Powders Synthesized from Water Solutions of Sodium Silicate and Calcium and/or Magnesium Chlorides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Powders
2.3. Heat Treatment of Synthesized Powders
2.4. Preparation of Ceramic Samples
2.5. Methods of Analysis
- D/D0—relative diameter of the sample after heat treatment, %;
- Dheat treatment—diameter of the sample after heat treatment, cm;
- Dpress—diameter of the preceramic sample after pressing, cm.
- ρ—density of the sample, g/cm3;
- m—weight of the sample, g;
- h—thickness of the sample, cm
- D—diameter of the sample, cm.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nawaz, M.; Sattar, F.; Kundu, S.N. Minerals and Rock-Forming Processes. In Sustainable Energy and Environment; Apple Academic Press: Palm Bay, FL, USA, 2019; pp. 39–72. Available online: https://www.taylorfrancis.com/chapters/edit/10.1201/9780429430107-3/ (accessed on 23 April 2025).
- Upadhyay, R.K. Rocks and Their Formation. In Geology and Mineral Resources; Springer Geology: Singapore, 2025. [Google Scholar] [CrossRef]
- Upadhyay, R.K. Non-metallic Minerals and Their Deposits. In Geology and Mineral Resources; Springer Geology: Singapore, 2025. [Google Scholar] [CrossRef]
- Dutkiewicz, M.; Yücel, H.E.; Yıldızhan, F. Evaluation of the Performance of Different Types of Fibrous Concretes Produced by Using Wollastonite. Materials 2022, 15, 6904. [Google Scholar] [CrossRef] [PubMed]
- Boev, E.V.; Islamutdinova, A.A.; Aminova, E.K. Method of obtaining calcium silicate for construction. Nanotechnol. Constr. 2021, 13, 350–357. [Google Scholar] [CrossRef]
- Ismail, H.; Mohamad, H. Bioactivity and Biocompatibility Properties of Sustainable Wollastonite Bioceramics from Rice Husk Ash/Rice Straw Ash: A Review. Materials 2021, 14, 5193. [Google Scholar] [CrossRef] [PubMed]
- Tulyaganov, D.U.; Dimitriadis, K.; Agathopoulos, S.; Fernandes, H.R. Glasses and glass-ceramics in the CaO–MgO–SiO2 system: Diopside containing compositions—A brief review. J. Non-Cryst. Solids 2023, 612, 122351. [Google Scholar] [CrossRef]
- Papike, J.J.; Simon, S.B.; Laul, J.C. The lunar regolith: Chemistry, mineralogy, and petrology. Rev. Geophys. 1982, 20, 761–826. [Google Scholar] [CrossRef]
- Jung, I.H.; Decterov, S.A.; Pelton, A.D. Critical thermodynamic evaluation and optimization of the CaO–MgO–SiO2 system. J. Eur. Ceram. Soc. 2005, 25, 313–333. [Google Scholar] [CrossRef]
- Eriksson, G.; Wu, P.; Blander, M.; Pelton, A.D. Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the MnO–SiO2 and CaO–SiO2 systems. Can. Metall. Q. 1994, 33, 13–21. [Google Scholar] [CrossRef]
- Ogris, D.M.; Kircher, V.; Gamsjäger, E. Cyclic Solid-Liquid Phase Transformations in the CaO–SiO2 System—Experiments and Modelling. Metall. Mater. Trans. B 2023, 54, 1555–1564. [Google Scholar] [CrossRef]
- Taylor, J.R.; Dinsdale, A.T. Thermodynamic and phase diagram data for the CaO-SiO2 system. Calphad 1990, 14, 71–88. [Google Scholar] [CrossRef]
- Yamnova, N.A.; Zubkova, N.V.; Eremin, N.N.; Zadov, A.E.; Gazeev, V.M. Crystal structure of larnite β-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Crystallogr. Rep. 2011, 56, 210–220. [Google Scholar] [CrossRef]
- Shukur, M.M.; Al-Majeed, E.A.; Obied, M.M. Characteristic of wollastonite synthesized from local raw materials. Int. J. Eng. Technol. 2014, 4, 426–429, ISSN 2049-3444. [Google Scholar]
- Obeid, M.M. Crystallization of synthetic wollastonite prepared from local raw materials. Int. J. Mater. Chem. 2014, 4, 79–87. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, K. Evolution of Ca2SiO4 and Ca3Si2O7 crystalline phases synthesized from agro-food waste ashes. AIP Conf. Proc. 2019, 2093, 020033. [Google Scholar] [CrossRef]
- Saravanan, C.; Sasikumar, S. Bioactive diopside (CaMgSi2O6) as a drug delivery carrier–A review. Curr. Drug Deliv. 2012, 9, 583–587. [Google Scholar] [CrossRef]
- Baek, J.Y.; Shin, S.H.; Hyun, S.H.; Cho, J.W. Glass structure and crystallization via two distinct thermal histories: Melt crystallization and glass crystallization. J. Eur. Ceram. Soc. 2021, 41, 831–837. [Google Scholar] [CrossRef]
- Ohsato, H.; Sugimura, T. Morphology of synthetic β-wollastonite and para-wollastonite. J. Cryst. Growth 1986, 74, 656–658. [Google Scholar] [CrossRef]
- Hunnicutt, W.; Struble, L.; Mondal, P. Effect of synthesis procedure on carbonation of calcium-silicate-hydrate. J. Am. Ceram. Soc. 2017, 100, 3736–3745. [Google Scholar] [CrossRef]
- Chen, J.J.; Thomas, J.J.; Taylor, H.F.; Jennings, H.M. Solubility and structure of calcium silicate hydrate. Cem. Concr. Res. 2004, 34, 1499–1519. [Google Scholar] [CrossRef]
- Aysa-Martínez, Y.; Anoro-López, S.; Cano, M.; Julve, D.; Pérez, J.; Coronas, J. Synthesis of amorphous magnesium silicates with different SiO2: MgO molar ratios at laboratory and pilot plant scales. Microporous Mesoporous Mater. 2021, 317, 110946. [Google Scholar] [CrossRef]
- Morsy, R.; Abuelkhair, R.; Elnimr, T. Synthesis and in vitro bioactivity mechanism of synthetic α-wollastonite and β-wollastonite bioceramics. J. Ceram. Sci. Technol. 2016, 7, 65–70. [Google Scholar] [CrossRef]
- Lin, K.; Chang, J.; Lu, J. Synthesis of wollastonite nanowires via hydrothermal microemulsion methods. Mater. Lett. 2006, 60, 3007–3010. [Google Scholar] [CrossRef]
- Ghods, B.; Rezaei, M.; Meshkani, F. Synthesis of nanostructured magnesium silicate with high surface area and mesoporous structure. Ceram. Int. 2016, 42, 6883–6890. [Google Scholar] [CrossRef]
- Douy, A. Aqueous Syntheses of Forsterite (Mg2SiO4) and Enstatite (MgSiO3). J. Sol.-Gel. Sci. Technol. 2002, 24, 221–228. [Google Scholar] [CrossRef]
- Iimori, Y.; Kameshima, Y.; Okada, K.; Hayashi, S. Comparative study of apatite formation on CaSiO3 ceramics in simulated body fluids with different carbonate concentrations. J. Mater. Sci. Mater. Med. 2005, 16, 73–79. [Google Scholar] [CrossRef]
- Martinez, A.; Izquierdo-Barba, I.; Vallet-Regi, M. Bioactivity of a CaO−SiO2 binary glasses system. Chem. Mater. 2000, 12, 3080–3088. [Google Scholar] [CrossRef]
- Blinova, A.A.; Karamirzoev, A.A.; Guseynova, A.R.; Maglakelidze, D.G.; Ilyaeva, T.A.; Gusov, B.A.; Meliksetyants, A.P.; Pirumian, M.M.; Taravanov, M.A.; Pirogov, M.A.; et al. Synthesis and Characterization of Calcium Silicate Nanoparticles Stabilized with Amino Acids. Micromachines 2023, 14, 245. [Google Scholar] [CrossRef]
- Khol’kin, A.I.; Gladun, V.D.; Akat’eva, L.V. Physicochemical analysis as the methodological basis of mineral processing and inorganic synthesis. Theor. Found. Chem. Eng. 2012, 46, 515–527. [Google Scholar] [CrossRef]
- Akat’eva, L.V.; Ivanov, V.K.; Gladun, V.D.; Khol’kin, A.I. Preparation of nanosized powders of calcium hydrosilicates for the use in composite materials. Theor. Found. Chem. Eng. 2014, 48, 468–476. [Google Scholar] [CrossRef]
- Singh, S.P.; Karmakar, B. Mechanochemical synthesis of nano calcium silicate particles at room temperature. N. J. Glass Ceram. 2011, 1, 49–52. [Google Scholar] [CrossRef]
- Tajuelo Rodriguez, E.; Hunnicutt, W.A.; Mondal, P.; Le Pape, Y. Examination of gamma-irradiated calcium silicate hydrates. Part I: Chemical-structural properties. J. Am. Ceram. Soc. 2020, 103, 558–568. [Google Scholar] [CrossRef]
- Huang, X.H.; Chang, J. Synthesis of nanocrystalline wollastonite powders by citrate–nitrate gel combustion method. Mater. Chem. Phys. 2009, 115, 1–4. [Google Scholar] [CrossRef]
- Safronova, T.V. Phase Composition of Ceramic Based on Calcium Hydroxyapatite Powders Containing Byproducts of the Synthesis Reaction. Glass Ceram. 2009, 66, 136–139. [Google Scholar] [CrossRef]
- Golubchikov, D.; Safronova, T.V.; Nemygina, E.; Shatalova, T.B.; Tikhomirova, I.N.; Roslyakov, I.V.; Khayrutdinova, D.; Platonov, V.; Boytsova, O.; Kaimonov, M.; et al. Powder Synthesized from Aqueous Solution of Calcium Nitrate and Mixed-Anionic Solution of Orthophosphate and Silicate Anions for Bioceramics Production. Coatings 2023, 13, 374. [Google Scholar] [CrossRef]
- Safronova, T.V.; Sterlikov, G.S.; Kaimonov, M.R.; Shatalova, T.B.; Filippov, Y.Y.; Toshev, O.U.; Roslyakov, I.V.; Kozlov, D.A.; Tikhomirova, I.N.; Akhmedov, M.R. Composite Powders Synthesized from the Water Solutions of Sodium Silicate and Different Calcium Salts (Nitrate, Chloride, and Acetate). J. Compos. Sci. 2023, 7, 408. [Google Scholar] [CrossRef]
- Tanaka, J.Y.; Kawano, J.; Nagai, T.; Teng, H. Transformation process of amorphous magnesium carbonate in aqueous solution. J. Mineral. Petrol. Sci. 2019, 114, 105–109. [Google Scholar] [CrossRef]
- Santos, H.S.; Nguyen, H.; Illikainen, S.; Alzeer, M.I.; Cunha, S.; Kinnunen, P. Effect of Ammonium Sulfate on the Precipitation Mechanism of Mg Carbonates. Cryst. Growth Des. 2024, 24, 7044–7058. [Google Scholar] [CrossRef]
- Bernard, E.; Lothenbach, B.; Rentsch, D.; German, A.; Winnefeld, F. Effect of carbonates on the formation of magnesium silicate hydrates. Mater. Struct. 2022, 55, 183. [Google Scholar] [CrossRef]
- Abo-Almaged, H.H.; Ngida, R.E.; Ajiba, N.A.; Sadek, H.E.; Khattab, R.M. Utilization of industrial waste materials for the preparation of wollastonite by temperature-induced forming technique. Sci. Rep. 2024, 14, 21752. [Google Scholar] [CrossRef]
- Foster, W.R. High-temperature x-ray diffraction study of the polymorphism of MgSiO3. J. Amer. Ceram. Soc. 1951, 34, 255–259. [Google Scholar] [CrossRef]
- Sarver, J.F.; Hummel, F.A. Stability relations of magnesium metasilicate polymorphs. J. Amer. Ceram. Soc. 1962, 45, 152–156. [Google Scholar] [CrossRef]
- Safronova, T.V.; Shatalova, T.B.; Filippov, Y.Y.; Toshev, O.U.; Knot’ko, A.V.; Vaimugin, L.A.; Savchenkova, D.V. Na2O–CaO–SO3 Ceramics as Promising Inorganic Porogens. Glass Ceram. 2022, 79, 88–94. [Google Scholar] [CrossRef]
№ | Labeling | Concentration × Volume | ||
---|---|---|---|---|
Na2SiO3·5H2O | CaCl2 | MgCl2·6H2O | ||
1 | CaSi | 0.5 M × 0.5 л | 0.5 M × 0.5 л | - |
2 | CaMgSi | 0.5 M × 0.5 л | 0.5 M × 0.25 л | 0.5 M × 0.25 л |
3 | MgSi | 0.5 M × 0.5 л | - | 0.5 M × 0.5 л |
Labeling | Expected Mass of NaCl, mol | Expected Mass of NaCl, g | Mass of NaCl Extracted from Mother Liquor, | Mass of NaCl in Powder (Calculated), % | |
---|---|---|---|---|---|
g | % | ||||
by-CaSi | 0.25 | 29.2 | 15 | 52 | 48 |
by-CaMgSi | 0.25 | 29.2 | 22 | 77 | 23 |
by-MgSi | 0.25 | 29.2 | 21 | 73 | 27 |
Sample | Phases Detected (Crystalline Phases Only) | ||||
---|---|---|---|---|---|
Halite #96-900-8679 NaCl | Calcite #96-900-0966 CaCO3 | Aragonite #96-210-0188 CaCO3 | Wollastonite #96-900-5779 CaSiO3 | Pseudo-Wollastonite #96-900-2251 CaSiO3 | |
CaSi (synthesized powder) | 47% | 23% | 30% | - | - |
CaSi_400 (powder) | 55% | 15% | 30% | - | - |
CaSi_600 (powder) | 100% | - | - | - | - |
CaSi_800 (powder) | 24% | - | - | 76% | - |
CaSi_900 (ceramics) | 8% | - | - | 92% | - |
CaSi_1000 (ceramics) | 9% | - | - | 91% | - |
CaSi_1100 (ceramics) | - | - | - | 100% | - |
CaSi_1200 (ceramics) | - | - | - | - | 100% |
Sample | Phases Detected (Crystalline Phases Only) | ||||
---|---|---|---|---|---|
Halite #96-900-8679 | Enstatite MgSiO3 #96-900-1594 | Forsterite Mg2SiO4 #96-900-7378 | Clinoenstatite MgSiO3 #96-900-8078 | Protoenstatite MgSiO3 #96-154-8550 | |
MgSi (synthesized powder) | 100% | - | - | - | |
MgSi_400 (powder) | 100% | - | - | - | |
MgSi_600 (powder) | 100% | - | - | - | |
MgSi_800 (powder) | 16% | 84% | - | - | |
MgSi_900 (ceramics) | - | 63% | 37% | - | - |
MgSi_1000 (ceramics) | - | 73% | 27% | - | - |
MgSi_1100 (ceramics) | - | 26% | 43% | 30% | - |
MgSi_1200 (ceramics) | - | - | 25% | 28% | 47% |
MgSi_1300 (powder) | - | - | 6% | - | 94% |
Sample | Phases Detected (Crystalline Phases Only) | ||
---|---|---|---|
Halite #96-900-8679 NaCl | Calcite #96-900-0966 CaCO3 | Diopside #96-900-4554 CaMgSi2O6 | |
CaMgSi (synthesized powder) | 55% | 45% | - |
CaMgSi_400 (powder) | 60% | 40% | - |
CaMgSi_600 (powder) | 100% | - | - |
CaMgSi_800 (powder) | 54% | - | 46% |
CaMgSi_900 (ceramics) | 2 | - | 98% |
CaMgSi_1000 (ceramics) | - | - | 100% |
CaMgSi_1100 (ceramics) | - | - | 100% |
CaMgSi_1200 (ceramics) | - | - | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safronova, T.V.; Sultanovskaya, A.S.; Savelev, S.A.; Shatalova, T.B.; Filippov, Y.Y.; Boytsova, O.V.; Platonov, V.B.; Filippova, T.V.; Murashko, A.M.; Feng, X.; et al. Powders Synthesized from Water Solutions of Sodium Silicate and Calcium and/or Magnesium Chlorides. Compounds 2025, 5, 22. https://doi.org/10.3390/compounds5020022
Safronova TV, Sultanovskaya AS, Savelev SA, Shatalova TB, Filippov YY, Boytsova OV, Platonov VB, Filippova TV, Murashko AM, Feng X, et al. Powders Synthesized from Water Solutions of Sodium Silicate and Calcium and/or Magnesium Chlorides. Compounds. 2025; 5(2):22. https://doi.org/10.3390/compounds5020022
Chicago/Turabian StyleSafronova, Tatiana V., Alexandra S. Sultanovskaya, Sergei A. Savelev, Tatiana B. Shatalova, Yaroslav Y. Filippov, Olga V. Boytsova, Vadim B. Platonov, Tatiana V. Filippova, Albina M. Murashko, Xinyan Feng, and et al. 2025. "Powders Synthesized from Water Solutions of Sodium Silicate and Calcium and/or Magnesium Chlorides" Compounds 5, no. 2: 22. https://doi.org/10.3390/compounds5020022
APA StyleSafronova, T. V., Sultanovskaya, A. S., Savelev, S. A., Shatalova, T. B., Filippov, Y. Y., Boytsova, O. V., Platonov, V. B., Filippova, T. V., Murashko, A. M., Feng, X., & Akhmedov, M. R. (2025). Powders Synthesized from Water Solutions of Sodium Silicate and Calcium and/or Magnesium Chlorides. Compounds, 5(2), 22. https://doi.org/10.3390/compounds5020022