Previous Article in Journal
Integrative Taxonomy of Metarhabditis Associated with Parasitic Otitis in Dairy Cattle
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Curvature Analysis in Seed Surface of SEM Images of Silene Species from Türkiye

by
José Javier Martín-Gómez
1,
José Luis Rodríguez-Lorenzo
2,
Ángel Tocino
3,
Mehmet Yaşar Dadandi
4,
Kemal Yildiz
5 and
Emilio Cervantes
1,*
1
Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Cordel de Merinas 40, 37008 Salamanca, Spain
2
Plant Developmental Genetics, Institute of Biophysics v.v.i, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
3
Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain
4
Department of Biology, Faculty of Science, Erciyes University, 38039 Kayseri, Türkiye
5
Department of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, 45100 Yunusemre, Türkiye
*
Author to whom correspondence should be addressed.
Taxonomy 2024, 4(3), 487-506; https://doi.org/10.3390/taxonomy4030024
Submission received: 9 May 2024 / Revised: 9 July 2024 / Accepted: 15 July 2024 / Published: 18 July 2024

Abstract

:
Recently, based on light microscopy images, the tubercle structure on the seed surface of 100 Silene species was quantitatively described, including tubercle width, height, and curvature associated with general morphometric data. Curvature measures the rate of change of the tangent vector in a curve and can be calculated by the following methods described for Arabidopsis roots. Here, we apply curvature measurements to the SEM images of 40 Silene species from Türkiye, demonstrating that a quantitative analysis of tubercles can be made based on SEM images with similar results to optical photographs. The association of morphometric tubercle data allows for classification into six groups, five of them corresponding to described shapes: rugose (two groups), echinate, mammillate, and papillose, and a sixth group of tubercles plane on top. The curvature values vary between 20 and 200 mm−1 and differ among the morphological tubercle types described. The correlation of curvature values with other general measurements and morphological seed characteristics is investigated. Tubercle quantification not only is a useful tool for Silene taxonomy, but also provides the basis for the analysis of the genetic control and developmental effects on tubercle structure and shape in the seed surface.

1. Introduction

The fruits and seeds of many plant species present distinct surface protrusions, often associated with various types of dispersion [1]. Thus, winged fruits and seeds occur in species of 93 families at least [2,3,4], being frequent in climbers such as the Aristolochiaceae [5] and Cucurbitaceae [6], and absent or not described in the Arecaceae. Seed surface formations may also contribute to zoochory or hydrochory, as the endocarp fibers of Chamaedorea cataractarum Mart. [7] and other outgrowths may play a role as mechanisms facilitating the establishment and support of seeds in rocks and cliffs [8,9,10].
In the Caryophyllaceae and other families of the order Caryophyllales, winged seeds are rare [11]. However, the name Dipterospermae (Rohrb.) was applied to a section in the Silene subgen. Silene, now ascribed to sect. Silene [12]. The lateral view of seeds in this section resembles a butterfly, and the two lateral projections are called wings, but there is no evidence for the role of these structures in wind transport. Nevertheless, the diversity of tubercle size and shape in the Caryophyllaceae has attracted the attention of botanists for generations, and even the genera were named considering seed morphological peculiarities, such as Heliosperma (Rchb.) Rchb., due to long tubercles that expand from the central part of the seed, giving it a radiated shape akin to the rays of the sun (Helios). Tubercle structure has been proposed as a key character in the genera of the order Caryophyllales, for example, Portulaca L. (Portulacaceae) [13,14], and in many genera of the Caryophyllaceae, such as Arenaria Ruppius ex L. [15,16,17,18], Cerastium Tourn. ex L. [15,18,19], Minuartia Loefl. [18,20], Moehringia L. [21,22], Sagina L. [23,24], and Stellaria L. [15,18,19,25,26,27,28] in the Alsineae; Acanthophyllum C.A.Mey [29,30], Dianthus L. [23], and Gypsophilla L. [23,31,32] in the Caryophylleae; Paronychia Mill. (Paronichieae) [33,34] and Silene L. [35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61] (Sileneae). However, evidence for a physiological and/or ecological function of seed surface tubercles is very scarce in this order. After observation in many species, mainly with SEM (Scanning Electron Microscopy), and classification into morphological types, the ecological functions of the tubercles remain largely unexplained except for a general role of support and attachment of the seeds to the substrate in rocks and cliffs against dragging by water and wind [8,9,10].
Recent work based on the quantification of geometric measurements in light microscopy images proposed a broad classification of the tubercles in the genus Silene in four types: smooth, rugose, echinate, and papillose [62,63]. Smooth seeds are defined by the absence of visible protuberances and were described before in Arenaria L. [15,16,17], Minuartia L. [20], Moehringia L. [22], and Silene [37,38,49]. Some species belonging to the S. subgen. Silene sect. Silene presented smooth seeds. These seeds are characterized by high circularity and solidity values in their lateral views, while in their dorsal views, higher circularity values are shared by echinate and rugose seeds [62]. In contrast to smooth seeds, the papillose seed group in Silene is characterized by the largest protuberances, resulting in the lowest values of circularity and solidity in both lateral and dorsal views. It includes the species S. holzmani Heldr. ex Boiss. (sect. Behenantha), S. laciniata Cav. (sect. Physolychnis), S. magellanica (Desr.) Bocquet (sect. Physolychnis), S. perlmanii W.L.Wagner, D.R.Herbst & Sohmer (sect. Sclerophyllae) [63]. Rugose and echinate seeds are distinguished by their tubercle types, being more rounded in the former type and more triangular or acute in the second. Geometrically, these two types of tubercles are well differentiated by analysis of their curvature values, higher in echinate than in rugose tubercles [64]. Concerning the taxonomy of the genus, although there is not a clear-cut difference between subgenera, nevertheless, the smooth and rugose types are more frequent in the S. subgen. Silene. The echinate type of higher curvature values occurs more often in the S. subgen. Behenantha [64].
The curvature of a curve is the rate at which the unit tangent vector changes with respect to arc length [65,66,67]. The methods here applied for curvature measurements are based on those developed for the analysis of the root apex in Arabidopsis Heynh. (Brassicaceae) [65,66]. This methodology was also applied to the seeds of wheat, grape, Cucurbitaceae, and some species of Silene [64,67,68,69,70,71].
The first objective of this work was to implement a set of methods for the analysis of the curvature on the surface of Silene seeds from SEM images and to demonstrate that the methodology can be applied both to SEM images and to optical microscopy photographs, providing equivalent and consistent data. The second objective was to obtain an accurate measurement of the curvature of individual seed tubercles to analyze their distribution and types in the Silene species from the Turkish SEM image collection.

2. Materials and Methods

2.1. Seed Images

This work is based on the SEM images of the Turkish collection of images corresponding to 122 Silene species maintained by K. Yildiz. The collection contains seed images taken at 100× that were used in this work, making this approach more comparable to our work with light microscopy.

2.2. Image Selection

Two aspects are important for an optimal analysis of tubercle size and shape. Tubercles must be well defined and regularly shaped. Small, irregular, or densely compacted tubercles can make measurements of curvature, height, and width at the base difficult or confusing. Images were selected based on a good tubercle definition avoiding those containing irregularities or that were too densely compacted. Smooth seeds, such as those of S. chaetodonta Boiss. (Arenosa, Silene), S. colorata Poir. (Silene, Silene), S. eremitica Boiss. (Siphonomorpha, Silene), S.erciyesdagensis Aksoy & Hamzaoğlu (Lasiostemones, Silene), S. laxa Boiss. & Kotschy (Sclerocalycinae, Silene), S. macrodonta Boiss. (Conoideae, Behenantha), S. nerimaniae G.E.Genç, Kandemir & I.Genç (Auriculatae, Silene), and S. sordida Hub.-Mor. & Reese (Sordidae, Silene) were excluded from the analysis because they lacked tubercles or were too small. Table 1 contains a description of the species whose seeds were used in this present study.

2.3. Curvature Measurement

The curvature was measured in pairs of tubercles to obtain the values in two adjacent peaks and in the curve between them. The coordinates of points along the tubercles were automatically derived from their images with Image J and processed with the Mathematica program designed first to give their Bézier curve and second to calculate the corresponding curvature values along the curve, as described in Refs. [64,65,66,67]. Tubercle images were oriented with their peaks upwards and opened with Image J. After size adjustment with the ruler of each image, selected regions were thresholded, and the corresponding (x,y) coordinates were copied and processed to Mathematica. Bézier curves and the corresponding curvature values resulted from published protocols [64,65,66,67] (see Supplementary Data). Curvature is given in mm−1; thus, a curvature of 20 belongs to a circumference of 50 microns while a curvature of 2 is associated with a circumference of 500 microns (0.5 mm). For most species analyzed, four pairs of tubercles were measured. The images and corresponding Mathematica files are available as indicated in the Supplementary Materials section.

2.4. Statistical Analysis

For each group of seeds, the mean values and coefficients of variation were obtained for general morphological measurements and tubercle measurements (curvature, width, height). For morphological characteristics and curvature analysis, the data did not adjust to normal distributions, and the Kruskal–Wallis test was applied, followed by stepwise stepdown comparisons by the ad hoc procedure developed by Campbell and Skillings [73]; p values below 0.05 were considered significant. The coefficient of variation was calculated as CVtrait = standard deviationtrait/meantrait × 100 [74]. Statistical analyses were conducted with IBM SPSS statistics v29 (SPSS 2022).
The Euclidean distance and Ward algorithm for clustering were used to calculate the dendrogram. The matrix used for the analysis contained the data for general morphological measurements (Appendix A, Table A1, Table A2, Table A3, Table A4, Table A5 and Table A6) and tubercle measurements of curvature values, as well as tubercle width (W), height (H), and slope.

3. Results

The seeds were classified by visual observation into six groups: (1) seeds with small, rugose tubercles regularly distributed along the surface; (2) small seeds with broad, rugose tubercles; (3) seeds with rugose tubercles with nipple-shaped protuberances or mammillae (umbonated [35,51,55,64]); (4) seeds with tubercles plane on top; (5) seeds with echinate tubercles, and (6) seeds with papillose tubercles. Groups 1, 2, and 3 contain rugose (rounded) tubercles. The categories of rugose, echinate, and papillose follow the previous classification [62,63].
Section 3.1, Section 3.2, Section 3.3, Section 3.4, Section 3.5 and Section 3.6 contain the description and examples of tubercle measurements in each of these six groups; Section 3.7 contains the comparison between groups.

3.1. Seeds with Small Tubercles Regularly Distributed along the Surface

This group includes seeds of the following species (10): S. birandiana, S. bupleuroides, S. caramanica, S. caryophylloides, S. chlorifolia, S. doganii, S. eremitica, S. haradjiannii, S. marschalii, and S. swertiifolia., S. birandiana belongs to S. sect. Saxifragoideae; S. caryophylloides belongs to S. sect. Auriculatae; S. eremitica belongs to S. sect. Siphonomorpha; and the remaining seven species belong to sect. Sclerocalycinae (S. bupleuroides, S. caramanica, S. chlorifolia, S. doganii, S. haradjiannii, S. marschalii, S. swertiifolia). All of them belong to the S. subgen. Silene.
A summary of the general morphological measurements is presented in Table A1 (Appendix A) and tubercle measurements (curvature analysis, tubercle height, width and slope) are shown in Table 2. Figure 1 and Figure 2 correspond, respectively, to S. caryophylloides and S. chlorifolia and contain examples of tubercles of this group.
The tubercles of the seeds in this group are rounded and have mean curvature values comprised between 24 and 40.8 mm−1. Inter-tubercle curvature is comprised between 30.1 and 95.6.

3.2. Small Seeds with Broad Tubercles

This group includes seeds of the following species (11): S. cephalantha, S. densiflora, S. euxina, S. macrodonta, S. manissadjianii, S. olympica, S. oreophila, S. phrygia, S. saxatilis, S. spergulifolia, and S. tunicoides. Three of these belong to S. sect. Sclerocalycinae (S. olympica, S. phrygia, and S. tunicoides); two to S. sect. Spergulifoliae (S. cephalantha and S. spergulifolia), and to S. sect. Lasiostemones (S. manissadjanii and S. saxatilis); and one to each of the following four sections: Conoimorpha (S. macrodonta), Spergulifoliae (S. oreophila), Dichotomae (S. euxina), Otites (S. densiflora).
A summary of the general morphological measurements is presented in Table A2 (Appendix A) and the tubercle measurements (curvature analysis, tubercle height, width, and slope) are shown in Table 3. Figure 3 and Figure 4, correspond, respectively, to S. oreophila and S. phrygia contain examples of tubercles of this group.
The tubercles of these seeds are mainly rounded and have mean curvature values comprised between 18.7 and 72.3 mm−1. Inter-tubercle curvature is comprised between 26.3 and 133.7.

3.3. Seeds with Rounded Tubercles with Mammillae (Umbonated)

This group includes seeds of the following species (6): S. gallica, S. gigantea, S. italica, S. microsperma, S. nocturna, and S. tenuiflora. These species belong to the S. subgen. Silene in three sections: Arenosa (S. microsperma and S. tenuiflora), Silene (S. gallica, nocturna), and Siphonomorpha (S. gigantea, S. italica).
A summary of the general morphological measurements is presented in Table A3 (Appendix A) and the tubercle measurements (curvature analysis, tubercle height, width, and slope) are shown in Table 4. Figure 5 and Figure 6, corresponding, respectively, to S. italica and S. tenuiflora, contain examples of tubercles of this group.
The seed tubercles in this group are rounded and umbonated (with mammillae). The curvature values, more variable than the other groups due to two types of tubercles (umbonated or not), are comprised between 25.6 and 183.7 mm−1. Inter-tubercle curvature is comprised between 25.0 and 169.3.

3.4. Seeds with Tubercles Plane on Top

This group includes seeds of three species: S. anatolica, S. cserei, and S. rynchocarpa. These species belong to the S. subgen. Behenantha, sect. Behen (S. anatolica and S. cserei), and S. subgen. Silene sect. Auriculatae (S. rhynchocarpa).
A summary of the general morphological measurements is presented in Table A4 (Appendix A). Tubercle measurements (curvature analysis, tubercle height, width, and slope) are shown in Table 5. Figure 7, Figure 8 and Figure 9, corresponding, respectively, to S. anatolica, S. cserei, and S. rhynchocarpa, contain examples of tubercles of this group.
The curvature graphs of tubercles in this group are characteristic, with at least three peaks per tubercle, two peaks at the extremes of high curvature values, and at least one peak between them of a lower curvature. Tubercles have mean curvature values comprised between 29.7 and 56.4 mm−1. Inter-tubercle curvature is comprised between 56.2 and 261.4.

3.5. Seeds with Echinate Tubercles

This group includes seeds of the following species (7): S. brevicaulis, S. confertiflora, S. conica, S. isaurica, S. papillosa, S. pendula, and S. portensis subsp. rigidula. Two of these species belong to the S. subgen. Behenantha, sections Conoimorpha (S. conica) and Behenantha (S. pendula), and the remaining to five different sections of S. subgen. Silene: Auriculatae (S. brevicaulis), Lasiocalycinae (S. papillosa), Lasiostemones (S. isaurica), sect. Portenses (S. portensis subsp. rigidula), and Siphonomorpha (S. confertiflora).
A summary of the general morphological measurements and curvature analysis is shown in Table A5 (Appendix A). Tubercle measurements (curvature analysis, tubercle height, width, and slope) are shown in Table 6. Figure 10 and Figure 11, corresponding, respectively, to S. isaurica and S. conica, contain examples of tubercles of this group.
Tubercles in this group have mean curvature values comprised between 61.4 and 109.4 mm−1. Inter-tubercle curvature is comprised between 31.9 and 187.7.

3.6. Seeds with Papillose Tubercles

This group includes seeds of three species, two of S. subgen. Silene: S. echinospermoides (Rigidulae), and S. leptoclada (Siphonomoprpha); and one to S. subgen. Behenantha: S. lydia (Conoimorpha). A summary of the general morphological measurements is shown in Table A6 (Appendix A). Tubercle measurements (curvature analysis, tubercle height, width, and slope) are shown in Table 7. Figure 12, corresponding to S. echinospermoides, contains examples of tubercles of this group.

3.7. Comparison between Seed Groups Based on Tubercle Type

There were differences between groups for the morphological data (Table 8), as well as for tubercle measurements of width, height, and curvature (Table 9). In all distance-based measurements (A, P, L, W), a group of higher values corresponded to the first group of small tubercle seeds, and lower values were observed in the remaining groups, except plane tubercle seeds in area and width, plane and papillose tubercle seeds in perimeter, and plane and broad tubercle seeds for length. Circularity was higher in small and lower in papillose seeds. The aspect ratio was higher in broad and lower in mammillate seeds, and the inverse result was observed for roundness. Solidity was higher in the seeds of small tubercles and lower in the seeds with echinate and papillose tubercles.
Differences between groups were also observed in curvature values as well as in tubercle width, tubercle height, and slope (Table 9).
The dendrogram in Figure 13 shows the relationship between the groups formed on the basis of tubercle morphology. Most species of S. subgen. Silene have lower curvature values and are grouped in the upper part of the diagram.

4. Discussion

Silene L., with about 850 species, is the largest genus of Caryophyllaceae [12]. In addition to a model for infrageneric diversity, S. latifolia, S. dioica, and other species [75] have been proposed as models for the study of sex determination. Like humans, these species have heteromorphic chromosomes, with a rapidly evolving non-recombining Y region rich in repetitive DNA that provides a unique system for the study of the origin and modification of sex chromosomes [76]. Silene species also present variations in seed shape that can be quantified by different means. The overall seed shape can be compared with geometric objects, and in many species, the lateral seed views show striking similarities with the cardioid and derived models [68]. Tubercle size, shape, and distribution can also be studied using geometrical and statistical methods [68,77].
Most descriptions of the seed surface in Silene are based on SEM images, and the terms to describe the shape of tubercles include conical [51], convex [55], cylindrical [51], echinate [55], granulate [45], mammillate (umbonated) [51,55], papillose [48], rounded [55], and winkled [36]. In general, although there may be different representations of these types in the different sections, there is no ascription of these particular types to any sections or subgenus. Based on seed silhouettes derived from light microscopy images, we classified the tuberculated seeds into three types: rugose, echinate, and papillose. Curvature analysis revealed higher values in the echinate than in the rugose-type tubercles [64]. Following our previous terminology, in this work, the seeds were classified into six groups. Groups 1 and 2 consisted of rugose seeds, which were differentiated by seed size and tubercle width. Groups 3 and 4 were made up of mammillate seeds and seeds with flat tubercles on top. Groups 5 and 6 contained echinate and papillose seeds, respectively. In accordance with previous results [62,63], these groups are supported based on morphological measurements. Thus, papillose seeds had lower circularity than the two groups of rugose seeds, and both papillose and echinate seeds had lower solidity values than the rugose seeds. There is also a difference between the two rugose groups based on area, perimeter, length, and width. According to these measurements, mammillate seeds are closer to seeds with broad rugose tubercles than to seeds with small rugose tubercles. However, the mammillate group differs from the two rugose groups in tubercle dimensions, whereas it differs from the group of small rugose tubercles in tubercle curvature. Differences between groups are noticeable in the maximum curvature, with lower values in the two groups of rugose seeds, and higher in the papillose seed group.
Mammillate tubercles were reported for the first time for species in sections Siphonomorpha (S. gigantea, S. mollissima Pers., S. pseudovelutina Roth, S. velutina Pourr., S. coutinhoi Rothm. & P.Silva, S. spinescens Sm.) and Spergulifoliae (S. arguta Fenzl, S. brahuica Boiss., S. erioclycina Boiss.) [35], being described as umbonated. This was supported by our results in S. spinescens Sm. and S. gigantea (L.) L. [64]. Other authors indicated that this type of tubercle is very frequent in the section Siphonomorpha [51]. This work reported the presence of mammillae in some but not all populations of S. gallica, confirming the infraspecific variation reported before [77]. Hoseini et al. [55] found this character in three species of sect. Lasiocalycinae (S. dichotoma Ehrh., S. gallica L., S. lagenocalyx Fenzl ex. Boiss.) as well as in S. meyeri Fenzl ex Boiss. & Buhse (Auriculatae), S. nana Kar. & Kir. (sect. Saponarioides), S. ovalifolia (Regel and Schmalh.) Popov (sect. Otites), and S. viscosa (L.) Pers. (Physolychnis). Section Otites corresponds to Siphonomorpha in the classification of Jafari et al. [12], while the tubercles observed in S. viscosa under our concept could be better denominated as echinate because they are more triangular than having a central protuberance. In conclusion, this type is more abundant in S. subgen Silene than in Behenantha, and particularly frequent in sect. Siphonomorpha.
Unlike groups 1, 2, and 3, groups 4, 5, and 6 are more diverse. The tubercles of Group 4 have a very characteristic shape—plane at the top. Although this type is clearly distinguishable to the naked eye, it also has noteworthy geometrical features. The tubercles had a profile with two lateral maxima and a central point of lesser curvature, and the curve between tubercles had higher curvature values than in any of the other types. In addition to the examples reported here, some populations of S. behen also have such tubercles [57]. In the seeds of Group 4 studied here (see Table 5), higher curvature values and higher tubercles corresponded to S. cserei, and smaller ones to S. rhynchocarpa. The low-plane tubercles of S. rhynchocarpa seed resemble those of Groups 1 and 2.
The work reported here confirms a certain association between tubercle type and taxonomic sections. Groups 1 to 3 contain almost exclusively species of S. subgen Silene. Species in Groups 1 and 2 (rugose, or rounded tubercles) belong to the Silene subgen. Silene. The difference between these two groups lies in the size of the seeds and the width of the tubercles. While the seeds of Group 1 are large and have smaller tubercles, the seeds of Group 2 are smaller and have tubercles broader at the base.

5. Conclusions

Analysis of tubercles based on the SEM images obtained from the seed collection of Turkish species of Silene allowed us to delimit five principal morphological types that were reported before as smooth, rugose, mammillate, echinate, and papillose seeds, to which a sixth group of seeds with tubercles flat on top has been added. The rugose type is divided into two characterized by large seeds with small tubercles and smaller seeds with broader tubercles, respectively. Differences were found between groups both in seed and in tubercle morphology. The rugose and papillose groups differ both in circularity and maximum values of curvature of their tubercles. Both rugose and echinate groups have lower solidity than the rugose groups. The mammillate group is characterized by high curvature values in some of the tubercles, with mean values superior to rugose seeds. This work supports a certain association between tubercle type and sections within the genus Silene, with the groups of rugose and mammillate seeds composed mainly of species of S. subgen Silene.

Supplementary Materials

The following are available at Zenodo (https://zenodo.org/records/10983689; accessed on 17 April 2024): (1) JPG files with seed images, Bézier curves and curvature analysis for 40 seeds (one seed of each species); (2) Mathematica files with curvature analysis corresponding to 40 seeds (one seed of each species).

Author Contributions

Conceptualization, E.C.; methodology, J.J.M.-G. and E.C.; software, J.J.M.-G., J.L.R.-L., Á.T. and E.C.; validation, J.J.M.-G., J.L.R.-L., Á.T., M.Y.D., K.Y. and E.C.; formal analysis, J.J.M.-G., J.L.R.-L., Á.T. and E.C.; investigation, J.J.M.-G., J.L.R.-L., Á.T., M.Y.D., K.Y. and E.C.; resources, J.J.M.-G., J.L.R.-L., Á.T., M.Y.D., K.Y. and E.C.; data curation, J.J.M.-G.; writing—original draft preparation, E.C.; writing—review and editing, J.J.M.-G., J.L.R.-L., Á.T., M.Y.D., K.Y. and E.C.; visualization, J.J.M.-G., J.L.R.-L., Á.T., M.Y.D., K.Y. and E.C.; supervision, E.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received funding from the Scientific and Technological Research Council of Türkiye (Project No: TBAG-104T310) and Project “CLU-2019-05-IRNASA/CSIC Unit of Excellence”, funded by the Junta de Castilla y León and co-financed by the European Union (ERDF “Europe drives our growth”).

Data Availability Statement

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A

Table A1. General morphological measurements corresponding to the 10 species of Group 1. A = Area; P = Perimeter; L = Length; W = Width; C = Circularity; AR = Aspect Ratio; R = Roundness; S = Solidity.
Table A1. General morphological measurements corresponding to the 10 species of Group 1. A = Area; P = Perimeter; L = Length; W = Width; C = Circularity; AR = Aspect Ratio; R = Roundness; S = Solidity.
SpeciesAPLWCARRS
S. birandiana1.305.811.601.360.631.170.850.967
S. bupleuroides1.997.571.951.300.441.500.670.946
S. caramanica3.948.742.502.010.651.200.810.976
S. caryophylloides1.505.301.451.310.651.110.900.968
S. chlorifolia3.237.832.361.750.661.350.740.973
S. doganii3.778.792.481.940.611.280.780.957
S. eremitica1.044.331.241.070.701.150.870.969
S. haradjiannii1.405.241.481.200.641.230.810.966
S. marschalii2.607.052.061.600.661.280.780.978
S. swertiifolia2.707.992.121.610.531.360.760.942
Table A2. General morphological measurements corresponding to the 11 species of Group 2. A = Area; P = Perimeter; L = Length; W = Width; C = Circularity; AR = Aspect Ratio; R = Roundness; S = Solidity.
Table A2. General morphological measurements corresponding to the 11 species of Group 2. A = Area; P = Perimeter; L = Length; W = Width; C = Circularity; AR = Aspect Ratio; R = Roundness; S = Solidity.
SpeciesAPLWCARRS
S. cephalantha1.054.861.311.010.561.280.780.943
S. densiflora1.024.801.370.950.561.450.690.949
S. euxina1.284.881.491.090.671.370.730.965
S. macrodonta0.954.301.230.990.651.250.800.963
S. manissadjianii0.873.891.140.970.721.170.850.954
S. olympica1.104.701.331.050.621.270.790.966
S. oreophila1.776.931.781.260.471.410.710.945
S. phrygia1.407.101.541.160.361.320.760.937
S. saxatilis0.623.491.020.770.641.320.760.951
S. spergulifolia1.084.471.341.030.681.300.770.920
S. tunicoides0.834.191.250.840.591.490.670.958
Table A3. General morphological measurements corresponding to the six species of Group 3. A = Area; P = Perimeter; L = Length; W = Width; C = Circularity; AR = Aspect Ratio; R = Roundness; S = Solidity.
Table A3. General morphological measurements corresponding to the six species of Group 3. A = Area; P = Perimeter; L = Length; W = Width; C = Circularity; AR = Aspect Ratio; R = Roundness; S = Solidity.
SpeciesAPLWCARRS
S. gallica0.614.250.970.800.421.210.820.932
S. gigantea2.416.851.941.570.651.240.810.961
S. italica1.175.081.351.100.571.230.820.949
S. microsperma0.412.680.780.660.711.180.850.967
S. nocturna0.393.140.770.650.501.180.850.949
S. tenuiflora0.543.670.910.760.511.200.830.937
Table A4. General morphological measurements corresponding to the two species of Group 4. A = Area; P = Perimeter; L = Length; W = Width; C = Circularity; AR = Aspect Ratio; R = Roundness; S = Solidity.
Table A4. General morphological measurements corresponding to the two species of Group 4. A = Area; P = Perimeter; L = Length; W = Width; C = Circularity; AR = Aspect Ratio; R = Roundness; S = Solidity.
SpeciesAPLWCARRS
S. anatolica1.696.211.571.370.551.150.870.969
S. cserei1.445.991.511.210.501.250.800.943
S. rhynchocarpa1.645.811.671.250.611.330.750.948
Table A5. General morphological measurements corresponding to the seven species of Group 5. A = Area; P = Perimeter; L = Length; W = Width; C = Circularity; AR = Aspect Ratio; R = Roundness; S = Solidity.
Table A5. General morphological measurements corresponding to the seven species of Group 5. A = Area; P = Perimeter; L = Length; W = Width; C = Circularity; AR = Aspect Ratio; R = Roundness; S = Solidity.
SpeciesAPLWCARRS
S. brevicaulis0.593.830.960.780.511.220.820.930
S. confertiflora1.426.451.501.200.431.260.800.923
S. conica0.543.370.910.750.591.200.820.940
S. isaurica0.654.171.020.810.471.260.790.949
S. papillosa0.653.981.040.800.521.310.770.936
S. pendula0.914.951.180.980.471.210.830.952
Table A6. General morphological measurements corresponding to the three species of Group 6. A = Area; P = Perimeter; L = Length; W = Width; C = Circularity; AR = Aspect Ratio; R = Roundness; S = Solidity.
Table A6. General morphological measurements corresponding to the three species of Group 6. A = Area; P = Perimeter; L = Length; W = Width; C = Circularity; AR = Aspect Ratio; R = Roundness; S = Solidity.
SpeciesAPLWCARRS
S. echinospermoides1.088.161.301.050.201.230.810.911
S. leptoclada0.494.380.940.660.321.410.710.885
S. lydia0.574.080.930.780.431.210.830.940

References

  1. Stuppy, W.; Kesseler, R. Seeds: Time Capsules of Life; Papadakis: London, UK, 2006. [Google Scholar]
  2. Dallwitz, M.J.; Paine, T.A.; Zurcher, E.J. Onwards. Principles of Interactive Keys. 2000. Available online: http://deltaintkey.com (accessed on 1 May 2024).
  3. Mirle, C.; Burnham, R.J. Identification of asymmetrically winged samaras from the western hemisphere. Brittonia 1999, 51, 1–14. [Google Scholar] [CrossRef]
  4. der Weduwen, D.; Ruxton, G.D. Secondary dispersal mechanisms of winged seeds: A review. Biol. Rev. 2019, 94, 1830–1838. [Google Scholar] [CrossRef]
  5. Adams, C.A.; Baskin, J.M.; Baskin, C.C. Comparative morphology of seeds of four closely related species of Aristolochia subgenus Siphisia (Aristolochiaceae, Piperales). Bot. J. Linn. Soc. 2005, 148, 433–436. [Google Scholar] [CrossRef]
  6. Guo, J.; Xu, W.; Hu, Y.; Huang, J.; Zhao, Y.; Zhang, L.; Huang, C.-H.; Ma, H. Phylotranscriptomics in Cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations. Mol. Plant 2020, 13, 1117–1133. [Google Scholar] [CrossRef]
  7. Zona, S. Seed dispersal of Chamaedorea cataractarum. Palms 2017, 61, 65–68. [Google Scholar] [CrossRef]
  8. Bochet, E.; García-Fayos, P. Factors controlling vegetation establishment and water erosion on motorway slopes in Valencia, Spain. Restor Ecol. 2004, 12, 166–174. [Google Scholar] [CrossRef]
  9. Cerdà, A.; Garcıa-Fayos, P. The influence of seed size and shape on their removal by water erosion. Catena 2002, 48, 293–301. [Google Scholar] [CrossRef]
  10. Wagner, W.L.; Weller, S.G.; Sakai, S.K. Description of a rare new cliff-dwelling species from Kaua’i, Schiedea attenuata (Caryophyllaceae). Novon 1994, 4, 187–190. [Google Scholar] [CrossRef]
  11. Telenius, A.; Torstensson, P. The seed dimorphism of Spergularia marina in relation to dispersal by wind and water. Oecologia 1989, 80, 206–210. [Google Scholar] [CrossRef] [PubMed]
  12. Jafari, F.; Zarre, S.; Gholipour, A.; Eggens, F.; Rabler, R.K.; Oxelman, B. A new taxonomic backbone for the infrageneric classification of the species-rich genus Silene (Caryophyllaceae). Taxon 2020, 69, 337–368. [Google Scholar] [CrossRef]
  13. Matthews, J.F.; Levins, P.A. The systematic significance of seed morphology in Portulaca (Portulacaceae) under Scanning Electron Microscopy. Syst. Bot. 1986, 11, 302–308. [Google Scholar] [CrossRef]
  14. Ocampo, G. Morphological characterization of seeds in Portulacaceae. Phytotaxa 2013, 141, 1–24. [Google Scholar] [CrossRef]
  15. Sadeghian, S.; Zarre, S.; Heubl, G. Systematic implication of seed micromorphology in Arenaria (Caryophyllaceae) and allied genera. Flora 2014, 209, 513–529. [Google Scholar] [CrossRef]
  16. Wofford, B.E. External seed morphology of Arenaria (Caryophyllaceae) of the southeastern United States. Syst. Bot. 1981, 6, 126–135. [Google Scholar] [CrossRef]
  17. Wyatt, R. Intraspecific variation in seed morphology of Arenaria uniflora (Caryophyllaceae). Syst. Bot. 1984, 9, 423–431. [Google Scholar] [CrossRef]
  18. Ullah, F.; Papini, A.; Shah, S.N.; Zaman, W.; Sohail, A.; Iqbal, M. Seed micromorphology and its taxonomic evidence in subfamily Alsinoideae (Caryophyllaceae). Microsc. Res. Techniq. 2019, 82, 250–259. [Google Scholar] [CrossRef] [PubMed]
  19. Arabi, Z.; Ghahremaninejad, F.; Rabeler, R.K.; Heubl, G.; Zarre, S. Seed micromorphology and its systematic significance in tribe Alsineae (Caryophyllaceae). Flora 2017, 234, 41–59. [Google Scholar] [CrossRef]
  20. Mostafavi, G.; Assadi, M.; Nejadsattari, T.; Sharifnia, F.; Mehregan, I. Seed micromorphological survey of the Minuartia species (Caryophyllaceae) in Iran. Turk. J. Bot. 2013, 37, 446–454. [Google Scholar] [CrossRef]
  21. Minuto, L.; Fior, S.; Roccotiello, E.; Casazza, G. Seed morphology in Moehringia L. and its taxonomic significance in comparative studies within the Caryophyllaceae. Plant Syst. Evol. 2006, 262, 189–208. [Google Scholar] [CrossRef]
  22. Minuto, L.; Roccotiello, E.; Casazza, G. New seed morphological features in Moehringia L. (Caryophyllaceae) and their taxonomic and ecological significance. Plant Biosyst. 2011, 145, 60–67. [Google Scholar] [CrossRef]
  23. Abdel-Maksoud, H.S.; Fawzi, N.M. Seed morphology of some taxa of Caryophyllaceae. Bull. Fac. Agric. Cairo Univ. 2016, 67, 213–227. [Google Scholar] [CrossRef]
  24. Crow, G.E. The Systematic Significance of Seed Morphology in Sagina (Caryophyllaceae) Under Scanning Electron Microscopy. Brittonia 1979, 31, 52–63. [Google Scholar] [CrossRef]
  25. Mahdavi, M.; Asadi, M.; Fallahian, F.; Nejadsattari, T. The systematic significance of seed micro-morphology in Stellaria L. (Caryophyllaceae) and its closest relatives in Iran. Iran J. Bot. 2012, 18, 302–310. [Google Scholar] [CrossRef]
  26. Volponi, C.R. Stellaria yungasensis (Caryophyllaceae), una nueva cita para Argentina. An. Soc. Cient. Argent. 1992, 222, 69–72. [Google Scholar]
  27. Volponi, C.R. Stellaria cuspidata (Caryophyllaceae) and Some Related Species on the Andes. Willdenowia 1993, 23, 193–209. Available online: https://www.jstor.org/stable/3996805 (accessed on 1 May 2024).
  28. Volponi, C.R. Contribución a la espermatología de especies argentinas de Stellaria (Caryophyllaceae). Bol. Soc. Argent. Bot. 1986, 24, 283–294. [Google Scholar]
  29. Pirani, A.; Zarre, S.; Rabeler, R.; Assadi, M.; Reza, M.; Joharchi, M.R.; Oxelman, B. Systematic significance of seed morphology in Acanthophyllum (Caryophyllaceae: Tribe Caryophylleae) in Iran. Phytotaxa 2019, 387, 105–118. [Google Scholar] [CrossRef]
  30. Bülbül, A.S.; Armaðan, M.; Varlik, K. Seed micromorphology of Acanthophyllum C.A.Mey. (Caryophyllaceae) genus in Turkey. Kastamonu Univ. J. For. Fac. 2017, 17, 215–224. [Google Scholar] [CrossRef]
  31. Amini, E.; Zarre, S.; Assadi, M. Seed micro-morphology and its systematic significance in Gypsophila (Caryophyllaceae) and allied genera. Nord. J. Bot. 2011, 29, 660–669. [Google Scholar] [CrossRef]
  32. Ataşlar, E.; Ocak, A. Gypsophila osmangaziensis (Caryophyllaceae), A New Species from Central Anatolia, Turkey. Ann. Bot. Fenn. 2005, 331, 84–92. Available online: https://www.jstor.org/stable/23726817 (accessed on 1 May 2024).
  33. Kaplan, A.; Çölgeçen, H.; Büyükkartal, H.N. Seed morphology and histology of some Paronychia taxa (Caryophyllaceae) from Turkey. Bangladesh J. Bot. 2009, 38, 171–176. [Google Scholar] [CrossRef]
  34. Ocaña Amante, M.E.; Fernández González, I.; Pastor Díaz, J.E. Fruit and seed morphology in Paronychia Miller from South-west Spain. Lascalia 1997, 19, 521–528. [Google Scholar]
  35. Ghazanfar, S.A. Seed characters as diagnostic in the perennial sections of the genus Silene (Family Caryophyllaceae). Pak. J. Bot. 1983, 15, 7–12. [Google Scholar]
  36. El Oqlah, A.A.; Karim, F.M. Morphological and anatomical studies of seed coat in Silene species (Caryophyllaceae) from Jordan. Arab. Gulf J. Sci. Res. 1990, 8, 121–139. [Google Scholar]
  37. Oxelman, B. A Revision of the Silene sedoides Group. Willdenowia 1995, 25, 143–169. Available online: https://www.jstor.org/stable/3996978 (accessed on 1 May 2024).
  38. Yildiz, K.; Çırpıcı, A. Seed morphological studies in Silene L. from Turkey. Pak. J. Bot. 1998, 30, 173–178. [Google Scholar]
  39. Hong, M.-P.; Han, M.-J.; Kim, K.-J. Systematic Significance of Seed Coat Morphology in Silene L. s. str. (Sileneae-Caryophyllaceae) from Korea. J. Plant Biol. 1999, 42, 146–150. [Google Scholar] [CrossRef]
  40. Dinter, I.; Greuter, W. Silene rothmaleri (Caryophyllaceae), believed extinct, rediscovered at Cabo de São Vicente (Algarve, Portugal). Willdenowia 2004, 34, 371–380. [Google Scholar] [CrossRef]
  41. Yıldız, K. Morphological and palynological investigation on Silene gigantea L. var. gigantea and Silene behen L. (Caryophyllaceae) distributed in Western Anatolia and Northern Cyprus. Turk. J. Bot. 2006, 30, 105–119. [Google Scholar]
  42. Perveen, A. Seed morphology of the genus Silene: Caryophyllaceae from Pakistan and Kashmir. Int. J. Biol. Biotechnol. 2009, 6, 219–227. [Google Scholar]
  43. Kandemir, A.; Genç, G.E.; Genç, I. Silene dumanii (Caryophyllaceae), A New Species from East Anatolia, Turkey. Ann. Bot. Fennici 2009, 46, 71–74. Available online: https://www.jstor.org/stable/23727947 (accessed on 1 May 2024). [CrossRef]
  44. Fawzi, N.M.; Fawzy, A.M.; Mohamed, A.A.-H.A. Seed Morphological Studies on Some Species of Silene L. (Caryophyllaceae). Int. J. Bot. 2010, 6, 287–292. [Google Scholar] [CrossRef]
  45. Yıldız, K.; Çırpıcı, A.; Dadandı, M.Y. Silene demirizii sp. nov. and S. marschallii ssp. anamasi ssp. nov. (Caryophyllaceae) from Turkey. Nord. J. Bot. 2010, 28, 332–340. [Google Scholar]
  46. Ocaña, M.E.; Juan, R.; Fernández, I.; Pastor, J. Estudio Morfológico de Semillas de Silene (Caryophyllaceae) del Suroeste de España. Lagascalia 2011, 31, 21–45. Available online: http://hdl.handle.net/11441/62267 (accessed on 1 May 2024).
  47. Brullo, C.; Brullo, S.; Giusso del Galdo, G.; Ilardi, V.; Sciandrello, S. A new species of Silene sect. Dipterosperma (Caryophyllaceae) from Sicily. An. Jardín Botánico Madr. 2012, 69, 209–216. [Google Scholar] [CrossRef]
  48. Arman, M.; Gholipour, A. Seed Morphology Diversity in Some Iranian Endemic Silene (Caryophyllaceae) Species and Their Taxonomic Significance. Acta Biol. Szeged. 2013, 57, 31–37. Available online: https://abs.bibl.u-szeged.hu/index.php/abs/article/view/2792 (accessed on 26 June 2024).
  49. Tabaripour, R.; Koohdar, F.; Sheidai, M.; Gholipour, A. Intra-specific variations in Silene: Morphometry and micromorphometry analyses. Afr. J. Biotechnol. 2013, 12, 5208–5217. [Google Scholar] [CrossRef]
  50. Gholipour, A.; Kuhdar, F. Seed morphology diversity in certain Silene species (Caryophyllaceae) from Iran and its taxonomical significance. Taxon. Biosyst. 2014, 6, 107–118. [Google Scholar]
  51. Dadandi, M.Y.; Yildiz, K. Seed morphology of some Silene L. (Caryophyllaceae) species collected from Turkey. Turk. J. Bot. 2015, 39, 280–297. [Google Scholar] [CrossRef]
  52. Keshavarzi, M.; Mahdavinejad, M.; Sheidai, M.; Gholipour, A. Seed and pollen morphology of some Silene species (Caryophyllaceae) in Iran. Phytol. Balc. 2015, 21, 7–12. [Google Scholar]
  53. Firat, M.; Yildiz, K. Silene konuralpii (Sect. Spergulifoliae, Caryophyllaceae), a new species from eastern Anatolia. Phytotaxa 2016, 288, 214–226. [Google Scholar] [CrossRef]
  54. Firat, M.; Yildiz, K. Silene miksensis (Caryophyllaceae), a new species from eastern Anatolia. Phytotaxa 2016, 273, 283–292. [Google Scholar] [CrossRef]
  55. Hoseini, E.; Ghahremaninejad, F.; Assadi, M.; Edalatiyan, M.N. Seed micromorphology and its implication in subgeneric classification of Silene (Caryophyllaceae, Sileneae). Flora 2017, 228, 31–38. [Google Scholar] [CrossRef]
  56. Atazadeh, N.; Keshavarzi, M.; Sheidai, M.; Gholipour, A. Seed morphology of Silene commelinifolia Boiss. complex (Caryophyllaceae Juss.). Mod. Phytomorphol. 2017, 11, 5–13. [Google Scholar] [CrossRef]
  57. Kuh, M.; Yildiz, K.; and Minareci, E. A taxonomic study of the Silene sections Behenantha and Dichotomae (Caryophyllaceae) in Turkey based on the micromorphology of their seed and pollen. Turk. J. Bot. 2017, 41, 493–504. [Google Scholar] [CrossRef]
  58. Yildiz, K.; Çırpıcı, A.; Yaşar, M.; Dadandı, M.; Fırat, M. Silene nemrutensis (Caryophyllaceae), a new species from south-eastern Anatolia. Phytotaxa 2017, 292, 189–195. [Google Scholar] [CrossRef]
  59. Sáez Gonyalons, L.; Guasp, E.; Ferrer-Gallego, P.P.; López-Alvarado, J.; Rosselló, J.A. On the taxonomic identity and status of ‘Silene sericea’ var. ‘balearica’ (sect. ‘Dipterosperma’, Caryophyllaceae). Mediterr. Bot. 2019, 40, 193–202. [Google Scholar] [CrossRef]
  60. Özbek, M.U.; Uzunhisarcikli, M.E. A new species of Silene (Caryophyllaceae) from Turkey. Phytotaxa 2019, 397, 74–82. [Google Scholar] [CrossRef]
  61. Darici, B.; Dural, H.; Yilmaz Çitak, B. Morphological, anatomical and palynological investigations on endemic Silene tunicoides Boiss. (Caryophyllaceae). Biol. Divers. Conserv. 2019, 12, 111–118. [Google Scholar] [CrossRef]
  62. Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; Juan, A.; Tocino, Á.; Janousek, B.; Cervantes, E. Seed morphological properties related to taxonomy in Silene L. species. Taxonomy 2022, 2, 298–323. [Google Scholar] [CrossRef]
  63. Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; Tocino, Á.; Janousek, B.; Juan, A.; Cervantes, E. The outline of seed silhouettes: A morphological approach to Silene (Caryophyllaceae). Plants 2022, 11, 3383. [Google Scholar] [CrossRef]
  64. Rodríguez-Lorenzo, J.L.; Martín-Gómez, J.J.; Juan, A.; Tocino, Á.; Cervantes, E. Quantitative analysis of seed surface tubercles in Silene species. Plants 2023, 12, 3444. [Google Scholar] [CrossRef]
  65. Cervantes, E.; Tocino, A. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development. J. Plant Physiol. 2005, 162, 1038–1045. [Google Scholar] [CrossRef]
  66. Noriega, A.; Tocino, A.; Cervantes, E. Hydrogen peroxide treatment results in reduced curvature values in the Arabidopsis root apex. J. Plant Physiol. 2009, 166, 554–558. [Google Scholar] [CrossRef]
  67. Cervantes, E.; Rodríguez-Lorenzo, J.L.; Martín-Gómez, J.J.; Tocino, Á. Curvature analysis of seed silhouettes in Silene L. Plants 2023, 12, 2439. [Google Scholar] [CrossRef]
  68. Martín-Gómez, J.J.; Rewicz, A.; Goriewa-Duba, K.; Wiwart, M.; Tocino, Á.; Cervantes, E. Morphological description and classification of wheat kernels based on geometric models. Agronomy 2019, 9, 399. [Google Scholar] [CrossRef]
  69. Cervantes, E.; Martín-Gómez, J.J.; Espinosa-Roldán, F.E.; Muñoz-Organero, G.; Tocino, Á.; Cabello Sáenz de Santamaría, F. Seed apex curvature in key Spanish grapevine cultivars. Vitic. Data J. 2021, 3, e66478. [Google Scholar] [CrossRef]
  70. Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; Gutiérrez del Pozo, D.; Cabello Sáez de Santamaría, F.; Muñoz-Organero, G.; Tocino, Á.; Cervantes, E. Seed morphological analysis in species of Vitis and relatives. Horticulturae 2024, 10, 285. [Google Scholar] [CrossRef]
  71. Martín-Gómez, J.J.; Gutiérrez del Pozo, D.; Rodríguez-Lorenzo, J.L.; Tocino, Á.; Cervantes, E. Geometric analysis of seed shape diversity in the Cucurbitaceae. Seeds 2024, 3, 40–55. [Google Scholar] [CrossRef]
  72. Takhtajan, A.L. (Ed.) Caucasian Flora Conspectus; Konspekt flory Kavkaza; Magnoliaceae-Thymelaeaceae; KMK Scientific Press: Saint Petersburg, Russia, 2012; Volume 3, 623p, ISBN 978-5-87317-879-7. [Google Scholar]
  73. Campbell, G.; Skillings, J.H. Nonparametric Stepwise Multiple Comparison Procedures. J. Am. Stat. Assoc. 1985, 8, 998–1003. [Google Scholar] [CrossRef]
  74. Sokal, R.R.; Braumann, C.A. Significance Tests for Coefficients of Variation and Variability Profiles. Syst. Zool. 1980, 29, 50. [Google Scholar] [CrossRef]
  75. Filatov, D.A. Heterochiasmy and sex chromosome evolution in Silene. Genes 2023, 14, 543. [Google Scholar] [CrossRef] [PubMed]
  76. Mrackova, M.; Nicolas, M.; Hobza, R.; Negrutiu, I.; Monéger, F.; Widmer, A.; Vyskot, B.; Janousek, B. Independent origin of sex chromosomes in two species of the genus Silene. Genetics 2008, 179, 1129–1133. [Google Scholar] [CrossRef]
  77. Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; Juan, A.; Tocino, Á.; Cervantes, E. Infraspecific variation in Silene seed tubercles. Plants 2024, 13, 1416. [Google Scholar] [CrossRef]
Figure 1. Left: a seed of S. caryophylloides with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Figure 1. Left: a seed of S. caryophylloides with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Taxonomy 04 00024 g001
Figure 2. Left: a seed of S. chlorifolia with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Figure 2. Left: a seed of S. chlorifolia with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Taxonomy 04 00024 g002
Figure 3. Left: a seed of S. oreophila with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Figure 3. Left: a seed of S. oreophila with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Taxonomy 04 00024 g003
Figure 4. Left: a seed of S. phrygia with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Figure 4. Left: a seed of S. phrygia with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Taxonomy 04 00024 g004
Figure 5. Left: a seed of S. italica with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Figure 5. Left: a seed of S. italica with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Taxonomy 04 00024 g005
Figure 6. Left: a seed of S. tenuiflora with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Figure 6. Left: a seed of S. tenuiflora with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Taxonomy 04 00024 g006
Figure 7. Left: a seed of S. anatolica with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Figure 7. Left: a seed of S. anatolica with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Taxonomy 04 00024 g007
Figure 8. Left: a seed of S. cserei with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Figure 8. Left: a seed of S. cserei with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Taxonomy 04 00024 g008
Figure 9. Left: a seed of S. rhynchocarpa with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Figure 9. Left: a seed of S. rhynchocarpa with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Taxonomy 04 00024 g009
Figure 10. Left: a seed of S. isaurica with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Figure 10. Left: a seed of S. isaurica with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to the four pairs of tubercles.
Taxonomy 04 00024 g010
Figure 11. Left: a seed of S. conica with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to two pairs and two individual tubercles.
Figure 11. Left: a seed of S. conica with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to two pairs and two individual tubercles.
Taxonomy 04 00024 g011
Figure 12. Left: a seed of S. echinospermoides with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to two pairs and one individual tubercle.
Figure 12. Left: a seed of S. echinospermoides with eight tubercles numbered (below, scale). Right: tubercle images, Bézier curves, and curvature plots corresponding to two pairs and one individual tubercle.
Taxonomy 04 00024 g012
Figure 13. Dendrogram based on hierarchical clustering with the values of tubercle measurements indicated in Table 2, Table 3, Table 4, Table 5, Table 6 and Table 7 and seed morphological measurements (Table A1, Table A2, Table A3, Table A4, Table A5 and Table A6).
Figure 13. Dendrogram based on hierarchical clustering with the values of tubercle measurements indicated in Table 2, Table 3, Table 4, Table 5, Table 6 and Table 7 and seed morphological measurements (Table A1, Table A2, Table A3, Table A4, Table A5 and Table A6).
Taxonomy 04 00024 g013
Table 1. Silene seeds were used in this work with indication of taxa, collector, place and date of collection, and herbarium were these specimens were deposited.
Table 1. Silene seeds were used in this work with indication of taxa, collector, place and date of collection, and herbarium were these specimens were deposited.
TaxaCollector and Reference NumberLocality and Collected DateSpecimens Deposited
S. anatolica Melzheimer & A. Baytop *
Behenantha (Silene)
K. Yıldız 0153-2 and M.Y. DadandıKaraman; Ermenek-Bozkır 91. km, Korualan village-Hadim 1. km, 1495–1500 m, 13 vii 2006M. Celal Bayar Univ. Herb.
S. birandiana Ekim.
Saxifragoideae (Silene)
K. Yıldız 041-1 and M.Y. DadandıAmasya; Akdağ, 1800–1900 m, 25 vii 2005M. Celal Bayar Univ. Herb.
S. brevicaulis Boiss.
Auriculatae (Silene)
F. Holtz (Nr. 00.699), P. Hanel and T. Keserecioğlu Kahramanmaraş; Kahramanmaraş-Göksun, 2000 m, 16 vii 1973EGE
S. bupleuroides L.
Sclerocalycinae (Silene)
K. Yıldız 058-1 and M.Y. DadandıArdahan; Yalnızçam, NE slopes, rocky, 2045 m, 29 vii 2005M. Celal Bayar Univ. Herb.
S. caramanica Boiss. & Heldr. Sclerocalycinae, (Silene)K. Yıldız 026-3 and M.Y. DadandıKonya; Hadim, near Bozkır turn, rocky, 1470 m, 10 vii 2005M. Celal Bayar Univ. Herb.
S. caryophylloides subsp. masmenaea (Boiss.) Coode & Cullen
Auriculatae (Silene)
K. Yıldız 0347-1, E. Minareci and M. KuhKayseri; Dereşimli-Hanyeri, Gezibeli pass, stony rocky areas, 2000–2250 m, 19 vii 2011 M. Celal Bayar Univ. Herb.
S. cephalantha Boiss.
Auriculatae (Silene)
K. Yıldız 060-1 and M.Y. DadandıArdahan; Çıldır and Aktaş lake, slopes meadows, 2140 m, 29 vii 2005E; M. Celal Bayar Univ. Herb.
S. chlorifolia Sm.
Sclerocalycinae (Silene)
K. Yıldız 020-3 and M.Y. DadandıKaraman; Ermenek-Mut, near Gezende dam, rocky, 1050 m, 09 vii 2005M. Celal Bayar Univ. Herb.
S. confertiflora Chowdhuri Siphonomorpha (Silene)K. Yıldız 0174 and M.Y. DadandıHatay; Dörtyol, Topaktaş plateau, Mığır, 1100–1150 m, 19 viii 2006E; M. Celal Bayar Univ. Herb.
S. conica L.
Conoimorpha (Behenantha)
K. Yıldız 0345-1, E. Minareci and M. KuhKayseri; Saraycıbeli pass, Eşelik-Dereşimli, 1748 m, 19 vii 2011M. Celal Bayar Univ. Herb.
S. cserei Baumg.
Behenantha (Behenantha)
K. Yıldız 1124Çorum; İskilip, 700 m, 23 v 1991M. Celal Bayar Univ. Herb.
S. densiflora
Otites (Silene)
K. Yıldız 0179Edirne; Edirne-Lalapaşa road, between 0.5–1 km, 100–150 m, 25 viii 2006M. Celal Bayar Univ. Herb.
S. doganii A.Duran & Menemen Sclerocalycinae (Silene)K. Yıldız 0172-1 and M.Y. DadandıOsmaniye; Zorkun plaeuto, valley, 1750–2000 m, 18 viii 2006 M. Celal Bayar Univ. Herb.
S. echinospermoides Hub.-Mor. Rigidulae (Silene)K. Yıldız 089-2Muğla: Datça-Marmaris 33–35 km, rocky, 300–400 m, 21 v 2006M. Celal Bayar Univ. Herb.
S. eremitica Boiss.
Siphonomorpha (Silene)
H. Demiriz 3303Kars; Iğdır, border of Türkiye-İran, Subaşı, sandy soil, 800 m, 19 vii 1956ISTF
S. euxina (Rupr.) Hand.-Mazz.
Dichotoma (Silene)
K. Yıldız 0302-2, M. Kuh and E. MinareciSakarya; Karasu, İhsaniye village, s.l., 18 vii 2010M. Celal Bayar Univ. Herb.
S. gallica L.
Silene (Silene)
K. Yıldız 084Aydın; Milas, Karpuzlu, rocky slopes, 400 m, 19 v 2006 M. Celal Bayar Univ. Herb.
S. gigantea (L.) L.
Siphonomorpha (Silene)
K. Yıldız 0128-1İzmir; Gümüldür-Menderes, rocky slopes, 02 vii 2006 M. Celal Bayar Univ. Herb.
S. haradjannii Chowdhuri Sclerocalycinae, (Silene)K. Yıldız 0176 and M.Y. DadandıHatay; Dörtyol, Topraktaş plateau, 1728 m, 19 viii 2006M. Celal Bayar Univ. Herb.
S. isaurica Contandr. & Quézel Lasiostemones (Silene)K. Yıldız 0160 and M.Y. DadandıAntalya; Akseki, Çimi village-Kuyu plateau 1550–1570 m, 15 vii 2006M. Celal Bayar Univ. Herb.
S. italica (L.) Pers.
Siphonomorpha (Silene)
K. Yıldız 042-1 and M.Y. DadandıAmasya; Akdağ, Taşlıyayla-Ladik 4–5 km, under Pinus nigra, 1600–1650 m, 25 vii 2005M. Celal Bayar Univ. Herb.
S. leptoclada Boiss.
Siphonomorpha (Silene)
K. Yıldız 0263, E. Minareci and M. KuhAntalya; Fethiye, Kemer-Korkuteli, lime cliffs, 850 m, 10 vi 2010M. Celal Bayar Univ. Herb.
S. lydia Boiss.
Conoimorpha (Behenantha)
K. Yıldız 066Manisa; Sipil mountain, 900–1000 m, 14 v 2003M. Celal Bayar Univ. Herb.
S. macrodonta Boiss.
Conoimorpha (Behenantha)
K. Yıldız 0278-1, E. Minareci and M. KuhKaraman; Ermenek yolu, to Tekeçatı 1 km, 1520 m, 13 vi 2010M. Celal Bayar Univ. Herb.
S. manissadjianii Freyn
Lasiostemones (Silene)
K. Yıldız 045 and M.Y. DadandıTokat; Niksar, Çamiçi, Özalan village, rocky, 1260 m, 25 vii 2005 M. Celal Bayar Univ. Herb.
S. marschalii C.A.Mey.
Sclerocalycinae (Silene)
K. Yıldız 004-1 and M.Y. DadandıNevşehir; Uçhisar, rocky, 1470–1500 m, 04 vii 2005M. Celal Bayar Univ. Herb.
S. microsperma Fenzl
Arenosa (Silene)
K. Yıldız 079İzmir; Torbalı-Tire 20. km, rocky, Akkoyunlu village, 100 m, 19 v 2006M. Celal Bayar Univ. Herb.
S. nocturna L.
Silene (Silene)
K. Yıldız 0288-1Manisa; M. Celal Bayar University, 100 m, 30 iv 2010 M. Celal Bayar Univ. Herb.
S. olympica Boiss.
Sclerocalycinae (Silene)
K. Yıldız 037 and M.Y. DadandıBursa; Uludağ, near hotels, rocky, Abies forest, 1870–1950 m, 14 vii 2005M. Celal Bayar Univ. Herb.
S. oreophila Boiss.
Spergulifoliae (Silene)
K. Yıldız 042-2 and M.Y. DadandıAmasya; Akdağ, Taşlı plateau-Ladik 4–5 km, SW slope, below Pinus nigra, 1600–1650 m, 25 vii 2005 M. Celal Bayar Univ. Herb.
S. papillosa Boiss.
Lasiocalycinae (Silene)
K. Yıldız 0333-1, M. Kuh and E. MinareciAntalya; Korkuteli, inside forest, 310–320 m, 09 vi 2011M. Celal Bayar Univ. Herb.
S. pendula L.
Behenantha (Behenantha)
İzmir; Narlıdere, flower shop, 05 v 2014M. Celal Bayar Univ. Herb.
S. phrygia Boiss.
Sclerocalycinae (Silene)
K. Yıldız 156-2 and M.Y. DadandıKonya; Seydişehir-Akseki, 1600–1650 m, 14 vii 2006M. Celal Bayar Univ. Herb.
Silene portensis subsp. Rigidula
Portenses (Silene)
K. Yıldız 0297-1, E. Minareci and M. KuhAntalya; Alanya, Güzelbağ-Gündoğmuş, W slopes, 650 m, 15 vii 2010M. Celal Bayar Univ. Herb.
S. rhynchocarpa Boiss.
Auriculatae (Silene)
K. Yıldız 033-4 and M.Y. DadandıAntalya; Elmalı, Tekke village, Dökergöl, Cedrus-Juniperus, 1450–1500 m, 13 vii 2005M. Celal Bayar Univ. Herb.
S. saxatilis Sims
Lasiostemones (Silene)
K. Yıldız 058-2 and M.Y. DadandıArdahan; Yalnızçam, rocky, 2045 m, 29 vii 2005E; M. Celal Bayar Univ. Herb.
S. spergulifolia (Willd.) M.Bieb.
Spergulifoliae (Silene)
K. YıldızTokat; Tokat-Sivas way, Killik-Tekneli road junction, roadside, 1100 m, 12 vi 1990MUFE (MARA)
S. swertiifolia Boiss.
Sclerocalycinae (Silene)
K. Yıldız 015-1 and M.Y. DadandıKahramanmaraş; Ahir mountain, near Kucukgol, steppe, 1380 m, 07 vii 2005M. Celal Bayar Univ. Herb.
S. tenuiflora Guss.
Arenosae (Silene)
K. Yıldız 094-1Muğla; Köyceğiz-Sandras mountain, 470–500 m, 21 v 2006M. Celal Bayar Univ. Herb.
S. tunicoides Boiss.
Tunicoidae (Silene)
K. Yıldız 090Muğla; Köyceğiz-Fethiye, 10–15 km, S slopes, 180 m, 21 v 2006 M. Celal Bayar Univ. Herb.
*: Silene anatolica Melzheimer & A. Baytop are very similar to S. cserei. In the Flora of the Caucasus [72], S. anatolica is given as the synonym of S. cserei. However, S. cserei and S. anatolica are different species in terms of characteristics such as base and stem leaf sizes, calyx veining, and anthophore length. Therefore, the species S. anatolica is not a synonym for the species S. cserei, and both are separate species.
Table 2. Tubercle measurements in seeds of Group 1. Mean values (coefficient of variation) for each species are given for the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width (W), tubercle height (H), and slope. N indicates the number of tubercles measured in each species.
Table 2. Tubercle measurements in seeds of Group 1. Mean values (coefficient of variation) for each species are given for the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width (W), tubercle height (H), and slope. N indicates the number of tubercles measured in each species.
SpeciesNMaxTubCurvMaxIntCurvWHSlope
S. birandiana830.6 (33.6)30.1 (43.1)67.4 (12.6)23.0 (22.2)68.6 (20.4)
S. bupleuroides838.4 (27.2)81.9 (42.1)76.4 (14.7)33.4 (7.2)88.8 (13.4)
S. caramanica830.9 (25.4)37.2 (36.5)111.8 (14.0)42.8 (19.6)76.4 (11.4)
S. caryophylloides829.7 (13.6)41.2 (6.8)65.4 (7.0)33.3 (12.7)102.4 (17.0)
S. chlorifolia824.0 (16.6)53.0 (15.4)90.4 (6.2)24.6 (10.8)54.4 (5.7)
S. doganii824.7 (15.9)40.4 (25.3)98.1 (18.8)26.0 (18.4)53.3 (12.9)
S. eremitica831.1 (41.1)34.0 (46.5)41.9 (23.2)11.9 (33.5)57.5 (29.0)
S. haradjiannii840.8 (18.6)62.0 (32.4)62.6 (18.4)19.0 (22.9)61.3 (21.6)
S. marschalii829.8 (25.5)61.3 (15.8)80.9 (8.7)22.8 (9.6)56.5 (9.9)
S. swertiifolia836.5 (16.6)95.6 (17.2)78.0 (11.5)30.9 (24.6)79.8 (25.1)
Table 3. Tubercle measurements in seeds of Group 2. Mean values (coefficient of variation) for each species are given for the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width (W), tubercle height (H), and slope. N indicates the number of tubercles measured in each species.
Table 3. Tubercle measurements in seeds of Group 2. Mean values (coefficient of variation) for each species are given for the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width (W), tubercle height (H), and slope. N indicates the number of tubercles measured in each species.
SpeciesNMaxCExtMaxCIntWHSlope
S. cephalantha625.8 (6.2)44.9 (9.7)89.7 (4.7)35.3 (11.7)78.7 (9.4)
S. densiflora841.6 (34.4)83.7 (30.1)63.9 (11.6)18.1 (21.4)57.8 (28.3)
S. euxina818.7 (20.2)26.3 (6.7)99.9(22.3)55.6 (43.6)108.6 (31.5)
S. macrodonta826.8 (25.6)49.8 (39.9)93.0 (24.3)20.9 (25.8)47.0 (35.9)
S. manissadjianii845.6 (39.0)65.7 (17.2)75.9 (24.8)30.3 (30.8)81.2 (29.2)
S. olympica824.4 (20.0)30.8 (50.0)69.2 (22.9)15.5 (20.5)45.1 (13.2)
S. oreophila872.3 (14.2)118.6 (26.9)90.4 (13.2)41.4 (14.7)92.1 (12.3)
S. phrygia846.7 (53.0)133.7 (81.7)89.5 (16.6)45.5 (20.6)104.5 (27.6)
S. saxatilis830.3 (18.4)46.1 (28.0)83.4 (10.7)24.9 (12.8)60.1 (14.9)
S. spergulifolia824.9 (13.1)54.4 (25.6)102.6 (18.9)30.0 (15.4)59.6 (16.3)
S. tunicoides843.0 (21.2)116.9 (11.2)91.1 (9.2)25.0 (13.9)55.1 (13.9)
Table 4. Tubercle measurements in seeds of Group 3. Mean values (coefficient of variation) for each species are given for the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width (W), tubercle height (H), and slope. N indicates the number of tubercles measured in each species.
Table 4. Tubercle measurements in seeds of Group 3. Mean values (coefficient of variation) for each species are given for the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width (W), tubercle height (H), and slope. N indicates the number of tubercles measured in each species.
SpeciesNMaxCExtMaxCIntWHSlope
S. gallica893.4 (13.8)102.9 (12.2)41.1 (12.0)23.1 (8.2)113.6 (12.3)
S. gigantea825.6 (50.6)25.0 (16.4)71.4 (12.4)22.1 (34.6)62.3 (33.3)
S. italica871.7 (58.0)71.0 (21.3)97.0 (6.2)41.1 (30.3)85.6 (31.9)
S. microsperma8168.6 (54.7)114.5 (36.5)35.3 (14.4)28.9 (132.6)185.7 (151.5)
S. nocturna892.3 (83.5)81.6 (36.4)41.9 (13.0)12.4 (35.6)58.5 (24.7)
S. tenuiflora8183.7 (36.3)169.3 (19.9)41.1 (8.1)21.4 (20.6)103.4 (16.6)
Table 5. Tubercle measurements in seeds of Group 4. Mean values (coefficient of variation) for each species are given for the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width (W), tubercle height (H), and slope. N indicates the number of tubercles measured in each species.
Table 5. Tubercle measurements in seeds of Group 4. Mean values (coefficient of variation) for each species are given for the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width (W), tubercle height (H), and slope. N indicates the number of tubercles measured in each species.
SpeciesNMaxCExtMaxCIntWHSlope
S. anatolica856.4 (12.9)261.4 (18.8)73.4 (8.7)41.5 (11.7)114.2 (17.3)
S. cserei853.7 (23.2)81.9 (59.8)94.3 (31.1)55.5 (20.3)122.3 (21.8)
S. rhynchocarpa829.7 (18.9)56.2 (29.5)80.1 (16.7)20.9 (9.0)53.6 (21.9)
Table 6. Tubercle measurements in seeds of Group 5. Mean values (coefficient of variation) for each species are given for the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width (W), tubercle height (H), and slope. N indicates the number of tubercles measured in each species.
Table 6. Tubercle measurements in seeds of Group 5. Mean values (coefficient of variation) for each species are given for the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width (W), tubercle height (H), and slope. N indicates the number of tubercles measured in each species.
SpeciesNMaxCExtMaxCIntWHSlope
S. brevicaulis661.4 (19.3)40.7 (7.1)81.0 (9.0)33.2 (10.8)82.5 (26.3)
S. confertiflora868.5 (16.2)31.9 (9.3)67.9 (7.3)54.3 (6.4)160.6 (17.2)
S. conica668.4 (13.9)56.9 (14.7)57.7 (8.9)24.7 (3.4)86.9 (15.0)
S. isaurica8109.4 (8.0)187.7 (54.4)40.8 (3.5)23.3 (2.3)114.7 (13.2)
S. papillosa666.3 (15.4)115.5 (15.6)71.0 (4.6)31.8 (2.9)89.7 (6.9)
S. pendula663.6 (12.6)92.9 (11.0)68.5 (6.5)36.8 (6.4)109.0 (25.8)
Table 7. Tubercle measurements in seeds of Group 6. N is the number of tubercles analyzed per species. Mean values (coefficient of variation) for each species are given for the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width (W), tubercle height (H), and slope.
Table 7. Tubercle measurements in seeds of Group 6. N is the number of tubercles analyzed per species. Mean values (coefficient of variation) for each species are given for the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width (W), tubercle height (H), and slope.
SpeciesNMaxCExtMaxCIntWHSlope
S. echinospermoides5167.0 (18.0)175.0 (43.2)87.4 (12.8)99.8 (16.9)227.5 (5.8)
S. leptoclada6133.1 (18.4)188.8 (94.6)56.9 (12.1)52.4 (12.9)184.7 (8.8)
S. lydia587.4 (15.0)228.0 (72.5)73.7 (9.9)41.0 (7.7)112.0 (10.1)
Table 8. Morphological measurements for seeds. Mean values (coefficient of variation) for Area (A), Perimeter (P), Length (L), Width (W), Circularity (C), Aspect Ratio (AR), Roundness (R), and Solidity (S) in the seed types considered according to their tubercle shape. Different superscript letters in the same column indicate significant differences from Campbell and Skillings analysis (p < 0.05).
Table 8. Morphological measurements for seeds. Mean values (coefficient of variation) for Area (A), Perimeter (P), Length (L), Width (W), Circularity (C), Aspect Ratio (AR), Roundness (R), and Solidity (S) in the seed types considered according to their tubercle shape. Different superscript letters in the same column indicate significant differences from Campbell and Skillings analysis (p < 0.05).
Seed Groups NAPLWCARRS
Rugose, small102.35 b
(45.1)
6.87 b
(23.1)
1.92 c
(23.8)
1.52 b
(21.0)
0.62 c
(12.4)
1.26 ab
(9.3)
0.80 ab
(8.4)
0.964 b
(1.3)
Rugose, broad111.09 a
(28.4)
4.87 a
(23.5)
1.35 ab
(15.2)
1.01 a
(13.5)
0.59 bc
(17.5)
1.33 b
(7.0)
0.76 a
(6.9)
0.950 ab
(1.4)
Mammillate60.92 a
(84.9)
4.28 a
(35.4)
1.12 a
(40.5)
0.92 a
(38.6)
0.56 abc
(19.0)
1.21 a
(2.1)
0.83 b
(2.0)
0.949 ab
(1.4)
Plane on top31.59 ab
(8.3)
6.00 ab
(3.3)
1.58 bc
(5.1)
1.28 ab
(6.5)
0.55 abc
(10.0)
1.24 ab
(7.3)
0.81 ab
(7.5)
0.953 ab
(1.4)
Echinate70.87 a
(42.1)
4.75 a
(26.8)
1.15 a
(20.9)
0.93 a
(20.4)
0.48 ab
(12.9)
1.25 ab
(3.1)
0.80 ab
(2.7)
0.938 a
(1.1)
Papillose30.71 a
(44.9)
5.54 ab
(41.0)
1.06 a
(19.9)
0.83 a
(24.1)
0.32 a
(36.3)
1.28 ab
(8.6)
0.78 ab
(8.2)
0.912 a
(3.0)
Table 9. Tubercle measurements. Mean values (coefficient of variation) for each seed type in the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width, tubercle height, and slope. Different superscript letters in the same column indicates significant differences from Campbell and Skillings analysis (p < 0.05). N indicates the number of tubercles measured in each group.
Table 9. Tubercle measurements. Mean values (coefficient of variation) for each seed type in the measurements of maximum tubercle curvature (MaxTubCurv), maximum inter-tubercle curvature (MaxIntCurv), tubercle width, tubercle height, and slope. Different superscript letters in the same column indicates significant differences from Campbell and Skillings analysis (p < 0.05). N indicates the number of tubercles measured in each group.
Tubercles in Groups of SeedsNMaxTubCurvMaxIntCurvWHSlope
Rugose, small8031.6 a (29.0)53.7 a (47.3)77.3 c (27.8)26.8 b (35.5)69.9 a (30.2)
Rugose, broad8636.6 a (50.5)70.7 ab (69.2)86.1 d (21.7)31.0 b (47.6)71.6 a (38.7)
Mammillate48105.9 c (74.2)94.0 bc (53.8)54.6 a (42.4)24.8 a (73.7)101.5 b (116.2)
Plane on top2446.6 b (32.0)133.2 bc (76.9)82.6 cd (24.4)39.3 c (40.9)96.7 b (38.1)
Echinate 4878.5 c (33.0)93.9 bc (62.6)67.5 b (24.7)39.9 c (42.6)117.4 c (29.3)
Papillose 19129.4 d (30.4)197.3 c (65.7)70.2 bc (21.4)61.3 d (42.2)173.0 d (27.8)
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Martín-Gómez, J.J.; Rodríguez-Lorenzo, J.L.; Tocino, Á.; Dadandi, M.Y.; Yildiz, K.; Cervantes, E. Curvature Analysis in Seed Surface of SEM Images of Silene Species from Türkiye. Taxonomy 2024, 4, 487-506. https://doi.org/10.3390/taxonomy4030024

AMA Style

Martín-Gómez JJ, Rodríguez-Lorenzo JL, Tocino Á, Dadandi MY, Yildiz K, Cervantes E. Curvature Analysis in Seed Surface of SEM Images of Silene Species from Türkiye. Taxonomy. 2024; 4(3):487-506. https://doi.org/10.3390/taxonomy4030024

Chicago/Turabian Style

Martín-Gómez, José Javier, José Luis Rodríguez-Lorenzo, Ángel Tocino, Mehmet Yaşar Dadandi, Kemal Yildiz, and Emilio Cervantes. 2024. "Curvature Analysis in Seed Surface of SEM Images of Silene Species from Türkiye" Taxonomy 4, no. 3: 487-506. https://doi.org/10.3390/taxonomy4030024

Article Metrics

Back to TopTop