Advancing Diagnostic Tools in Forensic Science: The Role of Artificial Intelligence in Gunshot Wound Investigation—A Systematic Review
Abstract
1. Introduction
- -
- To examine how AI methodologies have been applied to the forensic analysis and classification of GSWs.
- -
- To evaluate the potential of AI tools in improving the objectivity and consistency of data interpretation at crime scenes.
- -
- To identify current limitations, challenges, and gaps in the integration of AI within this forensic domain.
- -
- To propose future research directions that could enhance the utility and acceptance of AI technologies in forensic science.
- -
- To highlight the potential of AI to foster more accurate, efficient, and standardized forensic practices.
2. Methods
2.1. Study Design
2.2. Data Sources and Search Strategy
- (firearm) AND (artificial intelligence)—71 articles matched these keywords;
- (gunshot) AND (artificial intelligence)—46 articles matched these keywords;
- (firearm wounds) AND (artificial intelligence)—2 articles matched these keywords;
- (gunshot wounds) AND (artificial intelligence)—13 articles matched these keywords;
- (firearm injuries) AND (artificial intelligence)—7 articles matched these keywords;
- (gunshot injuries) AND (artificial intelligence)—21 articles matched these keywords;
- (firearm) AND (machine learning)—132 articles matched these keywords;
- (gunshot) AND (machine learning)—103 articles matched these keywords;
- (firearm wounds) AND (machine learning)—16 articles matched these keywords;
- (gunshot wounds) AND (machine learning)—30 articles matched these keywords;
- (firearm injuries) AND (machine learning)—21 articles matched these keywords;
- (gunshot injuries) AND (machine learning)—37 articles matched these keywords.
2.3. Inclusion and Exclusion Criteria
- ✓ Original articles;
- ✓ Articles written in English.
- ✓ Conference papers (98);
- ✓ Reviews (12);
- ✓ Conference reviews (12);
- ✓ Editorials (6);
- ✓ Notes (4);
- ✓ Book chapters (3);
- ✓ Data papers (3);
- ✓ Letters (2);
- ✓ Short surveys (2);
- ✓ Erratum (1);
- ✓ Retracted articles (1).
2.4. Quality Assessment and Data Extraction
2.5. Risk of Bias Assessment
2.6. Characteristics of Eligible Studies
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ML | Machine Learning |
DL | Deep Learning |
CNNs | Convolutional Neural Networks |
GSW | Gunshot Wound |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
WOS | Web of Science |
CASP | Critical Appraisal Skills Programme |
MLSD | Medico-Legal Shooting Distance |
SHAP | Shapley Additive Explanations |
LIME | Locally Interpretable Model-Agnostic Explanations |
References
- Delémont, O.; Lock, E.; Ribaux, O. Forensic Science and Criminal Investigation. In Encyclopedia of Criminology and Criminal Justice; Springer: New York, NY, USA, 2014. [Google Scholar]
- Roux, C.; Ribaux, O.; Crispino, F. Forensic Science 2020–the End of the Crossroads? Aust. J. Forensic Sci. 2018, 50, 607–618. [Google Scholar] [CrossRef]
- Galante, N.; Cotroneo, R.; Furci, D.; Lodetti, G.; Casali, M.B. Applications of Artificial Intelligence in Forensic Sciences: Current Potential Benefits, Limitations and Perspectives. Int. J. Leg. Med. 2022, 137, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Elahi, M.; Afolaranmi, S.O.; Martinez Lastra, J.L.; Perez Garcia, J.A. A Comprehensive Literature Review of the Applications of AI Techniques through the Lifecycle of Industrial Equipment. Discov. Artif. Intell. 2023, 3, 43. [Google Scholar] [CrossRef]
- Datta, S.D.; Islam, M.; Rahman Sobuz, M.H.; Ahmed, S.; Kar, M. Artificial Intelligence and Machine Learning Applications in the Project Lifecycle of the Construction Industry: A Comprehensive Review. Heliyon 2024, 10, e26888. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, G.; Singh, S.; Pathania, M.; Gosavi, S.; Abhishek, S.; Parchani, A.; Dhar, M. Artificial Intelligence in Clinical Medicine: Catalyzing a Sustainable Global Healthcare Paradigm. Front. Artif. Intell. 2023, 6, 1227091. [Google Scholar] [CrossRef] [PubMed]
- Olawade, D.B.; David-Olawade, A.C.; Wada, O.Z.; Asaolu, A.J.; Adereni, T.; Ling, J. Artificial Intelligence in Healthcare Delivery: Prospects and Pitfalls. J. Med. Surg. Public Health 2024, 3, 100108. [Google Scholar] [CrossRef]
- Sablone, S.; Bellino, M.; Cardinale, A.N.; Esposito, M.; Sessa, F.; Salerno, M. Artificial Intelligence in Healthcare: An Italian Perspective on Ethical and Medico-Legal Implications. Front. Med. 2024, 11, 1343456. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Esposito, M.; Cocimano, G.; Sablone, S.; Karaboue, M.A.A.; Chisari, M.; Albano, D.G.; Salerno, M. Artificial Intelligence and Forensic Genetics: Current Applications and Future Perspectives. Appl. Sci. 2024, 14, 2113. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, F.; Wang, L.; Yuan, H.; Guan, D.; Zhao, R. Advances in Artificial Intelligence-Based Microbiome for PMI Estimation. Front. Microbiol. 2022, 13, 1034051. [Google Scholar] [CrossRef] [PubMed]
- Baum, G.R.; Baum, J.T.; Hayward, D.; Mackay, B.J. Gunshot Wounds: Ballistics, Pathology, and Treatment Recommendations, with a Focus on Retained Bullets. Orthop. Res. Rev. 2022, 14, 293. [Google Scholar] [CrossRef] [PubMed]
- Pomara, C.; Fineschi, V. Forensic and Clinical Forensic Autopsy: An Atlas and Handbook, 2nd ed.; Pomara, C., Fineschi, V., Eds.; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9780367330712. [Google Scholar]
- Kimberley Molina, D.; Dimaio, V.; Cave, R. Gunshot Wounds: A Review of Firearm Type, Range, and Location as Pertaining to Manner of Death. Am. J. Forensic Med. Pathol. 2013, 34, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Mukherjee, D.; Moza, B. A Comprehensive Review of Wound Ballistics: Mechanisms, Effects, and Advancements. Int. J. Med. Toxicol. Leg. Med. 2023, 26, 189–196. [Google Scholar] [CrossRef]
- Gugala, Z.; Lindsey, R.W. Classification of Gunshot Injuries in Civilians. Clin. Orthop. Relat. Res. 2003, 408, 65–91. [Google Scholar] [CrossRef] [PubMed]
- Molina, D.K.; Rulon, J.J.; Wallace, E.I. The Atypical Entrance Wound: Differential Diagnosis and Discussion of an Unusual Cause. Am. J. Forensic Med. Pathol. 2012, 33, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Oura, P.; Junno, A.; Junno, J.A. Deep Learning in Forensic Shotgun Pattern Interpretation—A Proof-of-Concept Study. Leg. Med. 2021, 53, 101960. [Google Scholar] [CrossRef] [PubMed]
- Oura, P.; Junno, A.; Junno, J.A. Deep Learning in Forensic Gunshot Wound Interpretation—A Proof-of-Concept Study. Int. J. Legal. Med. 2021, 135, 2101–2106. [Google Scholar] [CrossRef] [PubMed]
- Queiroz Nogueira Lira, R.; Geovana Motta de Sousa, L.; Memoria Pinho, M.L.; Pinto da Silva Andrade de Lima, R.C.; Garcia Freitas, P.; Scholles Soares Dias, B.; Breda de Souza, A.C.; Ferreira Leite, A. Deep Learning-Based Human Gunshot Wounds Classification. Int. J. Legal. Med. 2024, 139, 651–666. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Schmidt, C.; Wilson, A.; Wang, Z.; Hao, W.; Pantanowitz, J.; Morris, C.; Tashjian, R.; Pantanowitz, L. Artificial Intelligence for Human Gunshot Wound Classification. J. Pathol. Inform. 2023, 15, 100361. [Google Scholar] [CrossRef] [PubMed]
- Tynan, P. The Integration and Implications of Artificial Intelligence in Forensic Science. Forensic Sci. Med. Pathol. 2024, 20, 1103–1105. [Google Scholar] [CrossRef] [PubMed]
- Kaya, V.; Tuncer, S.; Baran, A. Detection and Classification of Different Weapon Types Using Deep Learning. Appl. Sci. 2021, 11, 7535. [Google Scholar] [CrossRef]
- Gelana, F.; Yadav, A. Firearm Detection from Surveillance Cameras Using Image Processing and Machine Learning Techniques. Adv. Intell. Syst. Comput. 2019, 851, 25–34. [Google Scholar]
- Bergman, T.; Klöden, M.; Dreßler, J.; Labudde, D. Automatic Classification of Bloodstains with Deep Learning Methods. KI-Kunstl. Intell. 2022, 36, 135–141. [Google Scholar] [CrossRef]
- Tripathi, S.; Gabriel, K.; Dheer, S.; Parajuli, A.; Augustin, A.I.; Elahi, A.; Awan, O.; Dako, F. Understanding Biases and Disparities in Radiology AI Datasets: A Review. J. Am. Coll. Radiol. 2023, 20, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Dunsin, D.; Ghanem, M.C.; Ouazzane, K.; Vassilev, V. A Comprehensive Analysis of the Role of Artificial Intelligence and Machine Learning in Modern Digital Forensics and Incident Response. Forensic Sci. Int. Digit. Investig. 2024, 48. [Google Scholar] [CrossRef]
- Barash, M.; McNevin, D.; Fedorenko, V.; Giverts, P. Machine Learning Applications in Forensic DNA Profiling: A Critical Review. Forensic Sci. Int. Genet. 2024, 69, 102994. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.E. Facial Recognition Software for Lead Generation and Lineup Construction. In The Impact of Technology on the Criminal Justice System; Routledge: Oxford, UK, 2024; ISBN 9781003848233. [Google Scholar]
- Kleinstreuer, N.; Hartung, T. Artificial Intelligence (AI)—It’s the End of the Tox as We Know It (and I Feel Fine)*. Arch. Toxicol. 2024, 98, 735–754. [Google Scholar] [CrossRef] [PubMed]
- Wankhade, T.D.; Ingale, S.W.; Mohite, P.M.; Bankar, N.J. Artificial Intelligence in Forensic Medicine and Toxicology: The Future of Forensic Medicine. Cureus 2022, 14, e28376. [Google Scholar] [CrossRef] [PubMed]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.Y.; Yuen, T.H.; Co, M. Using ChatGPT for Medical Education: The Technical Perspective. BMC Med. Educ. 2025, 25, 201. [Google Scholar] [CrossRef] [PubMed]
- Chairat, S.; Chaichulee, S.; Dissaneewate, T.; Wangkulangkul, P.; Kongpanichakul, L. AI-Assisted Assessment of Wound Tissue with Automatic Color and Measurement Calibration on Images Taken with a Smartphone. Healthcare 2023, 11, 271. [Google Scholar] [CrossRef] [PubMed]
- Brunty, J. Validation of Forensic Tools and Methods: A Primer for the Digital Forensics Examiner. WIREs Forensic Sci. 2023, 5, e1474. [Google Scholar] [CrossRef]
- Guo, Y.; Slay, J.; Beckett, J. Validation and Verification of Computer Forensic Software Tools-Searching Function. Digit. Investig. 2009, 6, S12–S22. [Google Scholar] [CrossRef]
- Yang, W.; Wei, Y.; Wei, H.; Chen, Y.; Huang, G.; Li, X.; Li, R.; Yao, N.; Wang, X.; Gu, X.; et al. Survey on Explainable AI: From Approaches, Limitations and Applications Aspects. Hum. Centric Intell. Syst. 2023, 3, 161–188. [Google Scholar] [CrossRef]
- Olatoye, F.O.; Awonuga, K.F.; Mhlongo, N.Z.; Ibeh, C.V.; Elufioye, O.A.; Ndubuisi, N.L. AI and Ethics in Business: A Comprehensive Review of Responsible AI Practices and Corporate Responsibility. Int. J. Sci. Res. Arch. 2024, 11, 1433–1443. [Google Scholar] [CrossRef]
- Kara, I.; Tahillioglu, E. Digital Image Analysis of Gunshot Residue Dimensional Dispersion by Computer Vision Method. Microsc. Res. Tech. 2022, 85, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Cheong, B.C. Transparency and Accountability in AI Systems: Safeguarding Wellbeing in the Age of Algorithmic Decision-Making. Front. Hum. Dyn. 2024, 6, 1421273. [Google Scholar] [CrossRef]
- Sessa, F.; Chisari, M.; Esposito, M.; Karaboue, M.A.A.; Salerno, M.; Cocimano, G. Ethical, Legal and Social Implications (ELSI) Regarding Forensic Genetic Investigations (FGIs). J. Acad. Ethics. 2024, 1–21. [Google Scholar] [CrossRef]
- Stoykova, R. The Right to a Fair Trial as a Conceptual Framework for Digital Evidence Rules in Criminal Investigations. Comput. Law Secur. Rev. 2023, 49, 105801. [Google Scholar] [CrossRef]
First Author Name, Country of First Author Affiliation, and Year | Study’s Object | Dataset | Deep Learning Model | Key Findings |
---|---|---|---|---|
Oura et al., Finland, 2021 [19] | Classification of shotgun pattern images based on shooting distance | 106 images of shotgun patterns (54 from 10 m, 52 from 17.5 m) | TinyResNet-based algorithm | Achieved 94% accuracy. Highlighted the need for larger datasets and diverse firearms for broader applicability. |
Oura et al., Finland, 2021 [20] | Prediction of shooting distance classes from GSWs | 204 images from piglet carcasses (negative control, contact, close-range, and distant shots) | Multilayer perceptron (MLP_24_16_24) | Achieved 98% accuracy. Noted limitations due to small sample size and the use of piglet carcasses. |
Queiroz Nogueira Lira et al., Brazil, 2024 [21] | Classification of GSWs (entry vs. exit) and shooting distance categories | 2551 wound images (entry and exit wounds) from Brazilian forensic cases | ResNet152 | Achieved 86.9% (wound classification) and 92.48% (distance classification). Acknowledged dataset imbalance and variability in image quality. |
Cheng et al., USA, 2024 [22] | Classification of GSWs (entry vs. exit wounds) | 2418 digital images (1314 exit and 1104 entrance wounds) | ConvNext Tiny (Fastai library) | Achieved 87.99% accuracy. Emphasized the need for enhanced data diversity and explainability for forensic applications. |
Study | Selection Bias | Measurement Bias | Reporting Bias | Applicability Concerns | Overall Risk of Bias |
---|---|---|---|---|---|
Oura et al. [19] | Low | Moderate (small dataset) | Low | Moderate (single firearm type) | Moderate |
Oura et al. [20] | Low | Moderate (animal model) | Low | High (limited external validity) | Moderate |
Queiroz Nogueira Lira et al. [21] | Moderate (single-institution data) | Low | Low | Moderate (dataset imbalance) | Moderate |
Cheng et al. [22] | Low | Low | Low | Moderate (lack of diverse cases) | Low–Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sessa, F.; Chisari, M.; Esposito, M.; Guardo, E.; Mauro, L.D.; Salerno, M.; Pomara, C. Advancing Diagnostic Tools in Forensic Science: The Role of Artificial Intelligence in Gunshot Wound Investigation—A Systematic Review. Forensic Sci. 2025, 5, 30. https://doi.org/10.3390/forensicsci5030030
Sessa F, Chisari M, Esposito M, Guardo E, Mauro LD, Salerno M, Pomara C. Advancing Diagnostic Tools in Forensic Science: The Role of Artificial Intelligence in Gunshot Wound Investigation—A Systematic Review. Forensic Sciences. 2025; 5(3):30. https://doi.org/10.3390/forensicsci5030030
Chicago/Turabian StyleSessa, Francesco, Mario Chisari, Massimiliano Esposito, Elisa Guardo, Lucio Di Mauro, Monica Salerno, and Cristoforo Pomara. 2025. "Advancing Diagnostic Tools in Forensic Science: The Role of Artificial Intelligence in Gunshot Wound Investigation—A Systematic Review" Forensic Sciences 5, no. 3: 30. https://doi.org/10.3390/forensicsci5030030
APA StyleSessa, F., Chisari, M., Esposito, M., Guardo, E., Mauro, L. D., Salerno, M., & Pomara, C. (2025). Advancing Diagnostic Tools in Forensic Science: The Role of Artificial Intelligence in Gunshot Wound Investigation—A Systematic Review. Forensic Sciences, 5(3), 30. https://doi.org/10.3390/forensicsci5030030