Plasmon Excitation in the Interaction of Slow Singly Charged Argon Ions with Magnesium
Abstract
:1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holeňák, R.; Ntemou, E.; Lohmann, S.; Linnarsson, M.; Primetzhofer, D. Assessing Trajectory dependent electronic energy loss of keV ions by a binary collision approximation code. Phys. Rev. Applied 2024, 21, 024048. [Google Scholar] [CrossRef]
- Lohmann, S.; Holenák, R.; Grande, P.; Primetzhofer, D. Trajectory Dependence of Electronic Energy-Loss straggling at keV Ion Energies. Phys. Rev. B 2023, 107, 085110. [Google Scholar] [CrossRef]
- Ntemou, E.; Lohmann, S.; Holeňák, R.; Primetzhofer, D. Electronic interaction of slow hydrogen, helium, nitrogen, and neon ions with silicon. Phys. Rev. B 2023, 107, 155145. [Google Scholar] [CrossRef]
- Lohmann, S.; Holenák, R.; Primetzhofer, D. Trajectory-Dependent Electronic Excitation by Light and Heavy Ions Around and Below the Bohr Velocity. Phys. Rev. A 2020, 102, 062803. [Google Scholar] [CrossRef]
- Lohmann, S.; Primetzhofer, D. Disparate Energy Scaling of Trajectory-Dependent Electronic Excitations for Slow Protons and He Ions. Phys. Rev. Lett. 2020, 124, 096601. [Google Scholar] [CrossRef] [PubMed]
- Holenak, R.; Lohman, S.; Sekula, F.; Primetzhofer, D. Simultaneous Assessment of Energy, Charge State and Angula Distribution for Medium Energy Ions Interacting with Ultra-Thin Self-Supporting Targets: A time-of-Flight Approach. Vacuum 2021, 185, 109988. [Google Scholar] [CrossRef]
- Ntemou, E.; Holenák, R.; Primetzhofer, D. Energy Deposition by H and He Ions at keV Energies in Self-Supporting, Single Crystalline SiC Foils. Radiat. Phys. Chem. 2022, 194, 110033. [Google Scholar] [CrossRef]
- Valpreda, A.; Sturm, J.M.; Yakshin, A.E.; Ackermann, M. Resolving buried interfaces with low energy ion scattering. J. Vac. Sci. Technol. A 2023, 41, 043203. [Google Scholar] [CrossRef]
- Mousley, M.; Tabean, S.; Bouton, O.; Hoang, Q.H.; Wirtz, T.; Eswara, S. Scanning Transmission Ion Microscopy Time-of-Flight Spectroscopy Using 20 keV Helium Ions. Microsc. Microanal. 2023, 29, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Yin, L.; Zhang, Z.; Ding, B.; Shi, Y.; Li, Y.; Zhang, X.; Song, X.; Guo, Y.; Chen, L.; et al. Anomalous Neutralization Characteristics in Na+ Neutralization on Al(111) Surfaces. Phys. Rev. A 2020, 101, 032706. [Google Scholar] [CrossRef]
- Wei, M.; Wang, X.; Guo, X.; Liu, P.; Ding, B.; Shi, Y.; Song, X.; Wang, L.; Liu, X.; Yin, L.; et al. Low-Energy Na+ Neutralization on Al(111) and Cu(110) Surfaces at Grazing Incidence. Nucl. Instrum. Methods B 2020, 478, 239–243. [Google Scholar] [CrossRef]
- Li, S.-M.; Mao, F.; Zhao, X.-D.; Li, B.-S.; Jin, W.-Q.; Zuo, W.-Q.; Wang, F.; Zhang, F.-S. First Principle Study of the Electronic Stopping Power of Indium for Protons and He Ions. Phys. Rev. B 2021, 104, 214104. [Google Scholar] [CrossRef]
- Riccardi, C.A.P. Dukes Electron Spectra of Low Energy Electrons Emitted in the Interaction of Low Energy Ne+ Ions with Mg surfaces. Surfaces 2023, 6, 257. [Google Scholar] [CrossRef]
- Riccardi, P. Electron Spectroscopy of Charge Exchange Effects in Low Energy Ion Scattering at Surfaces: Case Studies of Heavy Ions at Al Surface. Surfaces 2023, 6, 64. [Google Scholar] [CrossRef]
- Han, W.; Zheng, M.; Banerjee, A.; Luo, Y.Z.; Shen, L.; Khursheed, A. Quantitative material analysis using secondary electron energy spectromicroscopy. Sci. Rep. 2020, 10, 22144. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, A.J.; Chirayath, V.A.; Sterne, P.A.; Gladen, R.W.; Koymen, A.R.; Weiss, A.H. Direct evidence for low-energy electron emission following O LVV Auger transitions at oxide surfaces. Sci. Rep. 2020, 10, 17993. [Google Scholar] [CrossRef] [PubMed]
- Hagstrum, H.D. Low energy de-excitation and neutralization processes near surfaces. In Inelastic Ion-Surface Collisions; Tolk, N.H., Tully, J.C., Heiland, W., White, C.W., Eds.; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Monreal, R. Auger Neutralization and Ionization Processes for Charge Exchange between Slow Noble Gas Atoms and Solid Surfaces. Prog. Surf. Sci. 2014, 89, 80. [Google Scholar] [CrossRef]
- Baragiola, R.A. Electron Emission from Slow Ion-Solid Interactions. In Low Energy Ion-Surface Interactions; Rabalais, J.W., Ed.; Wiley: New York, NY, USA, 1994; Chapter 4. [Google Scholar]
- Baragiola, R.A.; Monreal, R.C. Electron Emission from Surfaces Mediated by Ion-Induced Plasmon Excitation. In Slow Heavy-Particle Induced Electron Emission from Solid Surfaces; Springer Tracts in Modern Physics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 225. [Google Scholar]
- Winter, H.; Lederer, S.; Winter, H. Fermi Momentum Above Metal Surfaces from Electrons Ejected by Impact of He Ions. Europhys. Lett. 2006, 75, 964. [Google Scholar] [CrossRef]
- Rabalais, J.; Bu, H.; Roux, C. Impact-Parameter Dependence of Ar+-Induced Kinetic Electron Emission from Ni(110). Phys. Rev. Lett. 1992, 69, 1391. [Google Scholar] [CrossRef]
- Lorincik, J.; Sroubek, Z.; Eder, H.; Aumayr, F.; Winter, H. Kinetic Electron Emission from Clean Polycrystalline Gold Induced by Impact of Slow C+, N+, O+, Ne+, Xe+, and Au+ Ions. Phys. Rev. B 2000, 62, 16116. [Google Scholar] [CrossRef]
- Lederer, S.; Maass, K.; Blauth, D.; Winter, H.; Winter, H.P.; Aumayr, F. Kinetic Electron Emission from the Selvage of a Free-Electron-Gas Metal. Phys. Rev. B 2003, 67, 121405. [Google Scholar] [CrossRef]
- Hagstrum, H.D. Theory of Auger Ejection of Electrons from Metals by Ions. Phys. Rev. 1954, 96, 336. [Google Scholar] [CrossRef]
- Hagstrum, H.D. Ion-Neutralization Spectroscopy of Solids and Solid Surfaces. Phys. Rev. 1966, 150, 495. [Google Scholar] [CrossRef]
- Hagstrum, H.D.; Becker, G.E. The Interrelation of Physics and Mathematics in Ion-Neutralization Spectrosocpy. Phys. Rev. 1971, 4, 4187. [Google Scholar] [CrossRef]
- Hagstrum, H.D.; Takeishi, Y.; Pretzer, D.D. Energy Broadening in the Auger-Type Neutralization of Slow Ions at Solid Surfaces. Phys. Rev. 1965, 139, A526. [Google Scholar] [CrossRef]
- Baragiola, R.A.; Dukes, C.A. Plasmon-Assisted Electron Emission from Al and Mg Surfaces by Slow Ions. Phys. Rev. Lett. 1996, 76, 2547. [Google Scholar] [CrossRef]
- Stolterfoht, N.; Niemann, D.; Hoffmann, V.; Rösler, M.; Baragiola, R.A. Plasmon production by the decay of hollow Ne atoms near an Al surface. Phys. Rev. A 2000, 61, 052902. [Google Scholar] [CrossRef]
- Commisso, M.; Minniti, M.; Sindona, A.; Bonanno, A.; Oliva, A.; Baragiola, R.A.; Riccardi, P. Kinetic electron excitation in the interaction of slow Kr+ ions with Al surfaces. Phys. Rev. B 2005, 72, 165419. [Google Scholar] [CrossRef]
- Riccardi, P.; Barone, P.; Bonanno, A.; Oliva, A.; Baragiola, R.A. Angula Studies of Potential Electron Emission in the Interaction of Slow Ions with Al Surfaces. Phys. Rev. Lett. 2000, 84, 378. [Google Scholar] [CrossRef]
- Baragiola, R.A.; Dukes, C.A.; Riccardi, P. Plasmon Excitation in Ion-Solid Interactions. Nucl. Instrum. Methods B 2001, 182, 73–83. [Google Scholar] [CrossRef]
- Monreal, R. Theoretical study for potential excitation of surface plasmons on metal surfaces. Surf. Sci. 1997, 388, 231. [Google Scholar] [CrossRef]
- Gutierrez, F.A.; Salas, C.; Jouin, H. Bulk plasmon induced ion neutralization near metal surfaces. Surf. Sci. 2012, 606, 1293. [Google Scholar] [CrossRef]
- Powell, C.J.; Swan, J.B. Origin of the Characteristic Electron Energy Losses in Magnesium. Phys. Rev. 1959, 116, 81. [Google Scholar] [CrossRef]
- Jenkins, L.H.; Chung, M.F. The Auger Satellite and other characteristic events in Mg Secondary Electron Spectra. Surf. Sci 1972, 33, 159. [Google Scholar] [CrossRef]
- Chung, M.S.; Everhart, T.E. Role of plasmon decay in secondary electron emission in the nearly-free-electron metals. Application to aluminum. Phys Rev. B 1977, 15, 4699. [Google Scholar] [CrossRef]
- Ritzau, S.M.; Baragiola, R.A.; Monreal, R.C. Proton-induced kinetic plasmon excitation in Al and Mg. Phys. Rev. B 1999, 59, 15506. [Google Scholar] [CrossRef]
- Van Attekum, P.T.M.; Trooster, J.M. Bulk- and surface-plasmon-loss intensities in photoelectron, Auger, and electron-energy-loss spectra of Mg metal. Phys. Rev. B 1979, 20, 2335. [Google Scholar] [CrossRef]
- Lancaster, J.C.; Kontur, F.J.; Walters, G.K.; Dunning, F.B. Neutralization of low-energy He+ ions at a magnesium surface. Nucl. Instrum. Methods B 2007, 256, 37. [Google Scholar] [CrossRef]
- Fano, U.; Lichten, W. Interpretation of Ar+- Ar Collisions at 50 keV. Phys. Rev. Lett. 1965, 14, 627. [Google Scholar] [CrossRef]
- Barat, M.; Lichten, W. Extension of the Electron-Promotion Model to Asymmetric Atomic Collisions. Phys. Rev. A 1972, 6, 211. [Google Scholar] [CrossRef]
- Riccardi, P.; Cosimo, F.; Sindona, A. Absence of Reionization in Low Energy Na+ scattering from Al Surfaces. Phys. Rev. A 2018, 97, 032703. [Google Scholar] [CrossRef]
- Riccardi, P.; Sindona, A.; Dukes, C. Double Electron Excitation in He Ions Interacting with an Aluminum Surface. Phys. Rev. A 2016, 93, 042710. [Google Scholar] [CrossRef]
- Runco, D.; Riccardi, P. Collisional Excitation in Neon-like Projectiles Scattered from Al. Solid State Commun. 2021, 340, 114534. [Google Scholar] [CrossRef]
- Runco, D.; Riccardi, P. Charge and Excitation State of Na Projectiles Scattered from Al Surfaces. Radiat. Eff. Defects Solids 2021, 176, 995. [Google Scholar] [CrossRef]
- Riccardi, P.; Dukes, C.A. Excitation of the Triplet 2p4(3P)3s2 Autoionixing State of Neon by Molecular Orbital Electron Promotion at Solid Surfaces. Chem. Phys. Lett. 2022, 798, 139610. [Google Scholar] [CrossRef]
- Riccardi, P.; Dukes, C.A. Effects of the Solid Target on Electronic Excitations During binary Atomic Collisions in the Interaction of Ne Ions with Al Surfaces. Vacuum 2022, 204, 111393. [Google Scholar] [CrossRef]
- Monreal, R.; Apell, S.P. Magic energies in Auger electron spectra. Nucl. Instr. Meth. Phys. Res. B 1993, 83, 459. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccardi, P. Plasmon Excitation in the Interaction of Slow Singly Charged Argon Ions with Magnesium. Solids 2024, 5, 321-332. https://doi.org/10.3390/solids5020021
Riccardi P. Plasmon Excitation in the Interaction of Slow Singly Charged Argon Ions with Magnesium. Solids. 2024; 5(2):321-332. https://doi.org/10.3390/solids5020021
Chicago/Turabian StyleRiccardi, Pierfrancesco. 2024. "Plasmon Excitation in the Interaction of Slow Singly Charged Argon Ions with Magnesium" Solids 5, no. 2: 321-332. https://doi.org/10.3390/solids5020021
APA StyleRiccardi, P. (2024). Plasmon Excitation in the Interaction of Slow Singly Charged Argon Ions with Magnesium. Solids, 5(2), 321-332. https://doi.org/10.3390/solids5020021