Antioxidant and UV-Blocking Functionalized Poly(Butylene Succinate) Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Samples Preparation
2.2.1. PBS Functionalization in Solution
2.2.2. PBS Functionalization in the Melt
2.2.3. Determination of the Functionalization Degree
2.3. Characterization
2.4. Thermal and Photo Aging
2.5. Test of β-Carotene Protection from UV Light
2.6. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Structural Characterization of Functionalized PBS Samples
3.2. Photo- and Thermo-Oxidation Resistance of Functionalized PBS Samples
3.3. UV Protection Effect of Functionalized PBS Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- RameshKumar, S.; Shaiju, P.; O’Connor, K.E. Bio-Based and Biodegradable Polymers - State-of-the-Art, Challenges and Emerging Trends. Curr. Opin. Green Sustain. Chem. 2020, 21, 75–81. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of Biodegradable Plastics: New Problem or Solution to Solve the Global Plastic Pollution? Curr. Opin. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Platnieks, O.; Gaidukovs, S.; Kumar Thakur, V.; Barkane, A.; Beluns, S. Bio-Based Poly (Butylene Succinate): Recent Progress, Challenges and Future Opportunities. Eur. Polym. J. 2021, 161, 110855. [Google Scholar] [CrossRef]
- Barletta, M.; Aversa, C.; Ayyoob, M.; Gisario, A.; Hamad, K.; Mehrpouya, M.; Vahabi, H. Poly(Butylene Succinate) (PBS): Materials, Processing, and Industrial Applications. Prog. Polym. Sci. 2022, 132, 101579. [Google Scholar] [CrossRef]
- Jansen, M.L.A.; van Gulik, W.M. Towards Large Scale Fermentative Production of Succinic Acid. Curr. Opin. Biotechnol. 2014, 30, 190–197. [Google Scholar] [CrossRef]
- Zheng, T.; Xu, B.; Ji, Y.; Zhang, W.; Xin, F.; Dong, W.; Wei, P.; Ma, J.; Jiang, M. Microbial Fuel Cell-Assisted Utilization of Glycerol for Succinate Production by Mutant of Actinobacillus Succinogenes. Biotechnol. Biofuels 2021, 14. [Google Scholar] [CrossRef]
- Babaei, M.; Tsapekos, P.; Alvarado-Morales, M.; Hosseini, M.; Ebrahimi, S.; Niaei, A.; Angelidaki, I. Valorization of Organic Waste with Simultaneous Biogas Upgrading for the Production of Succinic Acid. Biochem. Eng. J. 2019, 147, 136–145. [Google Scholar] [CrossRef]
- Brandolese, A.; della Monica, F.; Pericàs, M.À.; Kleij, A.W. Catalytic Ring-Opening Copolymerization of Fatty Acid Epoxides: Access to Functional Biopolyesters. Macromolecules 2022, 55, 2566–2573. [Google Scholar] [CrossRef]
- Passaglia, E.; Coiai, S.; Augier, S. Control of Macromolecular Architecture during the Reactive Functionalization in the Melt of Olefin Polymers. Prog. Polym. Sci. 2009, 34, 911–947. [Google Scholar] [CrossRef]
- Passaglia, E.; Coiai, S.; Cicogna, F.; Ciardelli, F. Some Recent Advances in Polyolefin Functionalization. Polym. Int. 2014, 63, 12–21. [Google Scholar] [CrossRef]
- González-López, M.E.; Robledo-Ortíz, J.R.; Manríquez-González, R.; Silva-Guzmán, J.A.; Pérez-Fonseca, A.A. Polylactic Acid Functionalization with Maleic Anhydride and Its Use as Coupling Agent in Natural Fiber Biocomposites: A Review. Compos. Interfaces 2018, 25, 515–538. [Google Scholar] [CrossRef]
- Petruš, J.; Kučera, F.; Chamradová, I.; Jančář, J. Real-Time Monitoring of Radical Grafting of Poly(Lactic Acid) with Itaconic Anhydride in Melt. Eur. Polym. J. 2018, 103, 378–389. [Google Scholar] [CrossRef]
- Przybysz-Romatowska, M.; Haponiuk, J.; Formela, K. Reactive Extrusion of Biodegradable Aliphatic Polyesters in the Presence of Free-Radical-Initiators: A Review. Polym. Degrad. Stab. 2020, 182, 109383. [Google Scholar] [CrossRef]
- Mani, R.; Bhattacharya, M.; Tang, J. Functionalization of Polyesters with Maleic Anhydride by Reactive Extrusion. J. Polym. Sci. A Polym. Chem. 1999, 37, 1693–1702. [Google Scholar] [CrossRef]
- Hwang, S.W.; Lee, S.B.; Lee, C.K.; Lee, J.Y.; Shim, J.K.; Selke, S.E.M.; Soto-Valdez, H.; Matuana, L.; Rubino, M.; Auras, R. Grafting of Maleic Anhydride on Poly(L-Lactic Acid). Effects on Physical and Mechanical Properties. Polym. Test 2012, 31, 333–344. [Google Scholar]
- Carlson, D.; Nie, L.; Narayan, R.; Dubois, P. Maleation of Polylactide (PLA) by Reactive Extrusion. J. Appl. Polym. Sci. 1999, 72, 477–485. [Google Scholar] [CrossRef]
- Carlson, D.; Dubois, P.; Nie, L.; Narayan, R. Free Radical Branching of Polylactide by Reactive Extrusion. Polym. Eng. Sci. 1998, 38, 311–321. [Google Scholar] [CrossRef]
- Cicogna, F.; Coiai, S.; Rizzarelli, P.; Carroccio, S.; Gambarotti, C.; Domenichelli, I.; Yang, C.; Dintcheva, N.T.; Filippone, G.; Pinzino, C.; et al. Functionalization of Aliphatic Polyesters by Nitroxide Radical Coupling. Polym. Chem. 2014, 5, 5656–5667. [Google Scholar] [CrossRef]
- Yang, C.; Guenzi, M.; Cicogna, F.; Gambarotti, C.; Filippone, G.; Pinzino, C.; Passaglia, E.; Dintcheva, N.T.; Carroccio, S.; Coiai, S. Grafting of Polymer Chains on the Surface of Carbon Nanotubes via Nitroxide Radical Coupling Reaction. Polym. Int. 2016, 65, 48–56. [Google Scholar] [CrossRef]
- Coiai, S.; Passaglia, E.; Cicogna, F. Post-Polymerization Modification by Nitroxide Radical Coupling. Polym. Int. 2019, 68, 27–63. [Google Scholar] [CrossRef]
- Cicogna, F.; Coiai, S.; Passaglia, E.; Tucci, I.; Ricci, L.; Ciardelli, F.; Batistini, A. Grafting of Functional Nitroxyl Free Radicals to Polyolefins as a Tool to Postreactor Modification of Polyethylene-Based Materials with Control of Macromolecular Architecture. J. Polym. Sci. A Polym. Chem. 2011, 49, 781–795. [Google Scholar] [CrossRef]
- Cicogna, F.; Coiai, S.; Pinzino, C.; Ciardelli, F.; Passaglia, E. Fluorescent Polyolefins by Free Radical Post-Reactor Modification with Functional Nitroxides. React. Funct. Polym. 2012, 72, 695–702. [Google Scholar] [CrossRef]
- McLaren, M.; Jones, B.R.; Hawrylow, M.; Parent, J.S. Controlled Functionalization of Polypropylene by VETEMPO-Mediated Radical Chemistry. Polymer 2023, 267, 125651. [Google Scholar] [CrossRef]
- Domenichelli, I.; Coiai, S.; Cicogna, F.; Pinzino, C.; Passaglia, E. Towards a Better Control of the Radical Functionalization of Poly(Lactic Acid). Polym. Int. 2015, 64, 631–640. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, S.; Fang, X.; Zhou, X.; Wang, J.; Bai, F.; Peng, S. Renewable and Flexible UV-Blocking Film from Poly(Butylene Succinate) and Lignin. Eur. Polym. J. 2019, 116, 265–274. [Google Scholar] [CrossRef]
- Rizzarelli, P.; Carroccio, S. Thermo-Oxidative Processes in Biodegradable Poly(Butylene Succinate). Polym. Degrad. Stab. 2009, 94, 1825–1838. [Google Scholar] [CrossRef]
- Reano, A.F.; Domenek, S.; Pernes, M.; Beaugrand, J.; Allais, F. Ferulic Acid-Based Bis/Trisphenols as Renewable Antioxidants for Polypropylene and Poly(Butylene Succinate). ACS Sustain. Chem. Eng. 2016, 4, 6562–6571. [Google Scholar] [CrossRef]
- Hallstein, J.; Gomoll, A.; Lieske, A.; Büsse, T.; Balko, J.; Brüll, R.; Malz, F.; Metzsch-Zilligen, E.; Pfaendner, R.; Zehm, D. Unraveling the Cause for the Unusual Processing Behavior of Commercial Partially Bio-Based Poly(Butylene Succinates) and Their Stabilization. J. Appl. Polym. Sci. 2021, 138, 50669. [Google Scholar] [CrossRef]
- Coiai, S.; Cicogna, F.; Yang, C.; Tempesti, V.; Carroccio, S.C.; Gorrasi, G.; Mendichi, R.; Dintcheva, N.T.; Passaglia, E. Grafting of Hindered Phenol Groups onto Ethylene/α-Olefin Copolymer by Nitroxide Radical Coupling. Polymers 2017, 9, 670. [Google Scholar] [CrossRef]
- Ge, F.; Ding, Y.; Yang, L.; Huang, Y.; Jiang, L.; Dan, Y. Effect of the Content and Distribution of Ultraviolet Absorbing Groups on the UV Protection and Degradation of Polylactide Films. RSC Adv. 2015, 5, 70473–70481. [Google Scholar] [CrossRef]
- Kim, D.J.; Kim, W.S.; Lee, D.H.; Min, K.E.; Park, L.S.; Kang, I.K.; Jeon, I.R.; Seo, K.H. Modification of Poly(Butylene Succinate) with Peroxide: Crosslinking, Physical and Thermal Properties, and Biodegradation. J. Appl. Polym. Sci. 2001, 81, 983–991. [Google Scholar] [CrossRef]
- Rojas-Lema, S.; Arevalo, J.; Gomez-Caturla, J.; Garcia-Garcia, D.; Torres-Giner, S. Peroxide-Induced Synthesis of Maleic Anhydride-Grafted Poly(Butylene Succinate) and Its Compatibilizing Effect on Poly(Butylene Succinate)/Pistachio Shell Flour Composites. Molecules 2021, 26, 5927. [Google Scholar] [CrossRef]
- Monika; Pal, A.K.; Bhasney, S.M.; Bhagabati, P.; Katiyar, V. Effect of Dicumyl Peroxide on a Poly(Lactic Acid) (PLA)/Poly(Butylene Succinate) (PBS)/Functionalized Chitosan-Based Nanobiocomposite for Packaging: A Reactive Extrusion Study. ACS Omega 2018, 3, 13298–13312. [Google Scholar] [CrossRef]
- Campuzano, J.F.; López, I.D. Study of the Effect of Dicumyl Peroxide on Morphological and Physical Properties of Foam Injection Molded Poly(Lactic Acid)/Poly(Butylene Succinate) Blends. Express Polym. Lett. 2020, 14, 673–684. [Google Scholar] [CrossRef]
- Hyslop, D.K.; Parent, J.S. Functional Nitroxyls for Use in Delayed-Onset Polyolefin Cross-Linking. Macromolecules 2012, 45, 8147–8154. [Google Scholar] [CrossRef]
- Ciardelli, F.; Aglietto, M.; Pieroni, O.; Ruggeri, G.; Waymouth, R.; Kesti, M.; Stein, K. Synthetic Approaches to Functional Polymers. In Chatgilialoglu; Snieckus, V.C., Ed.; Chemical Synthesis. NATO ASI Series; Springer: Dordrecht, The Netherlands, 1996; Volume 320, pp. 525–548. [Google Scholar] [CrossRef]
- Tan, L.; Chen, Y.; Zhou, W.; Ye, S.; Wei, J. Novel Approach toward Poly(Butylene Succinate)/Single-Walled Carbon Nanotubes Nanocomposites with Interfacial-Induced Crystallization Behaviors and Mechanical Strength. Polymer 2011, 52, 3587–3596. [Google Scholar] [CrossRef]
- Yasuniwa, M.; Satou, T. Multiple Melting Behavior of Poly(Butylene Succinate). I. Thermal Analysis of Melt-Crystallized Samples. J. Polym. Sci. B Polym. Phys. 2002, 40, 2411–2420. [Google Scholar] [CrossRef]
- di Lorenzo, M.L.; Androsch, R.; Righetti, M.C. Low-Temperature Crystallization of Poly(Butylene Succinate). Eur. Polym. J. 2017, 94, 384–391. [Google Scholar] [CrossRef]
- Allen, N.S.; Kotecha, J.L.; Parkinson, A.; Loffelman, F.F.; Rauhut, M.M.; Susi, P.V. Photo-Stabilising Action of a p-Hydroxybenzoate Light Stabiliser in Polyolefins: Part III—Antioxidant Behaviour and Additive/Pigment Interactions in High Density Polyethylene. Polym. Degrad. Stab. 1985, 10, 1–13. [Google Scholar] [CrossRef]
- Allen, N.S.; Edge, M. Perspectives on Additives for Polymers. Part 2. Aspects of Photostabilization and Role of Fillers and Pigments. J. Vinyl Addit. Technol. 2021, 27, 211–239. [Google Scholar] [CrossRef]
Sample | Feed Composition | Functionalization Degree 1 (FD) | Molecular Weight Distribution | ||||
---|---|---|---|---|---|---|---|
BPO (mol %) | BHB-TEMPO (mol %) | FDUV 2 (mol %) | FDNMR 3 (mol %) | Mn 4 (g/mol) | Mw 4 (g/mol) | Ð | |
PBS 5 | – | – | – | – | 76,000 | 145,200 | 1.9 |
PBS-120 | – | – | – | – | 72,600 | 147,000 | 2.0 |
PBS-BPO | 1 | – | – | – | n.d. 6 | n.d. 6 | n.d. 6 |
PBS-g-(BHB-T)1 | 1 | 2 | 0.010 ± 0.003 a | n.d. | 65,200 | 132,400 | 2.0 |
PBS-g-(BHB-T)2 | 1 | 2 | 0.014 ± 0.004 a | n.d. | 67,400 | 130,700 | 1.9 |
PBS-g-(BHB-T)3 | 1 | 1 7 | 0.157 ± 0.006 b | 0.170 | 65,200 | 137,600 | 2.1 |
Sample | DSC 1 | TGA 2 | |||||
---|---|---|---|---|---|---|---|
Tg (°C) | Tc (°C) | ΔHc (°C) | Tm I/Tm II (°C) | ΔHm (J/g) | T5% (°C) | Tmax (°C) | |
PBS 3 | −29.2 | 84.5 | −79.0 | 105.9/116.4 | 77.8 | 346.0 ± 4.9 a | 401.4 ± 0.1 a |
PBS-g-(BHB-T)1 | −31.1 | 82.9 | −67.2 | 101.8/114.0 | 67.0 | 327.2 ± 4.6 b | 401.2 ± 0.5 a |
PBS-g-(BHB-T)2 | −30.1 | 81.0 | −73.0 | 102.8/116.2 | 70.4 | 329.5 ± 4.8 b | 402.1 ± 0.6 ab |
PBS-g-(BHB-T)3 | −28.2 | 85.0 | −62.0 | 105.6/115.4 | 59.4 | 344.0 ± 9.8 a | 402.7 ± 0.6 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coiai, S.; Migliore, N.; Passaglia, E.; Spiniello, R.; Gambarotti, C.; Cicogna, F. Antioxidant and UV-Blocking Functionalized Poly(Butylene Succinate) Films. Compounds 2023, 3, 180-193. https://doi.org/10.3390/compounds3010015
Coiai S, Migliore N, Passaglia E, Spiniello R, Gambarotti C, Cicogna F. Antioxidant and UV-Blocking Functionalized Poly(Butylene Succinate) Films. Compounds. 2023; 3(1):180-193. https://doi.org/10.3390/compounds3010015
Chicago/Turabian StyleCoiai, Serena, Nicola Migliore, Elisa Passaglia, Roberto Spiniello, Cristian Gambarotti, and Francesca Cicogna. 2023. "Antioxidant and UV-Blocking Functionalized Poly(Butylene Succinate) Films" Compounds 3, no. 1: 180-193. https://doi.org/10.3390/compounds3010015
APA StyleCoiai, S., Migliore, N., Passaglia, E., Spiniello, R., Gambarotti, C., & Cicogna, F. (2023). Antioxidant and UV-Blocking Functionalized Poly(Butylene Succinate) Films. Compounds, 3(1), 180-193. https://doi.org/10.3390/compounds3010015