Sequencing Technologies in Forensic Microbiology: Current Trends and Advancements
Abstract
:1. Introduction
2. Forensic Microbiology
- (a)
- In public health and epidemiology: identification of the pathogens responsible for disease outbreaks, traces of their sources and transmission pathways, and implementation of containment measures to protect public health. The inclusion of these aspects as applications of forensic microbiology is a matter of debate by many authors. However, public health and epidemiology share the same objectives and methods as forensic cases, resulting in microorganism isolation and source attribution.
- (b)
- In biocrime and bioterrorism: determination of the source of the harmful pathogen releases and attribution to specific individuals or groups.
- (c)
- In environmental incidents (e.g., water supply contamination or foodborne outbreaks): identification of the agents involved, tracking their origins and transmission pathways, implementing containment measures, and preventing future incidents.
- (d)
- In criminal investigations: analysis of microbial evidence from crime scenes (e.g., microbial communities associated with decomposing bodies, soil samples, or biological fluids) that provides valuable clues for case resolution.
3. Next-Generation Sequencing Technology
- (a)
- DNA extraction (specific methods are required to ensure efficient DNA extraction);
- (b)
- Library preparation (nucleic acid samples are fragmented and tagged with unique identifiers);
- (c)
- Sequencing (samples are loaded onto an NGS platform and tagged nucleic acid molecules are sequenced) and data generation (reads production);
- (d)
- Data analysis (bioinformatics tools and computational pipelines process and analyze sequencing data);
- (e)
- Data interpretation (identification of genetic variations, mutations, or other relevant information within the genome).
3.1. First-Generation Sequencing Technology
3.2. Second-Generation Sequencing Technology
3.3. Third-Generation Sequencing Technology
4. Applications of Next-Generation Sequencing Technology to Forensic Microbiology
4.1. Pathogen Identification and Characterization
4.2. Epidemiological Investigations
4.3. Source Attribution
4.4. Biodefense and National Security
4.5. Forensic Genomics
4.5.1. Determining Cause of Death
4.5.2. Estimating the Time since Death
4.5.3. Determining the Crime Scene Location
4.5.4. Identifying Suspects
5. Advantages of Next-Generation Sequencing Technology in Forensic Microbiology
6. Limitations of Next-Generation Sequencing Technology in Forensic Microbiology
- (a)
- Taxonomy/species-centric: in this “classical” approach, data are analyzed via taxonomy profiling to identify the presence and abundance of a given species;
- (b)
- Functional approach: it has been shown that species composition is less important than the presence or absence of certain functions required by a microbial community to settle a specific ecological niche, which allows looking at the functional profile of a sample without prior taxonomic assignment;
- (c)
- K-mer-based approach: as in microbiome studies, about half of the data cannot be assigned to any known species. It is beneficial to omit reference limitations and use all the data (from known and unknown species) directly to classify samples by their k-mer profile. However, due to feature space size, an efficient approach for relevant feature selection is needed.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
References
- Arenas, M.; Pereira, F.; Oliveira, M.; Pinto, N.; Lopes, A.; Gomes, V.; Carracedo, A.; Amorim, A. Forensic genetics and genomics: Much more than just a human affair. PLoS Genet. 2017, 13, e1006960. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Mason-Buck, G.; Ballard, D.; Branicki, W.; Amorim, A. Biowarfare, bioterrorism and biocrime: A historical overview on microbial harmful applications. Forensic Sci. Int. 2020, 314, 110366. [Google Scholar] [CrossRef]
- Cláudia-Ferreira, A.; Barbosa, D.J.; Saegeman, V.; Fernández-Rodríguez, A.; Dinis-Oliveira, R.J.; Freitas, A.R.; ESGFOR. The future is now: Unraveling the expanding potential of human (Necro) microbiome in forensic investigations. Microorganims 2023, 11, 2509. [Google Scholar] [CrossRef]
- Charaya, N.; Singh, H.; Sidhu, S.K.; Poonia, M.; Sihmar, S.S. Microbial Forensic’s-Microbes as a part of Forensic Investigation. J. Adv. Med. Dental Sci. Res. 2016, 4, 32. [Google Scholar] [CrossRef]
- Singh, J.; Shikha, J.; Kaur, E. Microbial Forensics: A New Boon to Legal Justice. In Microbial Diversity, Interventions and Scope; Sharma, S.G., Sharma, N.R., Sharma, M., Eds.; Springer: Singapore, 2020; pp. 399–408. [Google Scholar]
- Tsokos, M.; Püschel, K. Postmortem bacteriology in forensic pathology: Diagnostic value and interpretation. Leg. Med. 2001, 3, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Nema, V. Microbial forensics: Beyond a fascination. In DNA Fingerprinting: Advancements and Future Endeavors; Dash, H.R., Shrivastava, P., Mohapatra, B.K., Das, S., Eds.; Springer: Singapore, 2018; pp. 295–306. [Google Scholar]
- Metcalf, J.L.; Xu, Z.Z.; Bouslimani, A.; Dorrestein, P.; Carter, D.O.; Knight, R. Microbiome tools for forensic science. Trends Biotechnol. 2017, 35, 814–823. [Google Scholar] [CrossRef]
- Oliveira, M.; Amorim, A. Microbial forensics: New breakthroughs and future prospects. App. Microbiol. Biotechnol. 2018, 102, 10377–10391. [Google Scholar] [CrossRef]
- Oliveira, M.; Arenas, M.; Amorim, A. New trends in microbial epidemiology: Can an old dog learn new tricks? Ann. Microbiol. Immunol. 2018, 1, 1004, 2018. [Google Scholar]
- Eom, Y.B. Microbial Forensics: Bioterrorism and Biocrime. Biomed. Sci. Let. 2018, 24, 55–63. [Google Scholar] [CrossRef]
- Schmedes, S.E.; Sajantila, A.; Budowle, B. Expansion of microbial forensics. J. Clin. Microbiol. 2016, 54, 1964–1974. [Google Scholar] [CrossRef]
- Kumar, P.P.; Yadav, K.; Vevek, V.; Khandal, H.; Kumari, R. Environmental Microbial Forensics: How Hidden is the Truth? In Metagenomics: Techniques, Applications, Challenges and Opportunities; Chopra, R.S., Chopra, C., Sharma, N.R., Eds.; Springer: Singapore, 2020; pp. 55–67. [Google Scholar]
- Mason-Buck, G.; Graf, A.; Elhaik, E.; Robinson, J.; Pospiech, E.; Oliveira, M.; Moser, J.; Lee, P.K.H.; Githae, D.; Ballard, D.; et al. DNA based methods in intelligence-moving towards metagenomics. Preprints 2020, 2020020158. [Google Scholar]
- Robinson, J.M.; Pasternak, Z.M.C.E.; Elhaik, E. Forensic applications of microbiomics: A review. Front. Microbiol. 2021, 11, 608101. [Google Scholar] [CrossRef] [PubMed]
- Gouello, A.; Dunyach-Remy, C.; Siatka, C.; Lavigne, J.P. Analysis of microbial communities: An emerging tool in forensic sciences. Diagnostics 2021, 12, 1. [Google Scholar] [CrossRef]
- Keim, P.; Pearson, T.; Budowle, B.; Wilson, M.; Wagner, D.M. Microbial forensic investigations in the context of bacterial population genetics. In Microbial Forensics; Budowle, B., Schutzer, S.E., Breeze, R.G., Keim, P.S., Mors, S.A., Eds.; Academic Press: New York, NY, USA, 2020; pp. 381–391. [Google Scholar]
- Quaak, F.C.A. Microbial Populations and Their Potential in Forensic Investigations. Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 2018. [Google Scholar]
- Spagnolo, E.V.; Stassi, C.; Mondello, C.; Zerbo, S.; Milone, L.; Argo, A. Forensic microbiology applications: A systematic review. Leg. Med. 2019, 36, 73–80. [Google Scholar] [CrossRef]
- Pattnaik, P. Correspondence-Strengthening microbial forensics to counter bioterrorism. Ind. J. Med. Microbiol. 2005, 23, 271–272. [Google Scholar] [CrossRef]
- Pattnaik, P.; Sekhar, K. Forensics for tracing microbial signatures: Biodefence perspective and preparedness for the unforeseen. Ind. J. Biotechnol. 2008, 7, 23–31. [Google Scholar]
- Sánchez, J.E.G.; Sánchez, E.G. The founders of Microbiology on movie posters. J. Med. Mov. 2005, 1, 47–56. [Google Scholar]
- Okinaka, R.T.; Hill, K.H.; Pearson, T.; Foster, J.T.; Vogler, A.J.; Tuanyok, A.; Wagner, D.M.; Keim, P.S. Forensic analysis in bacterial pathogens. In Microbial Forensics; Budowle, B., Schutzer, S.E., Breeze, R.G., Keim, P.S., Mors, S.A., Eds.; Academic Press: New York, NY, USA, 2011; pp. 259–276. [Google Scholar]
- Kuiper, I. Microbial forensics: Next-generation sequencing as catalyst: The use of new sequencing technologies to analyze whole microbial communities could become a powerful tool for forensic and criminal investigations. EMBO Rep. 2016, 17, 1085–1987. [Google Scholar] [CrossRef]
- Koboldt, D.C.; Steinberg, K.M.; Larson, D.E.; Wilson, R.K.; Mardis, E.R. The next-generation sequencing revolution and its impact on genomics. Cell 2013, 155, 27–38. [Google Scholar] [CrossRef]
- Marguerat, S.; Wilhelm, B.T.; Bähler, J. Next-generation sequencing: Applications beyond genomes. Biochem. Soc. Trans. 2008, 36, 1091–1096. [Google Scholar] [CrossRef]
- Tipu, H.N.; Shabbir, A. Evolution of DNA sequencing. J. Coll. Physicians Surg. Pak. 2015, 25, 210–215. [Google Scholar] [PubMed]
- Masoudi-Nejad, A.; Narimani, Z.; Hosseinkhan, N.; Masoudi-Nejad, A.; Narimani, Z.; Hosseinkhan, N. Emergence of Next-Generation Sequencing. In Next Generation Sequencing and Sequence Assembly: Methodologies and Algorithms; Masoudi-Nejad, A., Narimani, Z., Hosseinkhan, N., Eds.; Springer: Singapore, 2013; pp. 11–39. [Google Scholar]
- Mohlere, V.; Wang, W.; Manyam, G. An Introduction to Next-Generation Biological Platforms. In Advances in Statistical Bioinformatics: Models and Integrative Inference for High-Throughput Data; Do, K.-A., Qin, S., Vannucci, M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 1–30. [Google Scholar]
- Vincent, A.T.; Derome, N.; Boyle, B.; Culley, A.I.; Charette, S.J. Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money. J. Microbiol. Met. 2017, 138, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Le, H.T.; Nguyen, L.T.; Lou, H.; LaFramboise, T. The applications of massive parallel sequencing (next-generation sequencing) in research and molecular diagnosis of human genetic diseases. Vietnam J Sci Technol. Eng. 2018, 60, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Nagymihály, M.; Szűcs, A.; Kereszt, A. Next-Generation Sequencing and its new possibilities in medicine. Acta Biol. Szeged 2015, 59 (Suppl. S2), 323–339. [Google Scholar]
- Qin, D. Next-generation sequencing and its clinical application. Cancer Biol. Med. 2019, 16, 4. [Google Scholar]
- Church, A.J. Next-Generation Sequencing. In Genomic Medicine: A Practical Guide; Tafe, L., Arcila, M.E., Eds.; Springer: Singapore, 2020; pp. 25–40. [Google Scholar]
- Schrijver, I.; Aziz, N.; Farkas, D.H.; Furtado, M.; Gonzalez, A.F.; Greiner, T.C.; Grody, W.W.; Hambuch, T.; Kalman, L.; Kant, J.A.; et al. Opportunities and challenges associated with clinical diagnostic genome sequencing: A report of the Association for Molecular Pathology. J. Mol. Diag. 2012, 14, 525–540. [Google Scholar] [CrossRef]
- Adesiyan, A.; Kade, A.; Oladimeji, K.; Sowunmi, K. Sanger Sequencing as the Holy Grail of Sequencing Technology. Preprints 2020, 2020110163. [Google Scholar]
- Slatko, B.E.; Kieleczawa, J.; Ju, J.; Gardner, A.F.; Hendrickson, C.L.; Ausubel, F.M. “First generation” automated DNA sequencing technology. Curr. Protoc. Mol. Biol. 2011, 96, 7.2.1–7.2.28. [Google Scholar] [CrossRef]
- Huang, X.C.; Quesada, M.A.; Mathies, R.A. Capillary array electrophoresis: An approach to high-speed high-throughput DNA sequencing. In Proceedings of the OE/LASE’93: Optics, Electro-Optics, and Laser Applications in Scienceand Engineering, Los Angeles, CA, USA, 17–22 January 1993. [Google Scholar]
- Ruiz-Martinez, M.C.; Salas-Solano, O.; Carrilho, E.; Kotler, L.; Karger, B.L. A sample purification method for rugged and high-performance DNA sequencing by capillary electrophoresis using replaceable polymer solutions. A. Development of the cleanup protocol. Anal. Chem. 1998, 70, 1516–1527. [Google Scholar] [CrossRef]
- Berger, A. Human genome project to complete ahead of schedule. BMJ 1998, 317, 834. [Google Scholar] [CrossRef]
- Carvalho, T.; Zhu, T. The Human Genome Project (1990–2003). Embryo Project Encyclopedia. 2014. Available online: https://embryo.asu.edu/pages/human-genome-project-1990-2003 (accessed on 6 February 2024).
- Zhang, S.H.; Bian, Y.N.; Zhao, Q.; Li, C.T. Review of second-generation sequencing and its application in forensic genetics. Fa Yi Xue Za Zhi 2016, 32, 282–289. [Google Scholar] [PubMed]
- Thudi, M.; Li, Y.; Jackson, S.A.; May, G.D.; Varshney, R.K. Current state-of-art of sequencing technologies for plant genomics research. Brief Funct. Genom. 2012, 11, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Grant, S. Advances in whole genome sequencing technology. Curr. Pharm. Biotechnol. 2011, 12, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Marsh, S. Pyrosequencing® Protocols. In Methods in Molecular Biology; Springer: Singapore, 2007; pp. 15–23. [Google Scholar]
- Van Dijk, E.L.; Auger, H.; Jaszczyszyn, Y.; Thermes, C. Ten years of next-generation sequencing technology. Trends Genet. 2014, 30, 418–426. [Google Scholar] [CrossRef]
- Royo, J.L.; Galán, J.J. Pyrosequencing for SNP genotyping. In Single Nucleotide Polymorphisms: Methods and Protocols; Walker, J.M., Marsh, S., Eds.; Springer: Singapore, 2009; pp. 123–133. [Google Scholar]
- Ondov, B.D.; Varadarajan, A.; Passalacqua, K.D.; Bergman, N.H. Efficient mapping of Applied Biosystems SOLiD sequence data to a reference genome for functional genomic applications. Bioinformatics 2008, 24, 2776–2777. [Google Scholar] [CrossRef]
- Mardis, E.R. Whole-Genome Sequencing: New Technologies, Approaches, and Applications. In Genomic and Personalized Medicine; Ginsburg, G.S., Willard, H.F., Eds.; Elsevier: London, UK, 2012; pp. 87–93. [Google Scholar]
- Kothari, V. Transcriptional Profiling: An Effective Tool of Modern Biology. Transcriptomics 2015, 3, e113. [Google Scholar] [CrossRef]
- Muers, M. Mapping histone modifications and DNA methylation together. Nat. Rev. Genet. 2012, 13, 299. [Google Scholar] [CrossRef]
- Maccaferri, S.; Biagi, E.; Brigidi, P. Metagenomics: Key to human gut microbiota. Dig. Dis. 2011, 29, 525–530. [Google Scholar] [CrossRef]
- Suenaga, H. Targeted metagenomics: A high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environm. Microbiol. 2012, 14, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Athanasopoulou, K.; Boti, M.A.; Adamopoulos, P.G.; Skourou, P.C.; Scorilas, A. Third-generation sequencing: The spearhead towards the radical transformation of modern genomics. Life 2021, 12, 30. [Google Scholar] [CrossRef]
- Bolukbasi, E.; Aras, E.S. Third generation DNA sequencing technologies. Int. J. Sci. Technol. Res. 2015, 1, 14–21. [Google Scholar]
- Lee, H.; Gurtowski, J.; Yoo, S.; Nattestad, M.; Marcus, S.; Goodwin, S.; McCombie, W.R.; Schatz, M.C. Third-generation sequencing and the future of genomics. BioRxiv 2016, 048603. [Google Scholar]
- English, A.C.; Richards, S.; Han, Y.; Wang, M.; Vee, V.; Qu, J.; Qin, X.; Muzny, D.M.; Reid, J.G.; Worley, K.C.; et al. Mind the gap: Upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 2012, 7, e47. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Olsen, H.E.; Paten, B.; Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 2016, 17, 239. [Google Scholar]
- Kim, K.E.; Peluso, P.; Babayan, P.; Yeadon, P.J.; Yu, C.; Fisher, W.W.; Chin, C.-S.; Rapicavoli, N.A.; Rank, D.R.; Li, J.; et al. Long-read, whole-genome shotgun sequence data for five model organisms. Sci. Data 2014, 1, 140045. [Google Scholar] [CrossRef]
- Rhoads, A.; Au, K.F. PacBio sequencing and its applications. Genom. Proteom. Bioinform. 2015, 13, 278–289. [Google Scholar] [CrossRef]
- Yan, J.; Lv, S.; Hu, M.; Gao, Z.; He, H.; Ma, Q.; Deng, X.W.; Zhu, Z.; Wang, X. Single-molecule sequencing assists genome assembly improvement and structural variation inference. Mol. Plant 2016, 9, 1085–1087. [Google Scholar] [CrossRef]
- Ward, D.M.; Weller, R.; Bateson, M.M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 1990, 345, 63–65. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Savenkov, E.I. Virgaviruses (Virgaviridae). In Encyclopedia of Virology, 4th ed.; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Meisel, J.S.; Hannigan, G.D.; Tyldsley, A.S.; SanMiguel, A.J.; Hodkinson, B.P.; Zheng, Q.; Grice, E.A. Skin microbiome surveys are strongly influenced by experimental design. Inv. Dermatol. 2016, 136, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.C.; Wang, Y. The frequency of chimeric molecules as a consequence of PCR co-amplification of 16S rRNA genes from different bacterial species. Microbiology 1996, 142, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Danko, D.; Afshinnekoo, E.; Bezdan, D.; Bhattacharyya, M.; Castro-Nallar, E.; Chmielarczyk, A.; Hazrin-Chong, N.H.; Deng, Y.; Dias-Neto, E.; et al. Annotating unknown species of urban microorganisms on a global scale unveils novel functional diversity and local environment association. Environ. Res. 2022, 207, 112183. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, H.G.; Prajapati, S.; Wardah, Z.H.; Raol, G.; Prajapati, V.; Patel, R.; Dhati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Sayyed, R.Z. Decoding the microbial universe with metagenomics: A brief insight. Front. Genet. 2023, 14, 119740. [Google Scholar] [CrossRef]
- Turner, S.; Gilchrist, C.; Riley, M.; Petri, W.; Hewlett, E. Research Area 7.4: Identifying a Path towards Rapid Discrimination of Infection Disease Outbreaks; Virginia University: Charlottesville, VA, USA, 2014. [Google Scholar]
- Dougherty, C.E.; Graf, E. Next Generation Sequencing for Outbreak Investigation in the Clinical Microbiology Laboratory. Am. Soc. Clin. Lab. Sci. 2019, 119, 001750. [Google Scholar]
- Gwinn, M.; MacCannell, D.; Armstrong, G.L. Next-generation sequencing of infectious pathogens. JAMA 2019, 321, 893–894. [Google Scholar] [CrossRef]
- D’Auria, G.; Schneider, M.V.; Moya, A. Live genomics for pathogen monitoring in public health. Pathogens 2014, 3, 93–108. [Google Scholar] [CrossRef]
- Schlaberg, R.; Chiu, C.Y.; Miller, S.; Procop, G.W.; Weinstock, G.; Professional Practice Committee and Committee on Laboratory Practices of the American Society for Microbiology; Microbiology Resource Committee of the College of American Pathologists. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection. Arch. Pathol. Lab. Med. 2017, 141, 776–786. [Google Scholar] [CrossRef]
- Minogue, T.D.; Koehler, J.W.; Stefan, C.P.; Conrad, T.A. Next-generation sequencing for biodefense: Biothreat detection, forensics, and the clinic. Clin. Chem. 2019, 65, 383–392. [Google Scholar] [CrossRef]
- Luciani, F.; Bull, R.A.; Lloyd, A.R. Next generation deep sequencing and vaccine design: Today and tomorrow. Trends Biotechnol. 2012, 30, 443–452. [Google Scholar] [CrossRef]
- Klemm, E.; Dougan, G. Advances in understanding bacterial pathogenesis gained from whole-genome sequencing and phylogenetics. Cell Host Microbe 2016, 19, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Sjödin, A.; Broman, T.; Melefors, Ö.; Andersson, G.; Rasmusson, B.; Knutsson, R.; Forsman, M. The need for high-quality whole-genome sequence databases in microbial forensics. Biosecur Bioterror. 2013, 11 (Suppl. S1), 578–586. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.; Gilchrist, C.; Riley, M.; Petri, W.; Hewlett, E. Harnessing Next-Generation Sequencing Capabilities for Microbial Forensics; Final Report (ADA625709); Virginia University-Charlottesville: Charlottesville, VA, USA, 2013. [Google Scholar]
- Comas, I.; Cancino-Muñoz, I.; Mariner-Llicer, C.; Goig, G.A.; Ruiz-Hueso, P.; Francés-Cuesta, C.; García-González, N.; González-Candelas, F. Use of next generation sequencing technologies for the diagnosis and epidemiology of infectious diseases. Enfermedades Infecciosas y Microbiologia Clinica 2020, 38, 32–38. [Google Scholar] [CrossRef]
- Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics 2018, 34, 4121–4123. [Google Scholar] [CrossRef]
- Grubaugh, N.D.; Ladner, J.T.; Lemey, P.; Pybus, O.G.; Rambaut, A.; Holmes, E.C.; Andersen, K.G. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 2019, 4, 10–19. [Google Scholar] [CrossRef]
- Fournier, P.E.; Dubourg, G.; Raoult, D. Clinical detection and characterization of bacterial pathogens in the genomics era. Genome Med. 2014, 6, 114. [Google Scholar] [CrossRef]
- Minogue, T.D.; Koehler, J.W.; Norwood, D.A. Targeted next-generation sequencing for diagnostics and forensics. Clin. Chem. 2017, 63, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Besser, J.; Carleton, H.A.; Gerner-Smidt, P.; Lindsey, R.L.; Trees, E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin. Microbiol. Infect. 2018, 24, 335–341. [Google Scholar] [CrossRef]
- Comar, M.; D’Accolti, M.; Cason, C.; Soffritti, I.; Campisciano, G.; Lanzoni, L.; Bisi, M.; Volta, A.; Mazzacane, S.; Caselli, E. Introduction of NGS in environmental surveillance for healthcare-associated infection control. Microorganisms 2019, 7, 708. [Google Scholar] [CrossRef]
- Hewitt, C.; Weber, K.; LeSassier, D.; Kappell, A.; Schulte, K.; Westfall, N.; Albright, N.; Godbold, G.; Palsikar, V.; Acevedo, C.A.; et al. Evaluating Metagenomic Analysis for Pathogen Transmission in Healthcare Settings. Infect. Control Hosp. Epidemiol. 2020, 41 (Suppl. S1), S224. [Google Scholar] [CrossRef]
- Hilt, E.E.; Ferrieri, P. Next generation and other sequencing technologies in diagnostic microbiology and infectious diseases. Genes 2022, 13, 1566. [Google Scholar] [CrossRef] [PubMed]
- Cason, C.; D’Accolti, M.; Soffritti, I.; Mazzacane, S.; Comar, M.; Caselli, E. Next-generation sequencing and PCR technologies in monitoring the hospital microbiome and its drug resistance. Front. Microbiol. 2022, 13, 969863. [Google Scholar] [CrossRef]
- Mughini-Gras, L.; Kooh, P.; Fravalo, P.; Augustin, J.C.; Guillier, L.; David, J.; Thébault, A.; Carlin, F.; Leclercq, A.; Jourdan-Da-Silva, N.; et al. Critical orientation in the jungle of currently available methods and types of data for source attribution of foodborne diseases. Front. Microbiol. 2019, 10, 2578. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, F.; Remondini, D.; Snary, E.L.; Hald, T.; Guillier, L. Integrating whole genome sequencing into source attribution and risk assessment of foodborne bacterial pathogens. Front. Microbiol. 2021, 12, 795098. [Google Scholar] [CrossRef]
- Zhang, M.; Li, B.; Qiu, G. Application of next generation sequencing technology in clinical diagnosis of infectious disease. Chin. J. Lab. Med. 2017, 12, 492–494. [Google Scholar]
- Aarts, H.; Franz, E. Whole Genome Sequencing in Food Outbreak Investigation and Microbial Risk Analysis. In Molecular Diagnostics; van Pelt-Verkuil, E., van Leeuwen, W.B., te Witt, R., Eds.; Springer: Singapore, 2017; pp. 203–217. [Google Scholar]
- Wilson, M.R.; Allard, M.W.; Brown, E.W. The forensic analysis of foodborne bacterial pathogens in the age of whole-genome sequencing. Cladistics 2013, 29, 449–461. [Google Scholar] [CrossRef]
- Mellmann, A.; Harmsen, D.; Cummings, C.A.; Zentz, E.B.; Leopold, S.R.; Rico, A.; Prior, K.; Szczepanowski, R.; Ji, Y.; Zhang, W.; et al. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104: H4 outbreak by rapid next generation sequencing technology. PLoS ONE 2011, 6, e22751. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Oliveira, D.; Lisboa, C.; Boechat, J.L.; Delgado, L. Clinical manifestations of human exposure to fungi. J. Fungi 2023, 9, 381. [Google Scholar] [CrossRef] [PubMed]
- Jakupciak, J.; Wells, J.; Lin, J.; Feldman, A. Population Analysis of Bacterial Samples for Individual Identification in Forensics Application. J. Data Min. Genom. Proteom. 2013, 4, 1000138. [Google Scholar]
- Desdouits, M.; de Graaf, M.; Strubbia, S.; Munnink, B.B.O.; Kroneman, A.; Le Guyader, F.S.; Koopmans, M.P. Novel opportunities for NGS-based one health surveillance of foodborne viruses. One Health Outlook 2020, 2, 14. [Google Scholar] [CrossRef]
- Sharma, A.; Gupta, G.; Ahmad, T.; Krishan, K.; Kaur, B. Next generation agents (synthetic agents): Emerging threats and challenges in detection, protection, and decontamination. In Handbook on Biological Warfare Preparedness; Flora, S.J.S., Pachauri, V., Eds.; Academic Press: London, UK, 2020; pp. 217–256. [Google Scholar]
- Berry, I.M.; Melendrez, M.C.; Bishop-Lilly, K.A.; Rutvisuttinunt, W.; Pollett, S.; Talundzic, E.; Morton, L.; Jarman, R.G. Next generation sequencing and bioinformatics methodologies for infectious disease research and public health: Approaches, applications, and considerations for development of laboratory capacity. J. Inf. Dis. 2020, 221 (Suppl. S3), S292–S307. [Google Scholar]
- Swayambhu, M.; Kümmerli, R.; Arora, N. Microbiome-Based Stain Analyses in Crime Scenes. Appl. Environ. Microbiol. 2023, 89, e01325-22. [Google Scholar] [CrossRef] [PubMed]
- Yousefsaber, F.; Naseri, Z.; Hasani, A.H. A Short Review of Forensic Microbiology. Avicenna J. Clin. Microbiol. Inf. 2022, 9, 86–96. [Google Scholar] [CrossRef]
- Burton, J.L.; Saegeman, V.; Arribi, A.; Rello, J.; Andreoletti, L.; Cohen, M.C.; Fernandez-Rodriguez, A. Postmortem microbiology sampling following death in hospital: An ESGFOR task force consensus statement. J. Clin. Pathol. 2019, 72, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rodríguez, A.; Burton, J.L.; Andreoletti, L.; Alberola, J.; Fornes, P.; Merino, I.; Martínez, M.J.; Castillo, P.; Sampaio-Maia, B.; Caldas, I.M.; et al. Post-mortem microbiology in sudden death: Sampling protocols proposed in different clinical settings. Clin. Microbiol. Inf. 2019, 25, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Saegeman, V.; Cohen, M.C.; Burton, J.L.; Martinez, M.J.; Rakislova, N.; Offiah, A.C.; Fernandez-Rodriguez, A. Microbiology in minimally invasive autopsy: Best techniques to detect infection. ESGFOR (ESCMID study group of forensic and post-mortem microbiology) guidelines. For. Sci. Med. Pathol. 2021, 17, 87–100. [Google Scholar] [CrossRef]
- Tambuzzi, S.; Maciocco, F.; Gentile, G.; Boracchi, M.; Faraone, C.; Andreola, S.; Zoja, R. Utility and diagnostic value of postmortem microbiology associated with histology for forensic purposes. For. Sci. Int. 2023, 342, 111534. [Google Scholar] [CrossRef]
- Yu, Z.; Xie, Q.; Zhao, Y.; Duan, L.; Qiu, P.; Fan, H. NGS plus bacterial culture: A more accurate method for diagnosing forensic-related nosocomial infections. Leg. Med. 2021, 52, 101910. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, A.; González-Candelas, F.; Arora, N. Omics for forensic and post-mortem microbiology. In Application and Integration of Omics-Powered Diagnostics in Clinical and Public Health Microbiology; Moran-Gilad, J., Yagel, Y., Eds.; Springer: Singapore, 2021; pp. 219–240. [Google Scholar]
- Gates, L. Investigating a Potential Infectious Cause of Death in Sudden Unexpected Death in Infancy and Childhood Using 16S rRNA Gene Sequencing. Ph.D. Thesis, University College London, London, UK, 2022. [Google Scholar]
- Kakizaki, E.; Ogura, Y.; Kozawa, S.; Nishida, S.; Uchiyama, T.; Hayashi, T.; Yukawa, N. Detection of diverse aquatic microbes in blood and organs of drowning victims: First metagenomic approach using high-throughput 454-pyrosequencing. For. Sci. Int. 2012, 220, 135–146. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhang, F.Y.; Dong, W.W.; Wang, C.L.; Liang, X.Y.; Suo, L.L. A novel approach for the forensic diagnosis of drowning by microbiological analysis with next-generation sequencing and unweighted UniFrac-based PCoA. Int. J. Leg. Med. 2020, 134, 2149–2159. [Google Scholar] [CrossRef]
- Kaszubinski, S.F.; Pechal, J.L.; Smiles, K.; Schmidt, C.J.; Jordan, H.R.; Meek, M.H.; Benbow, M.E. Dysbiosis in the dead: Human postmortem microbiome beta-dispersion as an indicator of manner and cause of death. Front. Microbiol. 2020, 11, 555347. [Google Scholar] [CrossRef] [PubMed]
- Metcalf Lab. Microbial Clock of Death. Available online: http://www.jessicalmetcalf.com/outreach-4#outreach (accessed on 29 December 2023).
- Sampaio-Silva, F.; Magalhães, T.; Carvalho, F.; Dinis-Oliveira, R.J.; Silvestre, R. Correction: Profiling of RNA degradation for estimation of postmortem interval. PLoS ONE 2013, 8, e56507. [Google Scholar] [CrossRef]
- Neto-Silva, A.; Dinis-Oliveira, R.J.; Prado e Castro, C. Diversity of the Formicidae (Hymenoptera) carrion communities in Lisbon (Portugal): Preliminary approach as seasonal and geographic indicators. For. Sci. Res. 2018, 3, 65–73. [Google Scholar] [CrossRef]
- Dash, H.; Das, S. Thanatomicrobiome and epinecrotic community signatures for estimation of post-mortem time interval in human cadaver. App. Microbiol. Biotechnol. 2020, 104, 9497–9512. [Google Scholar] [CrossRef] [PubMed]
- Abdoun, A.; Amir, N.; Fatima, M. Thanatomicrobiome in forensic medicine. New Microbiol. 2023, 46, 236–245. [Google Scholar]
- Kumari, P.; Yadav, S. Investigating the Post-Mortem Interval (PMI) with Forensically Important Necrobiomes. Ind. J. For. Med. Toxicol. 2023, 17, 97–103. [Google Scholar] [CrossRef]
- Metcalf, J.L. Estimating the postmortem interval using microbes: Knowledge gaps and a path to technology adoption. For. Sci. Int Genet. 2019, 38, 211–218. [Google Scholar] [CrossRef]
- Liu, R.; Gu, Y.; Shen, M.; Li, H.; Zhang, K.; Wang, Q.; Wei, X.; Zhang, H.; Wu, D.; Yu, K.; et al. Predicting postmortem interval based on microbial community sequences and machine learning algorithms. Environ. Microbiol. 2020, 22, 2273–2291. [Google Scholar] [CrossRef]
- Khalikov, A.A.; Kildyushov, E.M.; Kuznetsov, K.O.; Rahmatullina, G.R. Estimation of time since death with the postmortem microbiome: A modern view and approaches to solving the problem. Sud. Med. Ekspert 2022, 65, 49–53. [Google Scholar] [CrossRef]
- Giampaoli, S.; Berti, A.; Maggio, R.; Pilli, E.; Valentini, A.; Valeriani, F.; Gianfranceschi, G.; Barni, F.; Ripani, L.; Spica, V. The environmental biological signature: NGS profiling for forensic comparison of soils. For. Sci. Int. 2014, 240, 41–47. [Google Scholar] [CrossRef]
- Jesmok, E.; Hopkins, J.; Foran, D. Next-generation sequencing of the bacterial 16S rRNA gene for forensic soil comparison: A feasibility study. J. For. Sci. 2016, 61, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Habtom, H.; Pasternak, Z.; Matan, O.; Azulay, C.; Gafny, R.; Jurkevitch, E. Applying microbial biogeography in soil forensics. For. Sci. Int. Genet. 2019, 38, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.R.; Grimes, T.L.; Datta, S.; Datta, S. Unraveling bacterial fingerprints of city subways from microbiome 16S gene profiles. Biol. Direct 2018, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.W.; Eom, Y.-B. Forensic analysis of human microbiome in skin and body fluids based on geographic location. Front. Cell. Inf. Microbiol. 2021, 11, 695191. [Google Scholar] [CrossRef]
- Danko, D.; Bezdan, D.; Afshin, E.E.; Ahsanuddin, S.; Bhattacharya, C.; Butler, D.J.; Black, C. A global metagenomic map of urban microbiomes and antimicrobial resistance. Cell 2021, 184, 3376–3393. [Google Scholar] [CrossRef]
- He, Q.; Niu, X.; Qi, R.; Liu, M. Advances in microbial metagenomics and artificial intelligence analysis in forensic identification. Front. Microbiol. 2022, 13, 1046733. [Google Scholar] [CrossRef]
- Sanachai, A.; Katekeaw, S.; Lomthaisong, K. Forensic soil investigation from the 16S rDNA profiles of soil bacteria obtained by denaturing gradient gel electrophoresis. Chiang Mai J. Sci. 2016, 43, 748–755. [Google Scholar]
- Young, J.M.; Weyrich, L.S.; Cooper, A. Forensic soil DNA analysis using high-throughput sequencing: A comparison of four molecular markers. For. Sci. Int. Genet. 2014, 13, 176–184. [Google Scholar] [CrossRef]
- Demanèche, S.; Schauser, L.; Dawson, L.; Franqueville, L.; Simonet, P. Microbial soil community analyses for forensic science: Application to a blind test. For. Sci. Int. 2017, 270, 153–158. [Google Scholar] [CrossRef]
- Habtom, H.; Demanèche, S.; Dawson, L.; Azulay, C.; Matan, O.; Robe, P.; Gafny, R.; Simonet, P.; Jurkevitch, E.; Pasternak, Z. Soil characterisation by bacterial community analysis for forensic applications: A quantitative comparison of environmental technologies. For. Sci. Int. Genet. 2017, 26, 21–29. [Google Scholar] [CrossRef]
- Moitas, B.; Caldas, I.M.; Sampaio-Maia, B. Forensic microbiology and geographical location: A systematic review. Aust. J. Forensic Sci. 2024, 56, 416–431. [Google Scholar] [CrossRef]
- The MetaSUB International Consortium. The metagenomics and metadesign of the subways and urban biomes (MetaSUB) international consortium inaugural meeting report. Microbiome 2016, 4, 24. [Google Scholar]
- Pasternak, Z.; Luchibia, A.O.; Matan, O.; Dawson, L.; Gafny, R.; Shpitzen, M.; Avraham, S.; Jurkevitch, E. Mitigating temporal mismatches in forensic soil microbial profiles. Aust. J. For. Sci. 2019, 51, 685–694. [Google Scholar] [CrossRef]
- Keet, J.H.; Ellis, A.G.; Hui, C.; Le Roux, J.J. Strong spatial and temporal turnover of soil bacterial communities in South Africa’s hyperdiverse fynbos biome. Soil Biol. Biochem. 2019, 136, 107541. [Google Scholar] [CrossRef]
- Singh, B.; Minick, K.J.; Strickland, M.S.; Wickings, K.G.; Crippen, T.L.; Tarone, A.M.; Benbow, M.E.; Sufrin, N.; Tomberlin, J.K.; Pechal, J.L. Temporal and spatial impact of human cadaver decomposition on soil bacterial and arthropod community structure and function. Front. Microbiol. 2018, 8, 2616. [Google Scholar] [CrossRef]
- Carter, D.O.; Metcalf, J.L.; Bibat, A.; Knight, R. Seasonal variation of postmortem microbial communities. For. Sci Med. Pathol. 2015, 11, 202–207. [Google Scholar] [CrossRef]
- Singh, A.A.; Okpeku, M. Emerging methods of human microbiome analysis and its forensic applications: Reviews. FSIR 2024, 9, 100355. [Google Scholar] [CrossRef]
- Franzosa, E.A.; Huang, K.; Meadow, J.F.; Gevers, D.; Lemon, K.P.; Bohannan, B.J.; Huttenhower, C. Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA 2015, 112, E2930–E2938. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Song, F.; Wang, Y.; Huang, Y.; Xie, B.; Luo, H. High resolution melting analysis (HRM) based on 16SrRNA as a tool for personal identification with the human oral microbiome. For. Sc. Int. 2019, 7, 161–163. [Google Scholar] [CrossRef]
- Schmedes, S.E.; Woerner, A.E.; Novroski, N.M.; Wendt, F.R.; King, J.L.; Stephens, K.M.; Budowle, B. Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification. For. Sci. Int. 2018, 32, 50–61. [Google Scholar] [CrossRef]
- López, C.D.; Vidaki, A.; Kayser, M. Integrating the human microbiome in the forensic toolkit: Current bottlenecks and future solutions. For. Sci. Int. 2022, 56, 102627. [Google Scholar] [CrossRef] [PubMed]
- Neckovic, A.; van Oorschot, R.A.; Szkuta, B.; Durdle, A. Investigation of direct and indirect transfer of microbiomes between individuals. For. Sci. Int Genet. 2020, 45, 102212. [Google Scholar] [CrossRef] [PubMed]
- Neckovic, A.; van Oorschot, R.A.H.; Szkuta, B.; Durdle, A. Challenges in human skin microbial profiling for forensic science: A review. Genes 2020, 11, 1015. [Google Scholar] [CrossRef] [PubMed]
- Brinkac, L.; Clarke, T.H.; Singh, H.G.C.; Gomez, A.; Torralba, M.G.; Frank, B.; Nelson, K.E. Spatial and environmental variation of the human hair microbiota. Sci. Rep. 2018, 8, 9017. [Google Scholar] [CrossRef] [PubMed]
- Issa, S.Y. Microbial Witness: Unraveling Mysteries with Forensic Microbiomes. In Unlocking the Mysteries of Death-New Perspectives for Post-Mortem Examination; IntechOpen: London, UK, 2024. [Google Scholar]
- Tridico, S.R.; Murray, D.C.; Bunce, M.; Kirkbride, K.P. DNA profiling of bacteria from human hair: Potential and pitfalls. In Forensic Microbiology; Carter, D.O., Tomberlin, J.K., Benbow, M.E., Metcalf, J.L., Eds.; John Wiley & Sons: Oxford, UK, 2017; pp. 358–375. [Google Scholar]
- Williams, D.W.; Gibson, G. Individualization of pubic hair bacterial communities and the effects of storage time and temperature. For. Sci. Int. Genet. 2017, 26, 12–20. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med. 2018, 24, 392–400. [Google Scholar] [CrossRef]
- Doi, M.; Gamo, S.; Okiura, T.; Nishimukai, H.; Asano, M. A simple identification method for vaginal secretions using relative quantification of Lactobacillus DNA. For. Sci. Int. Genet. 2014, 12, 93–99. [Google Scholar] [CrossRef]
- Baud, D.; Pattaroni, C.; Vulliemoz, N.; Castella, V.; Marsland, B.J.; Stojanov, M. Sperm microbiota and its impact on semen parameters. Front. Microbiol. 2019, 10, 234. [Google Scholar] [CrossRef]
- Farahani, L.; Tharakan, T.; Yap, T.; Ramsay, J.W.; Jayasena, C.N.; Minhas, S. The semen microbiome and its impact on sperm function and male fertility: A systematic review and meta-analysis. Andrology 2021, 9, 115–144. [Google Scholar] [CrossRef]
- Hanssen, E.N.; Liland, K.H.; Gill, P.; Snipen, L. Optimizing body fluid recognition from microbial taxonomic profiles. For. Sci. Int. Genet. 2018, 37, 13–20. [Google Scholar] [CrossRef]
- Grice, E.A.; Kong, H.H.; Renaud, G.; Young, A.C.; NISC Comparative Sequencing Program; Bouffard, G.G.; Blakesley, R.W.; Wolfsberg, T.G.; Turner, M.L.; Segre, J.A. A diversity profile of the human skin microbiota. Genome Res. 2008, 18, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Flores, G.E.; Caporaso, J.G.; Henley, J.B.; Rideout, J.R.; Domogala, D.; Chase, J.; Leff, J.W.; Vázquez-Baeza, Y.; Gonzalez, A.; Knight, R.; et al. Temporal variability is a personalized feature of the human microbiome. Genome Biol. 2014, 15, 531. [Google Scholar] [CrossRef] [PubMed]
- Chase, J.; Fouquier, J.; Zare, M.; Sonderegger, D.L.; Knight, R.; Kelley, S.T.; Siegel, J.; Caporaso, J.G. Geography and location are the primary drivers of office microbiome composition. MSystems 2016, 1, e00022-16. [Google Scholar] [CrossRef] [PubMed]
- López, C.D.; González, D.M.; Haas, C.; Vidaki, A.; Kayser, M. Microbiome-based body site of origin classification of forensically relevant blood traces. For. Sci. Int. Genet. 2020, 47, 102280. [Google Scholar] [CrossRef]
- Williams, A.B. Genome instability in Bacteria: Causes and consequences. In Genome Stability: From Virus to Human Application; Kovalchuk, I., Kovalchuk, O., Eds.; Academic Press: New York, NY, USA, 2016; pp. 69–85. [Google Scholar]
- Golubov, A. Genome instability in bacteria: Causes and consequences. In Genome Stability: From Virus to Human Application; Kovalchuk, I., Kovalchuk, O., Eds.; Academic Press: New York, NY, USA, 2021; pp. 73–90. [Google Scholar]
- Barr, J.N.; Fearns, R. Genetic instability of RNA viruses. In Genome Stability: From Virus to Human Application; Kovalchuk, I., Kovalchuk, O., Eds.; Academic Press: New York, NY, USA, 2016; pp. 21–35. [Google Scholar]
- Sanjuán, R.; Pereira-Gómez, M.; Risso, J. Genome instability in DNA viruses. In Genome Stability: From Virus to Human Application; Kovalchuk, I., Kovalchuk, O., Eds.; Academic Press: New York, NY, USA, 2016; pp. 37–47. [Google Scholar]
- Agol, V.I.; Gmyl, A.P. Emergency services of viral RNAs: Repair and remodeling. Microbiol. Mol. Biol. Rev. 2018, 82, 10–1128. [Google Scholar] [CrossRef]
- Posada-Cespedes, S.; Seifert, D.; Beerenwinkel, N. Recent advances in inferring viral diversity from high-throughput sequencing data. Virus Res. 2017, 239, 17–32. [Google Scholar] [CrossRef]
- Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.; Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 2011, 9, e1001127. [Google Scholar] [CrossRef]
- MetaGraph: Ultra Scalable Framework for DNA Search, Alignment, Assembly. Available online: https://metagraph.ethz.ch (accessed on 6 February 2024).
- Bhattacharya, C.; Tierney, B.T.; Ryon, K.A.; Bhattacharyya, M.; Hastings, J.J.; Basu, S.; Bhattacharya, B.; Bagchi, D.; Mukherjee, S.; Wang, L.; et al. Supervised Machine Learning Enables Geospatial Microbial Provenance. Genes 2022, 13, 1914. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, Z.; Wang, Z.; Zhang, F.; Guan, D.; Zhao, R. Trends in forensic microbiology: From classical methods to deep learning. Front. Microbiol. 2023, 14, 1163741. [Google Scholar] [CrossRef]
- Tarozzi, M.E. Next generation sequencing technologies, bioinformatics and artificial intelligence: A shared timeline. Sci. Rev. Biol. 2024, 3, 13–21. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, Y.; Hayakawa, M.; Yang, W.; Lu, Y.; Ma, J.; Li, L.; Li, C.; Liu, Y.; Niu, J. Artificial intelligence-driven microbiome data analysis for estimation of postmortem interval and crime location. Front. Microbiol. 2024, 15, 1334703. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.J.; Azevedo, R.M. ChatGPT in forensic sciences: A new Pandora’s box with advantages and challenges to pay attention. For. Sci. Res. 2023, 8, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.; Al-Salahat, K.; Al-Ajlouni, E. ChatGPT performance in diagnostic clinical microbiology laboratory-oriented case scenarios. Cureus 2023, 15, e50629. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, M.; Marszałek, K.; Kowalski, M.; Frolova, A.; Łabaj, P.P.; Branicki, W.; Madureira-Carvalho, Á.; da Silva, D.D.; Dinis-Oliveira, R.J. Sequencing Technologies in Forensic Microbiology: Current Trends and Advancements. Forensic Sci. 2024, 4, 523-545. https://doi.org/10.3390/forensicsci4040035
Oliveira M, Marszałek K, Kowalski M, Frolova A, Łabaj PP, Branicki W, Madureira-Carvalho Á, da Silva DD, Dinis-Oliveira RJ. Sequencing Technologies in Forensic Microbiology: Current Trends and Advancements. Forensic Sciences. 2024; 4(4):523-545. https://doi.org/10.3390/forensicsci4040035
Chicago/Turabian StyleOliveira, Manuela, Kamila Marszałek, Michał Kowalski, Alina Frolova, Paweł P. Łabaj, Wojciech Branicki, Áurea Madureira-Carvalho, Diana Dias da Silva, and Ricardo Jorge Dinis-Oliveira. 2024. "Sequencing Technologies in Forensic Microbiology: Current Trends and Advancements" Forensic Sciences 4, no. 4: 523-545. https://doi.org/10.3390/forensicsci4040035
APA StyleOliveira, M., Marszałek, K., Kowalski, M., Frolova, A., Łabaj, P. P., Branicki, W., Madureira-Carvalho, Á., da Silva, D. D., & Dinis-Oliveira, R. J. (2024). Sequencing Technologies in Forensic Microbiology: Current Trends and Advancements. Forensic Sciences, 4(4), 523-545. https://doi.org/10.3390/forensicsci4040035