; Zou, Y.; Mou, Q.; Zhou, Z.; Jin, G. Enhanced viability and functional maturity of iPSC-derived islet organoids by collagen-VI-enriched ECM scaffolds. Cell Stem Cell 2025, 32, 547–563.e7. [Google Scholar] [CrossRef] [PubMed]
- Zare, A.; Salehpour, A.; Khoradmehr, A.; Bakhshalizadeh, S.; Najafzadeh, V.; Almasi-Turk, S.; Mahdipour, M.; Shirazi, R.; Tamadon, A. Epigenetic Modification Factors and microRNAs Network Associated with Differentiation of Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Cardiomyocytes: A Review. Life 2023, 13, 569. [Google Scholar] [CrossRef] [PubMed]
- Al-Awar, A.; Hussain, S. Interplay of Reactive Oxygen Species (ROS) and Epigenetic Remodelling in Cardiovascular Diseases Pathogenesis: A Contemporary perspective. Front. Biosci.-Landmark 2024, 29, 398. [Google Scholar] [CrossRef]
- George, R.M.; Firulli, A.B. Epigenetics and heart development. Front. Cell Dev. Biol. 2021, 9, 637996. [Google Scholar] [CrossRef] [PubMed]
- Hajdarpašić, A.; Tukker, M.; Rijdt, W.T.; Mohamedhoesein, S.; Meijers, W.C.; Caliskan, K. Epigenetics of cardiomyopathies: The next frontier. Heart Fail. Rev. 2024, 30, 257–270. [Google Scholar] [CrossRef]
- Sinenko, S.A.; Tomilin, A.N. Metabolic control of induced pluripotency. Front. Cell Dev. Biol. 2024, 11, 1328522. [Google Scholar] [CrossRef]
- Queiroz, A.L.; Lessard, S.J.; Ouchida, A.T.; Araujo, H.N.; Gonçalves, D.A.; Guimarães, D.S.P.S.F.; Teodoro, B.G.; So, K.; Espreafico, E.M.; Hirshman, M.F.; et al. The MicroRNA miR-696 is regulated by SNARK and reduces mitochondrial activity in mouse skeletal muscle through Pgc1α inhibition. Mol. Metab. 2021, 51, 101226. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, R.; Liao, X.; Castillero, E.; Kennel, P.J.; Brunjes, D.L.; Franz, M.; Möbius-Winkler, S.; Drosatos, K.; George, I.; et al. MicroRNA-195 regulates metabolism in failing myocardium via alterations in sirtuin 3 expression and mitochondrial protein acetylation. Circulation 2018, 137, 2052–2067. [Google Scholar] [CrossRef]
- Hu, D.; Linders, A.; Yamak, A.; Correia, C.; Kijlstra, J.D.; Garakani, A.; Xiao, L.; Milan, D.J.; van der Meer, P.; Serra, M.; et al. Metabolic maturation of human pluripotent stem Cell-Derived cardiomyocytes by inhibition of HIF1α and LDHA. Circ. Res. 2018, 123, 1066–1079. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, A.; Munshi, A. Epigenetic reprogramming of mtDNA and its etiology in mitochondrial diseases. J. Physiol. Biochem. 2024, 80, 727–741. [Google Scholar] [CrossRef]
- Soma, Y.; Tohyama, S.; Kubo, A.; Yamasaki, T.; Kabasawa, N.; Haga, K.; Tani, H.; Morita-Umei, Y.; Umei, T.C.; Sekine, O.; et al. Metabolic changes of human induced pluripotent stem cell-derived cardiomyocytes and teratomas after transplantation. iScience 2024, 27, 111234. [Google Scholar] [CrossRef]
- Pettersen, I.K.N.; Tusubira, D.; Ashrafi, H.; Dyrstad, S.E.; Hansen, L.; Liu, X.-Z.; Nilsson, L.I.H.; Løvsletten, N.G.; Berge, K.; Wergedahl, H.; et al. Upregulated PDK4 expression is a sensitive marker of increased fatty acid oxidation. Mitochondrion 2019, 49, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Liu, F.; Shi, P.; Song, A.; Huang, Z.; Zou, D.; Chen, Q.; Li, J.; Gao, X. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C. Stem Cell Res. Ther. 2018, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Meshrkey, F.; Scheulin, K.M.; Littlejohn, C.M.; Stabach, J.; Saikia, B.; Thorat, V.; Huang, Y.; LaFramboise, T.; Lesnefsky, E.J.; Rao, R.R.; et al. Induced pluripotent stem cells derived from patients carrying mitochondrial mutations exhibit altered bioenergetics and aberrant differentiation potential. Stem Cell Res. Ther. 2023, 14, 320. [Google Scholar] [CrossRef] [PubMed]
- El-Hattab, A.W.; Scaglia, F. Mitochondrial cytopathies. Cell Calcium 2016, 60, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Venkatraman, K.; Budin, I. Cardiolipin remodeling maintains the inner mitochondrial membrane in cells with saturated lipidomes. J. Lipid Res. 2024, 65, 100601. [Google Scholar] [CrossRef]
- Wu, Z.; Park, J.; Steiner, P.R.; Zhu, B.; Zhang, J.X.J. Generative adversarial network model to classify human induced pluripotent stem cell-cardiomyocytes based on maturation level. Sci. Rep. 2024, 14, 27016. [Google Scholar] [CrossRef] [PubMed]
- Kalkunte, N.; Cisneros, J.; Castillo, E.; Zoldan, J. A review on machine learning approaches in cardiac tissue engineering. Front. Biomater. Sci. 2024, 3, 1358508. [Google Scholar] [CrossRef]
- Liang, J.; Wu, M.; Chen, C.; Mai, M.; Huang, J.; Zhu, P. Roles of reactive oxygen species in cardiac differentiation, reprogramming, and regenerative therapies. Oxid. Med. Cell. Longev. 2020, 2020, 2102841. [Google Scholar] [CrossRef] [PubMed]
- Momtahan, N.; Crosby, C.O.; Zoldan, J. The role of reactive oxygen species in in vitro cardiac maturation. Trends Mol. Med. 2019, 25, 482–493. [Google Scholar] [CrossRef]
- Lewandowski, J.; Rozwadowska, N.; Kolanowski, T.J.; Malcher, A.; Zimna, A.; Rugowska, A.; Fiedorowicz, K.; Łabędź, W.; Kubaszewski, Ł.; Chojnacka, K.; et al. The impact of in vitro cell culture duration on the maturation of human cardiomyocytes derived from induced pluripotent stem cells of myogenic origin. Cell Transplant. 2018, 27, 1047–1067. [Google Scholar] [CrossRef]
- Huebsch, N.; Charrez, B.; Neiman, G.; Siemons, B.; Boggess, S.C.; Wall, S.; Charwat, V.; Jæger, K.H.; Cleres, D.; Telle, Å.; et al. Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips. Nat. Biomed. Eng. 2022, 6, 372–388. [Google Scholar] [CrossRef]
- Theodorakis, N.; Feretzakis, G.; Tzelves, L.; Paxinou, E.; Hitas, C.; Vamvakou, G.; Verykios, V.S.; Nikolaou, M. Integrating Machine Learning with Multi-Omics Technologies in Geroscience: Towards Personalized Medicine. J. Pers. Med. 2024, 14, 931. [Google Scholar] [CrossRef]
- Vázquez-Carrada, M.; Vilchis-Landeros, M.M.; Vázquez-Meza, H.; Uribe-Ramírez, D.; Matuz-Mares, D. A new perspective on the role of alterations in mitochondrial proteins involved in ATP synthesis and mobilization in cardiomyopathies. Int. J. Mol. Sci. 2025, 26, 2768. [Google Scholar] [CrossRef]
- Wong, S.; Bertram, K.R.; Raghuram, N.; Knight, T.; Hughes, A.L. Alterations in lipid saturation trigger remodeling of the outer mitochondrial membrane. bioRxiv 2025. [Google Scholar] [CrossRef]
- Rohani, L.; Machiraju, P.; Sabouny, R.; Meng, G.; Liu, S.; Zhao, T.; Iqbal, F.; Wang, X.; Ravandi, A.; Wu, J.C.; et al. Reversible mitochondrial fragmentation in IPSC-Derived cardiomyocytes from children with DCMA, a mitochondrial cardiomyopathy. Can. J. Cardiol. 2019, 36, 554–563. [Google Scholar] [CrossRef]
- Ghai, M.K.; Khatri, A.; Kumar, K.; Thakur, I.S. Multi-omics and advance technologies in biodegradation of emerging contaminants and eco-estrogens in environmental waste. Total Environ. Adv. 2024, 11, 200113. [Google Scholar] [CrossRef]
- Leventhal, M.J.; Zanella, C.A.; Kang, B.; Peng, J.; Gritsch, D.; Liao, Z.; Bukhari, H.; Wang, T.; Pao, P.-C.; Danquah, S.; et al. An integrative systems-biology approach defines mechanisms of Alzheimer’s disease neurodegeneration. Nat. Commun. 2025, 16. [Google Scholar] [CrossRef]
- He, H.; Qin, G.; Xue, M.; Feng, Z.; Mao, J.; Tao, W.; Chen, H.; Wang, X.; Yu, D.; Huang, F. Mitochondrial nanoprobe for precise cellular and drug analysis via graph Neural network. Chem. Eng. J. 2024, 493, 152709. [Google Scholar] [CrossRef]
- Grabowska, M.E.; Chun, B.; Moya, R.; Saucerman, J.J. Computational model of cardiomyocyte apoptosis identifies mechanisms of tyrosine kinase inhibitor-induced cardiotoxicity. J. Mol. Cell. Cardiol. 2021, 155, 66–77. [Google Scholar] [CrossRef]
- Kar, D.; Bandyopadhyay, A. Targeting Peroxisome Proliferator Activated Receptor α (PPAR α) for the Prevention of Mitochondrial Impairment and Hypertrophy in Cardiomyocytes. Cell. Physiol. Biochem. 2018, 49, 245–259. [Google Scholar] [CrossRef]
- Sadria, M.; Layton, A.T. Interactions among mTORC, AMPK and SIRT: A computational model for cell energy balance and metabolism. Cell Commun. Signaling 2021, 19, 57. [Google Scholar] [CrossRef]
- Krogh-Madsen, T.; Sobie, E.A.; Christini, D.J. Improving cardiomyocyte model fidelity and utility via dynamic electrophysiology protocols and optimization algorithms. J. Physiol. 2015, 594, 2525–2536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fu, Y.; Jiang, T.; Liu, B.; Sun, H.; Zhang, Y.; Fan, B.; Li, X.; Qin, X.; Zheng, Q. Enhancing fatty acids oxidation via L-Carnitine attenuates Obesity-Related atrial fibrillation and structural remodeling by activating AMPK signaling and alleviating cardiac lipotoxicity. Front. Pharmacol. 2021, 12, 771940. [Google Scholar] [CrossRef] [PubMed]
- Chegary, M.; Brinke, H.T.; Doolaard, M.; Ijlst, L.; Wijburg, F.A.; Wanders, R.J.; Houten, S.M. Characterization of l-aminocarnitine, an inhibitor of fatty acid oxidation. Mol. Genet. Metab. 2008, 93, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Wheelwright, M.; Win, Z.; Mikkila, J.L.; Amen, K.Y.; Alford, P.W.; Metzger, J.M. Investigation of human iPSC-derived cardiac myocyte functional maturation by single cell traction force microscopy. PLoS ONE 2018, 13, e0194909. [Google Scholar] [CrossRef]
- Joshi, J.; Albers, C.; Smole, N.; Guo, S.; Smith, S.A. Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) for modeling cardiac arrhythmias: Strengths, challenges and potential solutions. Front. Physiol. 2024, 15, 1475152. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. The Mitochondrion. Molecular Biology of the Cell-NCBI Bookshelf. 2002. Available online: https://www.ncbi.nlm.nih.gov/books/NBK26894/#:~:text=A%20Chemiosmotic%20Process%20Converts%20Oxidation,(Figure%2014%2D11) (accessed on 22 April 2025).
- Ren, H.; Hu, W.; Jiang, T.; Yao, Q.; Qi, Y.; Huang, K. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets. Biomed. Pharmacother. 2024, 174, 116545. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, M.; Ruiz-Sala, P.; Pérez, B.; Desviat, L.R.; Richard, E. Dysregulated Cell Homeostasis and miRNAs in Human iPSC-Derived Cardiomyocytes from a Propionic Acidemia Patient with Cardiomyopathy. Int. J. Mol. Sci. 2023, 24, 2182. [Google Scholar] [CrossRef] [PubMed]
- Urzì, O.; Gasparro, R.; Costanzo, E.; De Luca, A.; Giavaresi, G.; Fontana, S.; Alessandro, R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int. J. Mol. Sci. 2023, 24, 12046. [Google Scholar] [CrossRef] [PubMed]
- Afzal, J.; Liu, Y.; Du, W.; Suhail, Y.; Zong, P.; Feng, J.; Ajeti, V.; Sayyad, W.A.; Nikolaus, J.; Yankova, M.; et al. Cardiac ultrastructure inspired matrix induces advanced metabolic and functional maturation of differentiated human cardiomyocytes. Cell Rep. 2022, 40, 111146. [Google Scholar] [CrossRef]
- Stoll, S.; Leimena, C.; Qiu, H. Mitochondria and heart disease. In Mitochondrial Diseases; InTechOpen: Rijeka, Croatia, 2018. [Google Scholar] [CrossRef]
- Wolk, A. Relationship Between Cardiac Contractile Performance and Mitochondrial Respiratory Capacity in Patients Undergoing Coronary Artery Bypass Grafting Surgery. 2021. Available online: https://dabar.srce.hr/en/islandora/object/mefst%3A1066 (accessed on 24 April 2025).
- Yücel, D.; Garay, B.I.; Perlingeiro, R.C.R.; Van Berlo, J.H. Stimulation of cardiomyocyte proliferation is dependent on species and level of maturation. Front. Cell Dev. Biol. 2022, 10, 806564. [Google Scholar] [CrossRef]
Mitochondrial Feature | Fetal CMs | iPSC-CMs (Day 30) | iPSC-CMs (Post-Maturation) | Control: Adult CMs | % Fidelity to Adult Cells |
---|---|---|---|---|---|
Cristae Density (per µm2) | 2.1 * [19] | ~2.3 [20,21] | 4.5 [22] | 6.8 [23] | ~66% |
FAO Enzyme Expression (CPT1A/HADHA) | Low [24] | Low [25] | Moderate [25,26] | High [26] | ~78% |
ATP-linked Respiration (%) | 30% [17,27,28,29] | 25% [17,26,27,28,29] | 70% [26] | 100% | 70% [26] |
ROS Scavenging Efficiency (SOD2 Expression) | Low [30,31,32,33] | Low [32,34] | High [32,34] | Very High [31,32,33,34] | 88% |
Calcium Handling (MCU Activity) | Weak [35] | Weak [36,37,38] | Moderate [36,37,38] | Strong [39,40,41] | ~82% [31,32,33,34,35,36,37,38,39,40,41,42,43] |
No. | Author (Year) | Model Used | Intervention | Metabolic Assay | Key Findings | Mitochondria Maturation Markers |
---|---|---|---|---|---|---|
1. | Dai et al. (2017) [22] | Human iPSC-CM | Prolonged Culture | Oxygen Consumption Rate (OCR), EM | ↑ ETC complex activity | ↑ PGC-1α, ↑ ATP |
a. Metabolic Preconditioning Approaches | ||||||
Substrate Optimization | ||||||
2. | Ye et al. (2021) [57] | iPSC-CM + AMPK activator | Metformin, AICAR | ATP assay, qPCR | ↑ FAO, ↑ mitochondrial biogenesis | ↑ CPT-1α |
3. | Yang et al. (2019) [58] | iPSC-CM + Palmitate + oleic acid | Fatty acid supplementation | Seahorse XF96 assay, EM, RNA sequencing | ↑ FAO | ↑ ATP, ↑ OCR, ↑ mtDNA, ↑ mitochondrial area, ↑ cristae structure |
4. | Rana et al. (2012) [59] | iPSC-CM + Palmitate + L-carnitine | PPARα agonist+ Fatty acids | ↑ OCR, ↓ glycolysis | ↑ PDK4, ↑ CPT1B | |
5. | Horikoshi et al. (2019) [34] | iPSC-CM + Palmitate + Carnitine | PGC-1α + Fatty acids | ↑ FAO, ↑ cristae density, ↑ OCR, ↑ force generation ↑ calcium handling, ↓ glycolysis | ↑ ACADM, ↑ COX5B | |
6. | Correia et al. (2017) [60] | iPSC-CM + FA-rich, glucose-free media | PPPAR/PGC-1α activationPAR/PGC-1α activation | ↑ mitochondrial density, ↑ OXPHOS ↑ contractility | ↑ COX2, ↑ CPT1A, ↑ SDHB | |
7. | Feyen et al. (2020) [61] | iPSC-CM + Palmitate + Galactose, metabolic media | Metabolic media (PGC-1α upregulation), palmitate, galactose | ↑ mitochondrial respiratory capacity, ↑ FAO, ↑ T-tubules, ↑ AP duration ↓ glycolysis | ↑ NDUFS3, ↑ ATP5F1, ↑ PGC-1α, ↑ CPT1B | |
8. | Canfield et al. (2016) [62] | iPSC-CM + Glucose challenge | Glucose | ROS and ATP assay | ↑ ROS generation, ↑ mitochondrial fission under high glucose, ↓ mitochondrial fusion under low glucose | ↑ DRP1, ↓ Opa1 |
Fatty Acid Supplementation (FAO Activation, Glycolysis Suppression) | ||||||
9. | Miklas (2019) [63] | Human ESC-CM and iPSC-CM | Knockdown of HADHA (TFPa subunit of mitochondrial trifunctional protein) | Seahorse XF, metabolomics, cardiolipin profiling | HADHA is crucial for FAO and cardiolipin remodeling; knockdown disrupted β-oxidation and mitochondrial membrane structure | ↓ FAO genes (CPT, ACADVL), ↓ ATP, ↓ OCR, ↓ mitochondrial integrity |
10. | Vuckovic (2022) [26] | iPSC-CM: Healthy and diseased | Long-term culture, metabolic substrate, hormonal stimulation | Seahorse XF, qPCR, metabolomics | ↑ OXPHOS, impaired mitochondrial function in disease model | ↑ PGC-1α, ↑ CPT1B, ↑ C0X4, ↓ glycolytic shift |
Hypoxia-Reoxygenation Cycles | ||||||
11. | Uche et al (2023) [64] | iPSC-CM + Hypoxia-reoxygenation cycles and H9c2 rat cardiomyoblast (comparison) | Carvedilol pretreatment (0.25-2.5 micrometer) prior to doxorubicin exposure (0.5 micrometer) and PGC-1α overexpression for comparison | Seahorse XF assays, immunostaining, gene expression analysis (qRT-PCR, Western blot) | ↑ mitochondrial biogenesis, Preserving mitochondrial respiration, ↓ oxidative stress, carvedilol maintained redox balance | ↑ PGC-1α, ERRα, TFAM, complex I-IV activity, MMP, mitochondrial mass and function |
12. | Peters et al. (2022) [48] | iPSC-CM+ Fatty acid media and hypoxia reoxygenation cycles | Metabolic maturation (MM) via low-glucose, fatty acid-rich media for 3 weeks + hypoxia (1% or 5% O2) | Seahorse XF24 Analyzer (OCR), LDH release, glucose/lactate measurements | ↑ OXPHOS, ↑ OCR in normoxia, ↓ glycolysis | ↓ CPT1B, ↓ TOMM20 (mitochondrial damage post-hypoxia). |
mTOR Inhibition | ||||||
13. | Chirico et al. (2022) [52] | 2D iPSC—CM monolayer | Asiatic acid (AA), GW501516 (GW), or T3 (positive control | Seahorse XF24 Extracellular Flux Analyzer, qPCR, and Western blot | ↑ FAO, ↑ OXPHOS, ↑ TCA cycle utilization, increased glycolytic reserve, ↑ mitochondrial respiratory capacity | ↑ PGC-1α, ↑ CPT1B, ↑ IMMT (mitochondrial content and organization),↑ ATP5A (mitochondrial ATP synthase), NDUFV3, COX 3, COX 5B (ETC Components), ion channels (KCNQ1, SCN5A) |
Extracellular Matrix (ECM) Composition | ||||||
14. | Ulmer et al. (2019) [65] | iPSC-CM+ mechanical load + FA | Mechanical load (cyclic stretch) + fatty acid supplementation (palmitate) | Seahorse XF Analyzer [OCR/Extracellular Acidification Rate (ECAR)], RNA-seq, ATP assays | ↑ mitochondrial respiratory capacity,↑ OCR ↑ FAO ↑ CPT1B, ↑PPARα ↓ glycolysis ↑ sarcomere organization ↑ calcium handling. | ↑ Mitochondrial density (↑ TOMM20). ↑ Oxidative genes (ACADM, ETFDH). ↓ Glycolytic enzymes (PDK4). |
15. | Ronaldson-Bouchard et al. (2018) [66] | 3D iPSC-CM tissue | Mechanical stimulation (cyclic mechanical stretch) | Seahorse XF24, EM | ↑ mitochondrial structural and maturation | ↑ mtDNA content, ↑ ATP, ↑ cristae structure |
b. Genetic and Pharmacological Modulation | ||||||
16. | Xu et al. (2022) [67] | iPSC-CM and ohia mutant mouse hearts | (Observation) | Seahorse XF, mitoSoX staining, TMRM staining, TEM | ↑ ROS, ↓ MMP ↓ OXPHOS | ↓ ATP, ↓ OCR, ↓ TMRM, ↓ disrupted cristae ↓ MMP |
17. | Zhou et al. (2021) [53] | iPSC-CM | Overexpression of PGC-1α during differentiation | Seahorse XF, qPCR, Western blot | ↑ FAO, ↑ OXPHOS, ↑ ATP, ↑ Calcium Handling | ↑ PGC-1α, ↑ TFAM, ↑ NRF1, ↑ mtDNA content, ↑ COX 4 ↑ ATP |
18. | Gentillon et al. (2019) [68] | iPSC-CM | HIF-1α inhibition + PPPARα agonist + postnatal cues (T3, fatty acids) | Seahorse XF, ATP assay, qPCR, TEM | ↑ OXPHOS ↓ glycolysis, ↑ ion channel maturation | ↑ PGC1α, ↑ mtDNA, ↑ OCR, ↑ cristae complexity, ↓ Glycolysis (ECAR) |
19. | Zhang et al. (2021) [19] | iPSC-CM | NRF2 overexpression and knockdown | Seahorse XF, TMRM, ATP assays, TEM | NRF2 knockdown impaired mitochondrial structure and function | ↑ TFAM, ↑ PGC-1α, ↑ CPT1B, ↑ mitochondrial area/density, ↑ OCR, ↓ fragmentation |
c. Biophysical and Electrical Stimulation Strategies | ||||||
Electrical Pacing | ||||||
20. | Nunes (2013) [69] | iPSC-CM +electrical pacing | Electrical pacing (biowiore platform) | Seahorse XF, ATP assay, Mitotracker staining | Pacing improved mitochondrial respiration, ↑ sarcomere alignment ↑ calcium handling | ↑ Mitochondrial density ↑ ATP |
Mechanical Stress | ||||||
21. | Vacek et al. (2011) [70] | Isolated mouse cardiomyocytes | Electrical stimulation | Cell culture, Electrical stimulate, Zymography, EM | ↑ mitochondrial remodeling | ↑ mtMMP-9 activation, mitochondrial remodeling, ↓ MMP and cristae integrity |
d. Computational and Systems Biology Approaches | ||||||
22. | Ozcebe et al. (2025) [71] * also under ECM composition classification | iPSC-CM + Proteomic profiling of ECM components (e.g., fibronectin, galectin-1) | Adult human heart-derived ECM | Seahorse XF, ATP assay, TEM, TMRM | ↑ mitochondrial morphology, ↑ ATP, ↑ OCR, matrix signals regulate mitochondrial maturity via outside-in signaling | ↑ cristae density, ↑ ATP, ↑ OCR, ↑ MMP |
23. | Yang et al. (2024) [72] | iPSCM-CM + experimental optical voltage and calcium imaging data | Computational modeling for phenotype-driven metabolic optimization | Multi-omics integration, optical voltage and calcium imaging, in silico simulation | Developed individualized, cell-specific metabolic models predicting bioenergetic state and improving maturity benchmarking | Modeled ATP production, OXPHOS potential, and mitochondrial membrane potential as predicted outputs tied to real optical dynamics |
24. | Nam et al. (2024) [73] | Chemically induced cardiomyocyte-like cells (CiCMs) | Mitochondrial delivery from heart, liver, or brain tissues | Multi-omics profiling, computational and predictive modeling, qPCR, Western blot, TEM, OCR, glycolytic rate assay | Enhanced mitochondrial function and improved maturation of CiCMs via mitochondrial reprogramming. Metabolic shifts observed toward energy efficiency. | ↑ complex I and II activity, ↑ ATP, ↑ MMP, ↑ PGC-1α, ↑ TFAM, ↑ mitochondrial mass ↓ glycolytic flux |
25. | Jiang et al. (2024) [56] | iPSC-CM | The review discusses the impact of altered mitochondrial biogenesis and metabolic switching on the maturation of hiPSC-CMs. It highlights the limitations of current methodologies for assessing metabolism in hiPSC-CMs and the challenges in achieving sufficient metabolic flexibility akin to that in the healthy adult heart. | Not specified | Various metabolic interventions, including fatty acid supplementation, modulation of transcription factors (e.g., HIF-1a, PPARa), and regulation of key genes through specific microRNAs | Not specified |
Feature | Fetal CMs | iPSC-CMs | Adult CMs |
---|---|---|---|
ATP Source | >50–80% Glycolysis [26,56] | ~50–80% Glycolysis [26,56,78,79,84] | 70–90% OXPHOS [23,34,78,79,80,84,85,86] |
OXPHOS-derived ATP (% of Adult) | ~20–30% | ~16.3–30% | 100% [23,78,82] |
Mitochondrial Volume (% Cell) | ~5–8% [87,88,89] | 7–10% [22,82] | ~30% [23,88,90,91,92,93] |
Cristae Morphology | Sparse/immature [67,71,94,95] | Sparse/immature [91] | Dense/complex [67,87,90] |
ROS Levels | Low [71,78] | High [22,78] | Moderate [78] |
Antioxidant Genes (SOD1, SOD2, PRDX3) | Low [89,96,97] | Low [89,97,98] | High [95,99,100,101,102,103] |
Maturation Genes (PGC-1α, SIRT1) | Low [97,101,104,105] | Low [99,100,102,106] | High [87,105] |
Parameter | Current iPSC-CMs | Clinical Viability Threshold | Deficit | Urgency Level | Clinical Risk if Uncorrected | Benchmark Model | Current Best Achievement |
---|---|---|---|---|---|---|---|
FAO Substrate Utilization | 10–20% | ~60–70% | −40–60% | High | Energy failure under cardiac stress (e.g., ischemia) | Adult human CMs | ~30–35% with lipid supplementation [26,28,61,83] |
ATP-linked Respiration | ~45–55% | ~85% [70] | −35% | High | Contractile weakness, metabolic insufficiency | Adult human CMs | 58% in 4-week matured iPSC-CM in 3D mechanical electrical stimulation and fatty acid-enriched media in Engineered Heart Tissue (EHT) [84,85] |
Engraftment Survival | 10–20% [48,73,74] | >50% [73] | −40% | High | Graft loss and heart failure | Animal graft studies | 50% 1 month in rat infarcted hearts [77] and 6 months in macaque with immunosuppression, using mitochondrial DNA detection to monitor engraftment [83] |
Electrophysiological Stability | 70% [77] | >95% | −25% | Medium | Fatal arrhythmia risk | Adult human CMs | 85% high-purity iPSC-CM electrical integration with optical pacing and 3D EHT [82,91] |
ROS Burden | 2.5× adult levels [83,84,85] | <1.2× adult levels [83] | 88% lowered | High | Oxidative damage → graft death | Adult human CMs | 1.6× with antioxidant-loaded patches [71,78,96] |
Intervention | ATP Increase (%) | FAO Gene Upregulation | Cristae Expansion | ROS Reduction (%) | Engraftment Survival Rate (Qualitative) |
---|---|---|---|---|---|
AMPK Activation | +40–70% [109,113] | +40–70% [57,123] | +30% [108,124] | −50% [123] | ↑ [121] |
PPARδ Agonist | +55% [113,115,126] | +80% [58,127] | +40% [64,68,126,127,128,129] | −45% [130,131] | ↑ [132] |
Hypoxia-Reoxygenation | +35% [133,134] | +50% [135,136,137] | ~+20% [64,138,139,140] | −30% [141,142] | ↑ [143,144,145] |
Combined Strategy | +75% | +90% | +50% | 70% | ↑ |
Parameter | iPSC-CMs | Adult CMs | Translational Relevance |
---|---|---|---|
Cristae Morphology [60,104] | Disorganized | Dense, organized | Limits OXPHOS efficiency for drug metabolism studies |
Mitochondrial Density [60,104] | Low, mitochondria are small, round, and perinuclear with underdeveloped cristae morphology | High, mitochondria are elongated, aligned with sarcomeres, and have dense cristae | Essential for efficient ATP production and contractile function, impacts energy supply during cardiac workload |
Substrate Preference (Glycolysis vs. FAO) [160] | Primarily glycolysis; limited fatty acid oxidation (FAO) | Predominantly FAO; efficient utilization of fatty acids for energy | Transition of FAO is critical for meeting the high energy demands of the adult heart; affects maturation strategies |
ATP Generation Efficiency [60,160] | Lower; relies on glycolysis yields ~2 ATP per glucose molecule/ATP depletion | Higher; FAO yields ~106 ATP per palmitate molecule | Enhancing ATP production is vital for supporting the energetic needs of mature cardiomyocytes |
OXPHOS Enzyme Expression [60,160] | Reduced expression of electron transport chain (ETC) complexes I–IV | Robust expression of ETC complexes; efficient oxidative phosphorylation | Upregulation of OXPHOS enzymes is necessary for improving mitochondrial function and energy metabolism |
ROS Handling/Redox Balance [23,98] | Immature antioxidant systems higher reactive oxygen species (ROS) levels | Mature antioxidant defenses; balanced ROS production and scavenging | Proper redox balance is crucial to prevent oxidative damage and ensure cell survival |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahannaz, D.C.; Sugiura, T.; Ferrell, B.E. Enhancing Mitochondrial Maturation in iPSC-DerivedCardiomyocytes: Strategies for Metabolic Optimization. BioChem 2025, 5, 23. https://doi.org/10.3390/biochem5030023
Shahannaz DC, Sugiura T, Ferrell BE. Enhancing Mitochondrial Maturation in iPSC-DerivedCardiomyocytes: Strategies for Metabolic Optimization. BioChem. 2025; 5(3):23. https://doi.org/10.3390/biochem5030023
Chicago/Turabian StyleShahannaz, Dhienda C., Tadahisa Sugiura, and Brandon E. Ferrell. 2025. "Enhancing Mitochondrial Maturation in iPSC-DerivedCardiomyocytes: Strategies for Metabolic Optimization" BioChem 5, no. 3: 23. https://doi.org/10.3390/biochem5030023
APA StyleShahannaz, D. C., Sugiura, T., & Ferrell, B. E. (2025). Enhancing Mitochondrial Maturation in iPSC-DerivedCardiomyocytes: Strategies for Metabolic Optimization. BioChem, 5(3), 23. https://doi.org/10.3390/biochem5030023