Optical and Amplified Spontaneous Emission Properties of 4H-Pyran-4-Ylidene-2-Cyanoacetate Fragment Containing 2-Cyanoacetic Acid Derivative in PVK, PSU, or PS Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigated Organic Compound
2.2. Sample Preparation for Optical Characterization
2.3. Measurement Systems
3. Results and Discussion
3.1. Optical Images
3.2. Optical Properties
3.3. Amplified Spontaneous Emission
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solak, E.K.; Irmak, E. Advances in Organic Photovoltaic Cells: A Comprehensive Review of Materials, Tech-nologies, and Performance. RSC Adv. 2023, 13, 12244–12269. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.; Merces, L.; Ferro, L.M.M.; Sonar, P.; Bufon, C.C.B. Impact of Planar and Vertical Organic Field-Effect Transistors on Flexible Electronics. Adv. Mater. 2023, 35, 220480. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Choudhary, R.B. A Survey of the Structure, Fabrication, and Characterization of Advanced Organic Light Emitting Diodes. Microelectron. Reliab. 2023, 144, 114959. [Google Scholar] [CrossRef]
- Samuel, I.D.W.; Turnbull, G.A. Organic Semiconductor Lasers. Chem. Rev. 2007, 107, 1272–1295. [Google Scholar] [CrossRef]
- Tessler, N. Lasers Based on Semiconducting Organic Materials. Adv. Mater. 1999, 11, 363–370. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Y.-Y.; Liu, X.; Lin, H.; Gao, K.; Lai, W.-Y.; Huang, W. Organic Solid-State Lasers: A Materials View and Future Development. Chem. Soc. Rev. 2020, 49, 5885–5944. [Google Scholar] [CrossRef]
- Forget, S.; Chénais, S. Organic Solid-State Lasers; Springer: Berlin/Heidelberg, Germany, 2013; Volume 175, ISBN 978-3-642-36704-5. [Google Scholar]
- Woggon, T.; Klinkhammer, S.; Lemmer, U. Compact Spectroscopy System Based on Tunable Organic Semi-conductor Lasers. Appl. Phys. B 2010, 99, 47–51. [Google Scholar] [CrossRef]
- Clark, J.; Lanzani, G. Organic Photonics for Communications. Nat. Photonics 2010, 4, 438–446. [Google Scholar] [CrossRef]
- Lu, M.; Choi, S.S.; Irfan, U.; Cunningham, B.T. Plastic Distributed Feedback Laser Biosensor. Appl. Phys. Lett. 2008, 93, 111113. [Google Scholar] [CrossRef]
- Wang, Y.; Morawska, P.O.; Kanibolotsky, A.L.; Skabara, P.J.; Turnbull, G.A.; Samuel, I.D.W. LED Pumped Polymer Laser Sensor for Explosives. Laser Photon Rev. 2013, 7, L71–L76. [Google Scholar] [CrossRef]
- Farrando-Pérez, Á.; Villalvilla, J.M.; Quintana, J.A.; Boj, P.G.; Díaz-García, M.A. Top-Layer Resonator Organic Distributed Feedback Laser for Label-Free Refractive Index Sensing. Adv. Opt. Mater. 2024, 12, 2401284. [Google Scholar] [CrossRef]
- Vannahme, C.; Klinkhammer, S.; Christiansen, M.B.; Kolew, A.; Kristensen, A.; Lemmer, U.; Mappes, T. All-Polymer Organic Semiconductor Laser Chips: Parallel Fabrication and Encapsulation. Opt. Express 2010, 18, 24881. [Google Scholar] [CrossRef] [PubMed]
- Vannahme, C.; Klinkhammer, S.; Kolew, A.; Jakobs, P.-J.; Guttmann, M.; Dehm, S.; Lemmer, U.; Mappes, T. Integration of Organic Semiconductor Lasers and Single-Mode Passive Waveguides into a PMMA Substrate. Microelectron. Eng. 2010, 87, 693–695. [Google Scholar] [CrossRef]
- Shukla, A.; Mai, V.T.N.; Senevirathne, A.M.C.; Allison, I.; McGregor, S.K.M.; Lepage, R.J.; Wood, M.; Matsu-shima, T.; Moore, E.G.; Krenske, E.H.; et al. Low Amplified Spontaneous Emission and Lasing Thresholds from Hybrids of Fluorenes and Vinylphenylcarbazole. Adv. Opt. Mater. 2020, 8, 2000784. [Google Scholar] [CrossRef]
- Tang, X.; Lee, Y.-T.; Feng, Z.; Ko, S.Y.; Wu, J.W.; Placide, V.; Ribierre, J.-C.; D’Aléo, A.; Adachi, C. Color-Tunable Low-Threshold Amplified Spontaneous Emission from Yellow to Near-Infrared (NIR) Based on Donor–Spacer–Acceptor–Spacer–Donor Linear Dyes. ACS Mater. Lett. 2020, 2, 1567–1574. [Google Scholar] [CrossRef]
- Khan, A.; Tang, X.; Zhong, C.; Wang, Q.; Yang, S.; Kong, F.; Yuan, S.; Sandanayaka, A.S.D.; Adachi, C.; Jiang, Z.; et al. Intramolecular-Locked High Efficiency Ultrapure Violet-Blue (CIE-y < 0.046) Thermally Activated Delayed Fluorescence Emitters Exhibiting Amplified Spontaneous Emission. Adv. Funct. Mater. 2021, 31, 2009488. [Google Scholar] [CrossRef]
- Shukla, A.; Wallwork, N.R.; Li, X.; Sobus, J.; Mai, V.T.N.; McGregor, S.K.M.; Chen, K.; Lepage, R.J.; Krenske, E.H.; Moore, E.G.; et al. Deep-Red Lasing and Amplified Spontaneous Emission from Nature Inspired Bay-Annulated Indigo Derivatives. Adv. Opt. Mater. 2020, 8, 1901350. [Google Scholar] [CrossRef]
- Ribierre, J.-C.; Zhao, L.; Inoue, M.; Schwartz, P.-O.; Kim, J.-H.; Yoshida, K.; Sandanayaka, A.S.D.; Nakanotani, H.; Mager, L.; Méry, S.; et al. Low Threshold Amplified Spontaneous Emission and Ambipolar Charge Transport in Non-Volatile Liquid Fluorene Derivatives. Chem. Commun. 2016, 52, 3103–3106. [Google Scholar] [CrossRef]
- Kim, H.; Schulte, N.; Zhou, G.; Müllen, K.; Laquai, F. A High Gain and High Charge Carrier Mobility Indeno-fluorene-Phenanthrene Copolymer for Light Amplification and Organic Lasing. Adv. Mater. 2011, 23, 894–897. [Google Scholar] [CrossRef]
- Kanibolotsky, A.L.; Vilela, F.; Forgie, J.C.; Elmasly, S.E.T.; Skabara, P.J.; Zhang, K.; Tieke, B.; McGurk, J.; Belton, C.R.; Stavrinou, P.N.; et al. Well-Defined and Monodisperse Linear and Star-Shaped Quaterfluorene-DPP Molecules: The Significance of Conjugation and Dimensionality. Adv. Mater. 2011, 23, 2093–2097. [Google Scholar] [CrossRef]
- Schneider, D.; Rabe, T.; Riedl, T.; Dobbertin, T.; Kröger, M.; Becker, E.; Johannes, H.-H.; Kowalsky, W.; Wei-mann, T.; Wang, J.; et al. Ultrawide Tuning Range in Doped Organic Solid-State Lasers. Appl. Phys. Lett. 2004, 85, 1886–1888. [Google Scholar] [CrossRef]
- Nakanotani, H.; Furukawa, T.; Adachi, C. Light Amplification in an Organic Solid-State Film with the Aid of Triplet-to-Singlet Upconversion. Adv. Opt. Mater. 2015, 3, 1381–1388. [Google Scholar] [CrossRef]
- Wallikewitz, B.H.; Hertel, D.; Meerholz, K. Cross-Linkable Polyspirobifluorenes: A Material Class Featuring Good OLED Performance and Low Amplified Spontaneous Emission Thresholds. Chem. Mater. 2009, 21, 2912–2919. [Google Scholar] [CrossRef]
- Nakanotani, H.; Akiyama, S.; Ohnishi, D.; Moriwake, M.; Yahiro, M.; Yoshihara, T.; Tobita, S.; Adachi, C. Ex-tremely Low-Threshold Amplified Spontaneous Emission of 9,9′-Spirobifluorene Derivatives and Electrolu-minescence from Field-Effect Transistor Structure. Adv. Funct. Mater. 2007, 17, 2328–2335. [Google Scholar] [CrossRef]
- Komino, T.; Nomura, H.; Yahiro, M.; Endo, K.; Adachi, C. Dependence of the Amplified Spontaneous Emission Threshold in Spirofluorene Thin Films on Molecular Orientation. J. Phys. Chem. C 2011, 115, 19890–19896. [Google Scholar] [CrossRef]
- Han, Y.-M.; Sun, C.; Bai, L.-B.; Lin, J.-Y.; Xu, M.; Liu, Y.-Y.; Ding, X.-H.; Xie, L.-H.; Shen, K.; Qin, T.-S.; et al. Photoexcitation Dynamics of Thiophene–Fluorene Fluorophore in Matrix Encapsulation for Deep-Blue Am-plified Spontaneous Emission. ACS Appl. Polym. Mater. 2021, 3, 1306–1313. [Google Scholar] [CrossRef]
- Han, Y.; Sun, C.; Bai, L.; Zuo, Z.; Xu, M.; Yu, M.; An, X.; Wei, C.; Lin, J.; Wang, N.; et al. Matrix Encapsulation of Solution-Processed Thiophene-Based Fluorophores for Enhanced Red and Green Amplified Spontaneous Emission. Phys. Status Solidi (RRL) Rapid Res. Lett. 2020, 14, 1900493. [Google Scholar] [CrossRef]
- Zu, G.; Li, S.; He, J.; Zhang, H.; Fu, H. Amplified Spontaneous Emission from Organic Phosphorescence Emitters. J. Phys. Chem. Lett. 2022, 13, 5461–5467. [Google Scholar] [CrossRef]
- Muñoz-Mármol, R.; Zink-Lorre, N.; Villalvilla, J.M.; Boj, P.G.; Quintana, J.A.; Vázquez, C.; Anderson, A.; Gordon, M.J.; Sastre-Santos, A.; Fernández-Lázaro, F.; et al. Influence of Blending Ratio and Polymer Matrix on the Lasing Properties of Perylenediimide Dyes. J. Phys. Chem. C 2018, 122, 24896–24906. [Google Scholar] [CrossRef]
- Vembris, A.; Muzikante, I.; Karpicz, R.; Sliauzys, G.; Miasojedovas, A.; Jursenas, S.; Gulbinas, V. Fluorescence and Amplified Spontaneous Emission of Glass Forming Compounds Containing Styryl-4H-Pyran-4-Ylidene Fragment. J. Lumin. 2012, 132, 2421–2426. [Google Scholar] [CrossRef]
- Popova, S.; Pudzs, K.; Latvels, J.; Vembris, A. Light Emitting and Electrical Properties of Pure Amorphous Thin Films of Organic Compounds Containing 2-Tert-Butyl-6-Methyl-4H-Pyran-4-Ylidene. Opt. Mater. 2013, 36, 529–534. [Google Scholar] [CrossRef]
- Zarins, E.; Siltane, K.; Pervenecka, J.; Vembris, A.; Kokars, V. Glass-Forming Derivatives of 2-Cyano-2-(4H-Pyran-4-Ylidene) Acetate for Light-Amplification Systems. Dye. Pigment. 2019, 163, 62–70. [Google Scholar] [CrossRef]
- Vembris, A.; Zarins, E.; Kokars, V. Stimulated Emission and Optical Properties of Pyranyliden Fragment Containing Compounds in PVK Matrix. Opt. Laser Technol. 2017, 95, 74–80. [Google Scholar] [CrossRef]
- Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319–2358. [Google Scholar] [CrossRef]
- Vembris, A.; Zarins, E.; Kokars, V. Solid State Solvation Effect and Reduced Amplified Spontaneous Emission Threshold Value of Glass Forming DCM Derivative in PMMA Films. J. Lumin. 2015, 158, 441–446. [Google Scholar] [CrossRef]
- Bulović, V.; Shoustikov, A.; Baldo, M.A.; Bose, E.; Kozlov, V.G.; Thompson, M.E.; Forrest, S.R. Bright, Saturated, Red-to-Yellow Organic Light-Emitting Devices Based on Polarization-Induced Spectral Shifts. Chem. Phys. Lett. 1998, 287, 455–460. [Google Scholar] [CrossRef]
- Bulović, V.; Deshpande, R.; Thompson, M.E.; Forrest, S.R. Tuning the Color Emission of Thin Film Molecular Organic Light Emitting Devices by the Solid State Solvation Effect. Chem. Phys. Lett. 1999, 308, 317–322. [Google Scholar] [CrossRef]
- Deshpande, A.V.; Beidoun, A.; Penzkofer, A.; Wagenblast, G. Absorption and Emission Spectroscopic Inves-tigation of Cyanovinyldiethylaniline Dye Vapors. Chem. Phys. 1990, 142, 123–131. [Google Scholar] [CrossRef]
- Anni, M. Poly [2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MeH-PPV) Amplified Spontaneous Emission Optimization in Poly(9,9-dioctylfluorene (PFO):MeH-PPV Active Blends. J. Lumin. 2019, 215, 11668. [Google Scholar] [CrossRef]
Concentration, wt% | λabs, nm | λPL, nm | FWHMPL, nm | PQLY, % | λASE, nm | FWHMASE, nm | Eth, µJ/cm2 |
---|---|---|---|---|---|---|---|
1 | 461 ± 2 | 566 ± 2 | 108 ± 1 | 43 ± 2 | - | - | - |
5 | 461 ± 2 | 568 ± 2 | 112 ± 2 | 37 ± 2 | 622 ± 2 | 17 ± 2 | 57 ± 6 |
10 | 461 ± 2 | 576 ± 2 | 112 ± 2 | 32 ± 2 | 623 ± 2 | 14 ± 2 | 50 ± 5 |
20 | 461 ± 2 | 585 ± 2 | 101 ± 2 | 25 ± 2 | 626 ± 2 | 22 ± 2 | 9 ± 1 |
30 | 461 ± 2 | 590 ± 2 | 116 ± 2 | 21 ± 2 | 629 ± 2 | 21 ± 2 | 12 ± 1 |
50 | 461 ± 2 | 592 ± 2 | 119 ± 2 | 21 ± 2 | 631 ± 2 | 22 ± 2 | 14 ± 1 |
70 | 461 ± 2 | 597 ± 2 | 114 ± 2 | 20 ± 2 | 634 ± 2 | 21 ± 2 | 16 ± 2 |
Concentration, wt% | λabs, nm | λPL, nm | FWHMPL, nm | PQLY, % | λASE, nm | FWHMASE, nm | Eth, µJ/cm2 |
---|---|---|---|---|---|---|---|
1 | 463 ± 2 | 571 ± 2 | 100 ± 1 | 56 ± 2 | - | - | - |
5 | 463 ± 2 | 576 ± 2 | 102 ± 2 | 51 ± 2 | 618 ± 2 | 33 ± 2 | 41 ± 4 |
10 | 463 ± 2 | 586 ± 2 | 107 ± 2 | 46 ± 2 | 620 ± 2 | 29 ± 2 | 16 ± 2 |
20 | 463 ± 2 | 588 ± 2 | 108 ± 2 | 39 ± 2 | 626 ± 2 | 24 ± 2 | 25 ± 2 |
30 | 463 ± 2 | 592 ± 2 | 105 ± 2 | 36 ± 2 | 628 ± 2 | 23 ± 2 | 26 ± 3 |
50 | 463 ± 2 | 596 ± 2 | 114 ± 2 | 34 ± 2 | 634 ± 2 | 19 ± 2 | 24 ± 2 |
70 | 463 ± 2 | 600 ± 2 | 115 ± 2 | 33 ± 2 | 637 ± 2 | 19 ± 2 | 37 ± 4 |
Concentration, wt% | λabs, nm | λPL, nm | FWHMPL, nm | PQLY, % | λASE, nm | FWHMASE, nm | Eth, µJ/cm2 |
---|---|---|---|---|---|---|---|
1 | 460 ± 2 | 562 ± 2 | 101 ± 1 | 40 ± 2 | - | - | - |
5 | 460 ± 2 | 562 ± 2 | 105 ± 2 | 38 ± 2 | 586 ± 2 | 14 ± 2 | 153 ± 15 |
10 | 460 ± 2 | 568 ± 2 | 111 ± 2 | 32 ± 2 | 638 ± 2 | 17 ± 2 | 120 ± 12 |
20 | 460 ± 2 | 585 ± 2 | 129 ± 2 | 29 ± 2 | 637 ± 2 | 19 ± 2 | 114 ± 11 |
30 | 460 ± 2 | 592 ± 2 | 122 ± 2 | 25 ± 2 | 637 ± 2 | 21 ± 2 | 127 ± 13 |
50 | 460 ± 2 | 596 ± 2 | 128 ± 2 | 27 ± 2 | 636 ± 2 | 19 ± 2 | 140 ± 14 |
70 | 460 ± 2 | 603 ± 2 | 133 ± 2 | 26 ± 2 | 634 ± 2 | 17 ± 2 | 160 ± 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulsone, P.; Pervenecka, J.; Zarins, E.; Kokars, V.; Vembris, A. Optical and Amplified Spontaneous Emission Properties of 4H-Pyran-4-Ylidene-2-Cyanoacetate Fragment Containing 2-Cyanoacetic Acid Derivative in PVK, PSU, or PS Matrix. Solids 2024, 5, 520-532. https://doi.org/10.3390/solids5040035
Paulsone P, Pervenecka J, Zarins E, Kokars V, Vembris A. Optical and Amplified Spontaneous Emission Properties of 4H-Pyran-4-Ylidene-2-Cyanoacetate Fragment Containing 2-Cyanoacetic Acid Derivative in PVK, PSU, or PS Matrix. Solids. 2024; 5(4):520-532. https://doi.org/10.3390/solids5040035
Chicago/Turabian StylePaulsone, Patricija, Julija Pervenecka, Elmars Zarins, Valdis Kokars, and Aivars Vembris. 2024. "Optical and Amplified Spontaneous Emission Properties of 4H-Pyran-4-Ylidene-2-Cyanoacetate Fragment Containing 2-Cyanoacetic Acid Derivative in PVK, PSU, or PS Matrix" Solids 5, no. 4: 520-532. https://doi.org/10.3390/solids5040035
APA StylePaulsone, P., Pervenecka, J., Zarins, E., Kokars, V., & Vembris, A. (2024). Optical and Amplified Spontaneous Emission Properties of 4H-Pyran-4-Ylidene-2-Cyanoacetate Fragment Containing 2-Cyanoacetic Acid Derivative in PVK, PSU, or PS Matrix. Solids, 5(4), 520-532. https://doi.org/10.3390/solids5040035