Synthesis of Optically Active Bicyclic Derivatives of Nitroimidazoles
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Calculation of Potential Biological Activities of the Obtained Compounds Using the PASS Method and Calculation of the Partition Coefficient
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. (R)- and (S)-2-Chloromethyl-7-nitroimidazo[5,1-b]-2,3-dihydrooxazole (3,4)
Appendix A.2. (R)- and (S)-2-Chloromethyl-5-methyl-7-nitroimidazo[5,1-b]-2,3-dihydrooxazole (5,6)
Appendix A.3. General Methods for the Synthesis of Products 7–14
Appendix A.4. (R)-1-Phenyl-3-hydroxy-8-nitroimidazo[5,1-b]-1,4,5,6-tetrahydropyrimidine (7)
Appendix A.5. (S)-1-Phenyl-3-hydroxy-8-nitroimidazo[5,1-b]-1,4,5,6-tetrahydropyrimidine (8)
Appendix A.6. (R)-1-Phenyl-3-hydroxy-6-methyl-8-nitroimidazo[5,1-b]-1,4,5,6-tetrahydropyrimidine (9)
Appendix A.7. (S)-1-Phenyl-3-hydroxy-6-methyl-8-nitroimidazo[5,1-b]-1,4,5,6-tetrahydropyrimidine (10)
Appendix A.8. (R)-1-n-Butyl-3-hydroxy-8-nitroimidazo[5,1-b]-1,4,5,6-tetrahydropyrimidine (11)
Appendix A.9. (S)-1-n-Butyl-3-hydroxy-8-nitroimidazo[5,1-b]-1,4,5,6-tetrahydropyrimidine (12)
Appendix A.10. (R)-1-n-Butyl-3-hydroxy-6-methyl-8-nitroimidazo[5,1-b]-1,4,5,6-tetrahydropyrimidine (13)
Appendix A.11. (S)-1-n-Butyl-3-hydroxy-6-methyl-8-nitroimidazo[5,1-b]-1,4,5,6-tetrahydropyrimidine (14)
References
- Mital, A. Synthetic Nitroimidazoles: Biological Activities and Mutagenicity Relationships. Sci. Pharm. 2009, 77, 497–520. [Google Scholar] [CrossRef] [Green Version]
- Olender, D.; Żwawiak, J.; Zaprutko, L. Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines. Pharmaceuticals 2018, 11, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Żwawiak, J.; Olender, D.; Zaprutko, L. Some nitroimidazole derivatives as antibacterial and antifungal agents in in vitro study. J. Med. Sci. 2019, 88, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Maeda, K.; Osata, T.; Umezawa, H. A new antibiotic, azomycin. J. Antibiot. 1953, 6, 182. [Google Scholar]
- Townson, S.M.; Boreham, P.F.L.; Upcroft, P.; Upcroft, J.A. Resistance to the nitroheterocyclic drugs. Acta Trop. 1994, 56, 173–194. [Google Scholar] [CrossRef]
- Clifton, E.B.; Boshoff, H.I.M.; Dowd, C.F. Prospects for clinical introduction of nitroimidazole antibiotics for the treatment of tuberculosis. Curr Pharm Design. 2004, 10, 3239–3262. [Google Scholar]
- Adib, M.; Sheibani, E.; Mostofi, M.; Ghanbary, K.; Bijanzadeh, H.R. Efficient highly diastereoselective synthesis of 1,8a-dihydro-7H-imidazo[2,1-b][1,3]oxazines. Tetrahedron 2006, 62, 3435–3438. [Google Scholar] [CrossRef]
- Agrawal, K.C.; Bears, K.; Sehgal, R.K.; Brown, J.N.; Rist, P.E.; Rupp, W.D. Potential radiosensitizing agents. Nitroimidazoles. J. Med. Chem. 1979, 22, 583–586. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, K.; Shankar, R.; Rajappa, S.; Shenoy, S.T.; Costa-Pereira, R. Nitroimidazoles XXI. 2,3-dihydro-6-nitroimidazo[2,1-b]oxazoles with antitubercular activity. Eur. J. Med. Chem. 1989, 24, 631–633. [Google Scholar] [CrossRef]
- Thompson, A.M.; Bonnet, M.; Lee, H.H.; Franzblau, S.G.; Wan, B.; Wong, G.S.; Cooper, C.B.; Denny, W.A. Antitubercular Nitroimidazoles Revisited: Synthesis and Activity of the Authentic 3-Nitro Isomer of Pretomanid. ACS Med. Chem. Lett. 2017, 8, 1275–1280. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Li, S.Y.; Almeida, D.V.; Tasneen, R.; Barnes-Boyle, K.; Converse, P.J.; Upton, A.M.; Mdluli, K.; Fotouhi, N.; Nuermberger, E.L. Contribution of Pretomanid to Novel Regimens Containing Bedaquiline with either Linezolid or Moxifloxacin and Pyrazinamide in Murine Models of Tuberculosis. Antimicrob Agents Chemother. 2019, 63, e00021-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Showalter, H.D. Recent Progress in the Discovery and Development of 2-Nitroimidazooxazines and 6-Nitroimidazooxazoles to Treat Tuberculosis and Neglected Tropical Diseases. Molecules 2020, 25, 4137. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, T.; Boshoff, H. Nitroimidazoles for the treatment of TB: Past, present and future. Future Med. Chem. 2011, 3, 1427–1454. [Google Scholar] [CrossRef] [Green Version]
- Boyer, J.H. Nitroazoles; VCH Publishers Inc.: Deerfield Beach, FL, USA, 1986; pp. 165–166. [Google Scholar]
- Wardman, P. Nitroimidazoles as hypoxic cell radiosensitizers and hypoxia probes: Misonidazole, myths and mistakes. Br. J. Radiol. 2019, 92, 20170915. [Google Scholar] [CrossRef]
- Zhang, J.; Ba, Y.; Wang, S.; Yang, H.; Hou, X.; Xu, Z. Nitroimidazole-containing compounds and their antibacterial and antitubercular activities. Eur. J. Med. Chem. 2019, 179, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, Z.; Xie, F.; Butt, N.A.; Sun, L.; Zhang, W. First catalytic enantioselective synthesis of P-stereogenic phosphoramides via kinetic resolution promoted by a chiral bicyclic imidazole nucleophilic catalyst. Tetrahedron Asymmetry 2012, 23, 329–332. [Google Scholar] [CrossRef]
- Sasaki, H.; Haraguchi, Y.; Itotani, M.; Kuroda, H.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Matsumoto, M.; Komatsu, M.; Tsubouchi, H. Synthesis and Antituberculosis Activity of a Novel Series of Optically Active 6-Nitro-2,3-dihydroimidazo[2,1-b]oxazoles. J. Med. Chem. 2006, 49, 7854–7860. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Manjunatha, U.H.; Goodwin, M.B.; Knox, J.E.; Lipinski, C.A.; Keller, T.H.; Barry, C.E.; Dowd, C.S. Synthesis and antitubercular activity of 7-(R)- and 7-(S)-methyl-2-nitro-6-(S)-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazines, analogues of PA-824. Bioorg. Med. Chem. Lett. 2008, 18, 2256–2262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaprutko, L.; Gajdziński, M.; Michalska, W.; Pietkiewicz, K.; Lutomski, K.; Łukaszewski, Z.; Wrzeciono, U. Azoles. Part 27: Nitroimidazole derivatives, their antibacterial and antifungicidal activity and electron affinity. Pharmazie 1989, 44, 81–84. [Google Scholar]
- Gzella, A.; Żwawiak, J.; Zaprutko, L. (R)-(+)-3-Chlor-1-(4-morpholino-5-nitro-1H-imidazol-1-yl)propan-2-ol. Acta Crystallogr. E 2005, 61, o4071–o4072. [Google Scholar] [CrossRef]
- Gzella, A.; Żwawiak, J.; Zaprutko, L. (S)-(-)-3-Chlor-1-(4-morpholino-5-nitro-1H-imidazol-1-yl)propan-2-ol. Acta Crystallogr. E 2005, 61, o4231–o4232. [Google Scholar] [CrossRef]
- Zaprutko, L.; Żwawiak, J.; Augustynowicz-Kopeć, E.; Zwolska, Z.; Bartoszak-Adamska, E.; Nowicki, W. Synthesis, structure and biological evaluation of novel bicyclic nitroimidazole derivatives. Arch. Pharm. Chem. Life Sci. 2012, 345, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, S. Prediction of activity spectra for substances. J. Pharmacol. Pharmacother. 2011, 2, 52–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghose, A.K.; Viswanadah, V.V.; Wendoloski, J.J. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods. J. Phys. Chem. 1998, 102, 3762–3772. [Google Scholar] [CrossRef]
- Fargher, R.G.; Pyman, F.L. XXVI. Nitro-, arylazo-, and amino-glyoxalines. J. Chem. Soc. 1919, 115, 217–252. [Google Scholar] [CrossRef] [Green Version]
- Nowikow, S.S.; Chmielnickij, L.; Lebiedew, O.W.; Sevastyanova, V.V.; Epishina, L.V. Nitration of imidazoles with various nitrating agents. Chimija Geter. Sojed. 1970, 6, 503–507. [Google Scholar]
No. | Pa | Pi | The Biological Activity | Average logP Value |
---|---|---|---|---|
7,8 | 0.734 | 0.005 | Alcohol dehydrogenase inhibitor | 1.63 |
0.604 | 0.014 | Radiosensitizing agent | ||
0.591 | 0.021 | Antiviral agent | ||
9,10 | 0.575 | 0.005 | Antiprotozoal agent | 2.06 |
0.575 | 0.021 | Radiosensitizing agent | ||
11,12 | 0.673 | 0.007 | Alcohol dehydrogenase inhibitor | 1.40 |
0.591 | 0.017 | Radiosensitizing agent | ||
13,14 | 0.628 | 0.042 | Lowering blood pressure | 1.77 |
0.606 | 0.038 | Kidney function stimulant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żwawiak, J.; Zaprutko, L. Synthesis of Optically Active Bicyclic Derivatives of Nitroimidazoles. Compounds 2021, 1, 145-153. https://doi.org/10.3390/compounds1030013
Żwawiak J, Zaprutko L. Synthesis of Optically Active Bicyclic Derivatives of Nitroimidazoles. Compounds. 2021; 1(3):145-153. https://doi.org/10.3390/compounds1030013
Chicago/Turabian StyleŻwawiak, Justyna, and Lucjusz Zaprutko. 2021. "Synthesis of Optically Active Bicyclic Derivatives of Nitroimidazoles" Compounds 1, no. 3: 145-153. https://doi.org/10.3390/compounds1030013
APA StyleŻwawiak, J., & Zaprutko, L. (2021). Synthesis of Optically Active Bicyclic Derivatives of Nitroimidazoles. Compounds, 1(3), 145-153. https://doi.org/10.3390/compounds1030013