Real-Time Waste Detection and Classification Using YOLOv12-Based Deep Learning Model
Abstract
:1. Introduction
- We use high-resolution and low-resolution images with a Yolo-based deep learning model for better identifying waste.
- The model is designed for accurate classification of different types of waste, which improves detection efficiency.
- The proposed structure was tested under different environmental conditions and compared to the related identity model to assess its efficiency.
- It achieves high precision (73%) and a mean average precision (mAP) of 78% over 100 epochs, improving other existing detection algorithms.
- Research makes the base for AI-operated waste management solutions, which contributes to automation and stability in the sorting and recycling of waste.
2. Literature Review
3. Methodology
3.1. Data Acquisition
3.2. Image Pre-Processing
3.3. Image Resizing and Labeling
3.4. Proposed Obstacle Detection Framework
4. Experimental Results
4.1. Hyperparameters
4.2. Model Evaluation
4.3. Analysis of Results
4.4. Visualization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azadnia, R.; Fouladi, S.; Jahanbakhshi, A. Intelligent detection and waste control of hawthorn fruit based on ripening level using machine vision system and deep learning techniques. Results Eng. 2023, 17, 100891. [Google Scholar] [CrossRef]
- Majchrowska, S.; Mikołajczyk, A.; Ferlin, M.; Klawikowska, Z.; Plantykow, M.A.; Kwasigroch, A.; Majek, K. Deep learning-based waste detection in natural and urban environments. Waste Manag. 2022, 138, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Rahman, W.; Islam, R.; Hasan, A.; Bithi, N.I.; Hasan, M.; Rahman, M.M. Intelligent waste management system using deep learning with IoT. J. King Saud Univ.—Comput. Inf. Sci. 2022, 34, 2072–2087. [Google Scholar] [CrossRef]
- Bonifazi, G.; Capobianco, G.; Serranti, S.; Trotta, O.; Bellagamba, S.; Malinconico, S.; Paglietti, F. Asbestos detection in construction and demolition waste by different classification methods applied to short-wave infrared hyperspectral images. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 307, 123672. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, R.; Ye, M.; Luo, J.; Yang, D.; Dai, M. EcoDetect-YOLO: A Lightweight, High-Generalization Methodology for Real-Time Detection of Domestic Waste Exposure in Intricate Environmental Landscapes. Sensors 2024, 24, 4666. [Google Scholar] [CrossRef]
- Malik, M.; Sharma, S.; Uddin, M.; Chen, C.L.; Wu, C.M.; Soni, P.; Chaudhary, S. Waste classification for sustainable development using image recognition with deep learning neural network models. Sustainability 2022, 14, 7222. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Abdulhasan, M.J.; Kumar, N.M.; Abdulkareem, K.H.; Mostafa, S.A.; Maashi, M.S.; Chopra, S.S. Automated waste-sorting and recycling classification using artificial neural network and features fusion: A digital-enabled circular economy vision for smart cities. Multimed. Tools Appl. 2023, 82, 39617–39632. [Google Scholar] [CrossRef]
- Valente, M.; Silva, H.; Caldeira, J.M.; Soares, V.N.; Gaspar, P.D. Detection of waste containers using computer vision. Appl. Syst. Innov. 2019, 2, 11. [Google Scholar] [CrossRef]
- Sheng, T.J.; Islam, M.S.; Misran, N.; Baharuddin, M.H.; Arshad, H.; Islam, M.R.; Islam, M.T. An internet of things based smart waste management system using LoRa and tensorflow deep learning model. IEEE Access 2020, 8, 148793–148811. [Google Scholar] [CrossRef]
- Mao, W.L.; Chen, W.C.; Wang, C.T.; Lin, Y.H. Recycling waste classification using optimized convolutional neural network. Resour. Conserv. Recycl. 2021, 164, 105132. [Google Scholar] [CrossRef]
- Sirimewan, D.; Bazli, M.; Raman, S.; Mohandes, S.R.; Kineber, A.F.; Arashpour, M. Deep learning-based models for environmental management: Recognizing construction, renovation, and demolition waste in-the-wild. J. Environ. Manag. 2024, 351, 119908. [Google Scholar] [CrossRef] [PubMed]
- Dokl, M.; Van Fan, Y.; Vujanović, A.; Pintarič, Z.N.; Aviso, K.B.; Tan, R.R.; Čuček, L. A waste separation system based on sensor technology and deep learning: A simple approach applied to a case study of plastic packaging waste. J. Clean. Prod. 2024, 450, 141762. [Google Scholar]
- Demetriou, D.; Mavromatidis, P.; Robert, P.M.; Papadopoulos, H.; Petrou, M.F.; Nicolaides, D. Real-time construction demolition waste detection using state-of-the-art deep learning methods; single–stage vs two-stage detectors. Waste Manag. 2023, 167, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Yudin, D.; Zakharenko, N.; Smetanin, A.; Filonov, R.; Kichik, M.; Kuznetsov, V.; Panov, A. Hierarchical waste detection with weakly supervised segmentation in images from recycling plants. Eng. Appl. Artif. Intell. 2024, 128, 107542. [Google Scholar] [CrossRef]
- Guo, H.; Chen, L. Multi-object road waste detection and classification based on binocular vision. J. Eng. 2024, 2024, e12389. [Google Scholar] [CrossRef]
- Chavan, O.; Jaware, V.; Doiphode, D.; Deshmukh, P. IoT-Powered Trash Segregation and Waste Management: An Ingenious Approach to a Sustainable Environment. In Proceedings of the 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), Greater Noida, India, 9–10 February 2024; Volume 5, pp. 595–598. [Google Scholar]
- Bawankule, R.; Gaikwad, V.; Kulkarni, I.; Kulkarni, S.; Jadhav, A.; Ranjan, N. Visual detection of waste using YOLOv8. In Proceedings of the 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS), Coimbatore, India, 14–16 June 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 869–873. [Google Scholar]
- Rijah, U.L.M.; Abeygunawardhana, P.K. Smart waste segregation for home environment. In Proceedings of the 2023 3rd International Conference on Advanced Research in Computing (ICARC), Belihuloya, Sri Lanka, 23–24 February 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 184–189. [Google Scholar]
- Xu, H.; Tang, W.; Li, Z.; Qin, K.; Zou, J. Multimodal dual cross-attention fusion strategy for autonomous garbage classification system. IEEE Trans. Ind. Inform. 2024, 20, 13319–13329. [Google Scholar] [CrossRef]
- Badoni, P.; Walia, R.; Mehra, R. Enhancing waste separation and management through IoT system. In Proceedings of the 2024 1st International Conference on Innovative Sustainable Technologies for Energy, Mechatronics, and Smart Systems (ISTEMS), Dehradun, India, 26–27 April 2024; pp. 1–6. [Google Scholar]
- Islam, N.; Jony, M.M.H.; Hasan, E.; Sutradhar, S.; Rahman, A.; Islam, M.M. Ewastenet: A two-stream data efficient image transformer approach for e-waste classification. In Proceedings of the 2023 IEEE 8th International Conference on Software Engineering and Computer Systems (ICSECS), Penang, Malaysia, 25–27 August 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 435–440. [Google Scholar]
- Tian, X.; Shi, L.; Luo, Y.; Zhang, X. Garbage classification algorithm based on improved mobilenetv3. IEEE Access 2024, 12, 44799–44807. [Google Scholar] [CrossRef]
- Gill, K.S.; Anand, V.; Gupta, R. Garbage Classification Utilizing Effective Convolutional Neural Network. In Proceedings of the 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), Vellore, India, 5–6 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–4. [Google Scholar]
- Kumar, R.L.; Ramya, R.; Balaji, M.J.; Hari, V.; Malarvizhi, M. Garbage Collection and Segregation using Computer Vision. In Proceedings of the 2024 International Conference on Inventive Computation Technologies (ICICT), Greater Noida, India, 19–20 February 2021; IEEE: Piscataway, NJ, USA, 2024; pp. 1023–1028. [Google Scholar]
- Asha, V.; Govindaraj, M.; Kolambkar, M.L.; Mithuna, P.; Prasad, A. Classification of Plastic Waste Products using Deep Learning. In Proceedings of the 2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU), Bhubaneswar, India, 1–2 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–6. [Google Scholar]
- Hossen, M.M.; Majid, M.E.; Kashem, S.B.A.; Khandakar, A.; Nashbat, M.; Ashraf, A.; Chowdhury, M.E. A reliable and robust deep learning model for effective recyclable waste classification. IEEE Access 2024, 12, 13809–13821. [Google Scholar] [CrossRef]
- Rahman, S.; Rony, J.H.; Uddin, J.; Samad, M.A. Real-Time Obstacle Detection with YOLOv8 in a WSN Using UAV Aerial Photography. J. Imaging 2023, 9, 216. [Google Scholar] [CrossRef]
- Sirajus, S.; Rahman, S.; Nur, M.; Asif, A.; Harun, M.B.; Uddin, J.I.A. A Deep Learning Model for YOLOv9-based Human Abnormal Activity Detection: Violence and Non-Violence Classification. IJEEE 2024, 20, 3433. [Google Scholar]
- Mao, M.; Lee, A.; Hong, M. Efficient Fabric Classification and Object Detection Using YOLOv10. Electronics 2024, 13, 3840. [Google Scholar] [CrossRef]
- Navin, N.; Farid, F.A.; Rakin, R.Z.; Tanzim, S.S.; Rahman, M.; Rahman, S.; Uddin, J.; Karim, H.A. Bilingual Sign Language Recognition: A YOLOv11-Based Model for Bangla and English Alphabets. J. Imaging 2025, 11, 134. [Google Scholar] [CrossRef] [PubMed]
Types of Obstacles | Quantity Within the Dataset | Total Data |
---|---|---|
Plastic | 4171 | |
Metal (Battery) | 1197 | |
Paper | 1835 | |
Glass | 91 | 7980 |
Organic Waste | 112 | |
Medical Waste | 574 |
Parameters | Value |
---|---|
Batch size | 16 |
Number of epochs | 100 |
Optimizer | SGD |
Pre-trained | COCO model |
Learning rate | 0.01 |
Weight decay | 0.0005 |
Patience | 100 |
Parameters | Value |
---|---|
Model layers | 159 |
Model parameters | 2,559,848 |
Gradients | 2,559,848 |
GFLOPs | 6.3 |
Model | Epoch | Class | Trainable Parameters | F1 Score | mAP@0.5 |
---|---|---|---|---|---|
Proposed YOLOv12 | 50 | All | 25.5 M | 0.72 | 0.75 |
Proposed YOLOv12 | 100 | All | 25.5 M | 0.75 | 0.78 |
YOLOv8 [27] | 50 | All | 25.9 M | 0.72 | 0.72 |
YOLOv8 [27] | 100 | All | 25.9 M | 0.71 | 0.73 |
YOLOv9 [28] | 50 | All | 25.3 M | 0.69 | 0.71 |
YOLOv9 [28] | 100 | All | 25.3 M | 0.73 | 0.75 |
YOLOv10 [29] | 50 | All | 2.7 M | 0.72 | 0.74 |
YOLOv10 [29] | 100 | All | 2.7 M | 0.74 | 0.74 |
YOLOv11 [30] | 50 | All | 27 M | 0.74 | 0.76 |
YOLOv11 [30] | 100 | All | 27 M | 0.75 | 0.76 |
RF-DETR | 100 | All | 29 M | 0.74 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dipo, M.H.; Farid, F.A.; Mahmud, M.S.A.; Momtaz, M.; Rahman, S.; Uddin, J.; Karim, H.A. Real-Time Waste Detection and Classification Using YOLOv12-Based Deep Learning Model. Digital 2025, 5, 19. https://doi.org/10.3390/digital5020019
Dipo MH, Farid FA, Mahmud MSA, Momtaz M, Rahman S, Uddin J, Karim HA. Real-Time Waste Detection and Classification Using YOLOv12-Based Deep Learning Model. Digital. 2025; 5(2):19. https://doi.org/10.3390/digital5020019
Chicago/Turabian StyleDipo, Mosharof Hossain, Fahmid Al Farid, Md. Sifti Al Mahmud, Muntasir Momtaz, Shakila Rahman, Jia Uddin, and Hezerul Abdul Karim. 2025. "Real-Time Waste Detection and Classification Using YOLOv12-Based Deep Learning Model" Digital 5, no. 2: 19. https://doi.org/10.3390/digital5020019
APA StyleDipo, M. H., Farid, F. A., Mahmud, M. S. A., Momtaz, M., Rahman, S., Uddin, J., & Karim, H. A. (2025). Real-Time Waste Detection and Classification Using YOLOv12-Based Deep Learning Model. Digital, 5(2), 19. https://doi.org/10.3390/digital5020019