Effects of Electrolytes on the Dediazoniation of Aryldiazonium Ions in Acidic MeOH/H2O Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Methods
3. Results
3.1. Spontaneous Dediazoniation of 2-, 3-, and 4-Methylbenzenediazonium Ions: Effects of Solvent (MeOH/H2O) Composition on the Observed Rate Constant, kobs
3.2. Effects of Added Electrolytes on Dediazoniation Rate Constants
3.3. Effects of Added Electrolytes on Product Distribution
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zollinger, H. Diazo Chemistry I: Aromatic and Heteroaromatic Compounds; VCH: Weinheim, Germany, 1994; Volume 107, p. 1917. [Google Scholar]
- Bravo Díaz, C. Diazohydroxides, diazoethers and related species. In The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Rappoport, Z., Liebman, J.F., Eds.; J. Wiley & Sons: Chichester, UK, 2011; Volume 2, p. 853. [Google Scholar]
- Firth, J.D.; Fairlamb, I.J.S. A Need for Caution in the Preparation and Application of Synthetically Versatile Aryl Diazonium Tetrafluoroborate Salts. Org. Lett. 2020, 22, 7057–7059. [Google Scholar] [CrossRef] [PubMed]
- Trusova, M.E.; Kutonova, K.V.; Kurtukov, V.V.; Filimonov, V.D.; Postnikov, P.S. Arenediazonium salts transformations in water media: Coming round to origins. Resour.-Effic. Technol. 2016, 2, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, S.; Chandrasekaran, S. Modifications of amino acids using arenediazonium salts. Org. Biomol. Chem. 2019, 17, 8308–8329. [Google Scholar] [CrossRef] [PubMed]
- Habraken, E.R.M.; van Leest, N.P.; Hooijschuur, P.; de Bruin, B.; Ehlers, A.W.; Lutz, M.; Slootweg, J.C. Aryldiazonium Salts as Nitrogen-Based Lewis Acids: Facile Synthesis of Tuneable Azophosphonium Salts. Angew. Chem. Int. Ed. 2018, 57, 11929–11933. [Google Scholar] [CrossRef] [Green Version]
- Roglans, A.; Pla-Quintana, A.; Moreno-Mañas, M. Diazonium Salts as Substrates in Palladium-Catalyzed Cross-Coupling Reactions. Chem. Rev. 2006, 106, 4622–4643. [Google Scholar] [CrossRef]
- Mo, F.; Dong, G.; Zhanga, Y.; Wang, J. Recent applications of arene diazonium salts in organic synthesis. Org. Biomol. Chem. 2013, 11, 1582–1593. [Google Scholar] [CrossRef]
- Venkatesh, R.; Singh, A.K.; Lee, Y.R.; Kandasamy, J. Palladium-catalyzed synthesis of α-aryl acetophenones from styryl ethers and aryl diazonium salts via regioselective Heck arylation at room temperature. Org. Biomol. Chem. 2021, 19, 7832–7837. [Google Scholar] [CrossRef]
- Riemer, N.; Shipman, M.; Wessig, P.; Schmidt, B. Iterative Arylation of Itaconimides with Diazonium Salts through Electrophilic Palladium Catalysis: Divergent β-H-Elimination Pathways in Repetitive Matsuda–Heck Reactions. J. Org. Chem. 2019, 84, 5732–5746. [Google Scholar] [CrossRef] [Green Version]
- Habraken, E.R.M.; Jupp, A.R.; Slootweg, J.C. Diazonium Salts as Nitrogen-Based Lewis Acids. Synlett 2019, 30, 875–884. [Google Scholar] [CrossRef]
- Koziakov, D.; Wu, G.; Jacobi von Wangelin, A. Aromatic substitutions of arenediazonium salts via metal catalysis, single electron transfer, and weak base mediation. Org. Biomol. Chem. 2018, 16, 4942–4953. [Google Scholar] [CrossRef]
- Zollinger, H. Color Chemistry; VCH: Weinheim, Germany, 1991. [Google Scholar]
- Pazo-LLorente, R.; Rodriguez-Sarabia, M.J.; Gonzalez-Romero, E.; Bravo-Díaz, C. Hydroxy- and Chloro-Dediazoniation of 2- and 3-Methylbenzenediazonium Tetrafluoroborate in Aqueous Solution. Int. J. Chem. Kinet. 1999, 31, 73. [Google Scholar] [CrossRef]
- Delamar, M.; Hitmi, R.; Pinson, J.; Saveant, J.M. Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J. Am. Chem. Soc. 1992, 114, 5883–5884. [Google Scholar] [CrossRef]
- Pinson, J. Attachment of Organic Layers to Materials Surfaces by Reduction of Diazonium Salts. In Aryl Diazonium Salts; Chehimi, M.M., Ed.; Wiley-VCH Verlag and Co.: Weinheim, Germany, 2012. [Google Scholar]
- Mohamed, A.A.; Salmi, Z.; Dahoumane, S.A.; Mekki, A.; Carbonnier, B.; Chehimi, M.M. Functionalization of nanomaterials with aryldiazonium salts. Adv. Colloid Interface Sci. 2015, 225, 16–36. [Google Scholar] [CrossRef] [PubMed]
- Pinson, J.; Podvorika, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 2005, 34, 429. [Google Scholar] [CrossRef]
- Chehimi, M.M. Aryl Diazonium Salts: New Coupling Agents in Polymer and Surface Science; Chehimi, M.M., Ed.; Wiley-VCH: Weinheim, Germany, 2012. [Google Scholar]
- Hetemi, D.; Noël, V.; Pinson, J. Grafting of Diazonium Salts on Surfaces: Application to Biosensors. Biosensors 2020, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Saunders, K.H.; Allen, R.L.M. Aromatic Diazo Compounds, 3rd ed.; Edward Arnold: Baltimore, MD, USA, 1985. [Google Scholar]
- Pazo-Llorente, R.; Sarabia-Rodriguez, M.J.; Gonzalez-Romero, E.; Bravo-Díaz, C. Solvolysis of o-methylbenzenediazonium Tetrafluoroborate in acidic methanol-water mixtures. Further evidence for nucleophilic attack on a solvent separated aryl cation. Int. J. Chem. Kinet. 1999, 31, 531. [Google Scholar] [CrossRef]
- Pazo-Llorente, R.; Bravo-Díaz, C.; González-Romero, E. Solvolyisis of some arenediazonium salts in binary EtOH/H2O mixtures under acidic conditions. Eur. J. Org. Chem. 2003, 2003, 3421. [Google Scholar] [CrossRef]
- Pazo-Llorente, R.; Bravo-Díaz, C.; González-Romero, E. pH Effects on Ethanolysis of Some Arenediazonium Ions: Evidence for Homolytic Dediazoniation Proceeding through Formation of Transient Diazo Ethers. Eur. J. Org. Chem. 2004, 2004, 3221. [Google Scholar] [CrossRef]
- Pazo-Llorente, R.; Bravo-Díaz, C.; González-Romero, E. Monitoring Micelle Breakdown by Chemical Trapping. Langmuir 2003, 19, 9142. [Google Scholar] [CrossRef]
- Pazo-Llorente, R.; Maskill, H.; Bravo-Díaz, C.; González-Romero, E. Dediazoniation of 4-nitrobencenediazonium ions in acidic MeOH/H2O mixtures: Role of acidity and MeOH concentration on the formation of transient diazo ethers that initiate homolytic dediazoniation. Eur. J. Org. Chem. 2006, 2006, 2201. [Google Scholar] [CrossRef]
- Canning, S.J.; McCruden, K.; Maskill, H.; Sexton, B. Dediazoniation reactions of arenediazonium ions under solvolytic conditions: Fluoride anion abstraction from trifluoroethanol and α-hydrogen atom abstraction from ethanol. Chem. Commun. 1998, 18, 1971–1972. [Google Scholar] [CrossRef]
- Canning, P.S.J.; McCrudden, K.; Maskill, H.; Sexton, B. Rates and mechanisms of the thermal solvolytic decomposition of arendiazonium ions. J. Chem. Soc. Perkin Trans. 2 1999, 12, 2735. [Google Scholar] [CrossRef]
- Canning, P.S.J.; Maskill, H.; Mcrudden, K.; Sexton, B. A product analytical study of the thermal and photolytic decomposition of some arenediazonium ions in solution. Bull. Chem. Soc. Jpn. 2002, 75, 789. [Google Scholar] [CrossRef]
- Mayer, R.J.; Ofial, A.R. Nucleophilic Reactivities of Bleach Reagents. Org. Lett. 2018, 20, 2816–2820. [Google Scholar] [CrossRef]
- Isborn, C.; Hrovat, D.A.; Borden, W.T.; Mayer, J.M.; Carpenter, B.K. Factors Controlling the Barriers to Degenerate Hydrogen Atom Transfers. J. Am. Chem. Soc. 2005, 127, 5794. [Google Scholar] [CrossRef]
- Minegishi, S.; Kobayashi, S.; Mayr, H. Solvent Nucleophilicity. J. Am. Chem. Soc. 2004, 126, 5174–5181. [Google Scholar] [CrossRef]
- Mayr’s Database of Reactivity Parameters. Available online: https://www.cup.lmu.de/oc/mayr/reaktionsdatenbantk2/ (accessed on 10 January 2022).
- Grunwald, E.; Winstein, S.J. The Correlation of Solvolysis Rates. Am. Chem. Soc. 1948, 70, 846. [Google Scholar] [CrossRef]
- Maskill, H. The Physical Basis of Organic Chemistry; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Carey, F.A.; Sundberg, R.J. Structure and Mechanism, Part A; Plenum Press: New York, NY, USA, 1993. [Google Scholar]
- Sengupta, S.; Bhattacharya, S. Heck Reaction of Arenediazonium Salts: A PAlladium-Catalysed Reaction in an Aqueous Medium. J. Chem. Soc. Perkin Trans. 1 1993, 1943–1944. [Google Scholar] [CrossRef]
- Sheng, M.; Frurip, D.; Gorman, D. Reactive chemical hazards of diazonium salts. J. Loss Prev. Process Ind. 2015, 38, 114–118. [Google Scholar] [CrossRef]
- Ullrich, R.; Grewer, T. Decomposition of aromatic diazonium compounds. Thermochim. Acta 1993, 225, 201–211. [Google Scholar] [CrossRef]
- Urbansky, E.T. Perchlorate Chemistry: Implications for Analysis and Remediation. Bioremediat. J. 1998, 2, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.J.J. Toxicology of Perchlorate. In Perchlorate in the Environment; Urbansky, E.T., Ed.; Springer: Boston, MA, USA, 2000; Volume 57. [Google Scholar]
- Garcia-Meijide, M.C.; Bravo-Diaz, C.; Romsted, L.S. A Novel Method for Monitoring Dediazoniations: Simultaneous Monitoring of Rates and Product Distributions of 4-methylbenzenediazonium Tetrafluoroborate. Int. J. Chem. Kinet. 1998, 30, 31–39. [Google Scholar] [CrossRef]
- Bravo-Diaz, C.; Soengas-Fernandez, M.; Rodriguez-Sarabia, M.J.; Gonzalez-Romero, E. Effects of Monovalent and Divalent Anionic Dodecylsulfate Surfactants on the Dediazoniation Reaction of 2-, 3-, and 4-Methylbenzenediazonium Tetrafluorborate. Langmuir 1998, 14, 5098. [Google Scholar] [CrossRef]
- Yamamoto, H.; Ichikawa, K.; Tokunaga, J. Solubility of helium in methanol + water, ethanol + water, 1-propanol + water, and 2-propanol + water solutions at 25 degree.C. J. Chem. Eng. Data 1994, 39, 155–157. [Google Scholar] [CrossRef]
- Fernández-Alonso, A.; Bravo-Diaz, C. Methanolysis of 4-bromobenzenediazonium ions. Effects of acidity, [MeOH] and temperature on the formation and decomposition of diazo ethers that initiate homolytic dediazoniation. Org. Biomol. Chem. 2008, 6, 4004–4011. [Google Scholar] [CrossRef] [PubMed]
- Cuccovia, I.M.; da Silva, M.A.; Ferraz, H.M.C.; Pliego, J.R.; Riveros, J.M.; Chaimovich, H. Revisiting the reactions of nucleophiles with arenediazonium ions. J. Chem. Soc. Perkin Tans. 2 2000, 9, 1896–1907. [Google Scholar] [CrossRef]
- Lewis, E.S.; Hartung, L.D.; McKay, B.M. Reaction of diazonium salts with nucleophiles. XIII. Identity of the rate- and product-determining steps. J. Am. Chem. Soc. 1969, 91, 419–425. [Google Scholar] [CrossRef]
- Bravo-Díaz, C.; González-Romero, E. Monitoring dediazoniation product formation by high-performance liquid chromatography after derivatization. J. Chromatog. A 2003, 989, 221–229. [Google Scholar] [CrossRef]
- Crossley, M.L.; Kienle, R.H.; Benbrook, C.H. Chemical Constitution and Reactivity. I. Phenyldiazonium Chloride and its Mono Substituted Derivatives. J. Am. Chem. Soc. 1940, 62, 1400–1404. [Google Scholar] [CrossRef]
- Glaser, R.; Horan, C.J. Benzenediazonium Ion. Generality, Consistency and Preferability of the Electron Density Based Dative Bonding Model. J. Org. Chem. 1995, 60, 7518–7528. [Google Scholar] [CrossRef]
- Glaser, R.; Horan, C.J.; Lewis, M.; Zollinger, H. σ-Dative and π-Backdative Phenyl Cation−Dinitrogen Interactions and Opposing Sign Reaction Constants in Dual Substituent Parameter Relations. J. Org. Chem. 1999, 64, 902–913. [Google Scholar] [CrossRef] [PubMed]
- Lowry, T.H.; Richardson, K.S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper-Collins Pub.: New York, NY, USA, 1987. [Google Scholar]
- Ritchie, C.D. Physical Organic Chemistry: The Fundamental Concepts, 2nd ed.; Marcel Dekker: New York, NY, USA, 1990. [Google Scholar]
- Romsted, L.S. Interfacial Compositions of Surfactant Assemblies by Chemical Trapping with Arenediazonium Ions: Method and Applications. In Reactions and Synthesis in Surfactant Systems; Texter, J., Ed.; Marcel-Dekker: New York, NY, USA, 2001. [Google Scholar]
- Finnenman, J.I.; Fishbein, J.C. Mechanisms of benzyl group transfer in the decay of e-arylmethanediazoates in aqueous solution. J. Am. Chem. Soc. 1995, 117, 4228. [Google Scholar] [CrossRef]
- Pross, A. Theoretical & Physical Principles of Organic Reactivity; J. Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Leffler, J.E.; Grunwald, E. Rates and Equilibria of Organic Reactions; Dover: New York, NY, USA, 1989. [Google Scholar]
- Cruz, G.N.; Lima, F.S.; Dias, L.G.; El Seoud, O.A.; Horinek, D.; Chaimovich, H.; Cuccovia, I.M. Molecular Dynamics Simulations of the Initial-State Predict Product Distributions of Dediazoniation of Aryldiazonium in Binary Solvents. J. Org. Chem. 2015, 80, 8637–8642. [Google Scholar] [CrossRef]
- Mayr, H.; Patz, M. Scales of Nucleophilicity and Electrophilicity: A System for Ordering Polar Organic and Organometallic Reactions. Angew. Chem. Int. Ed. Engl. 1994, 33, 938–957. [Google Scholar] [CrossRef]
Methylbenzenediazonium Ions | ||
---|---|---|
2MBD | 2.7 | 0.40 |
3MBD | 2.6 | 0.60 |
4MBD | 2.7 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Losada-Barreiro, S.; Bravo-Díaz, C. Effects of Electrolytes on the Dediazoniation of Aryldiazonium Ions in Acidic MeOH/H2O Mixtures. Compounds 2022, 2, 54-67. https://doi.org/10.3390/compounds2010005
Losada-Barreiro S, Bravo-Díaz C. Effects of Electrolytes on the Dediazoniation of Aryldiazonium Ions in Acidic MeOH/H2O Mixtures. Compounds. 2022; 2(1):54-67. https://doi.org/10.3390/compounds2010005
Chicago/Turabian StyleLosada-Barreiro, Sonia, and Carlos Bravo-Díaz. 2022. "Effects of Electrolytes on the Dediazoniation of Aryldiazonium Ions in Acidic MeOH/H2O Mixtures" Compounds 2, no. 1: 54-67. https://doi.org/10.3390/compounds2010005
APA StyleLosada-Barreiro, S., & Bravo-Díaz, C. (2022). Effects of Electrolytes on the Dediazoniation of Aryldiazonium Ions in Acidic MeOH/H2O Mixtures. Compounds, 2(1), 54-67. https://doi.org/10.3390/compounds2010005