Clinical Validation of Estimated Muscle Activations during Phases of Elderly Gait
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Gait Analysis
2.3. Musculoskeletal Modeling
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fawzan, S.; Kozou, H.; Baki, F.; Asal, S. Fall risk assessment and effect of vestibular rehabilitation in the elderly population. Egypt. J. Otolaryngol. 2022, 38, 88. [Google Scholar] [CrossRef]
- Ganz, D.A.; Latham, N.K. Prevention of Falls in Community-Dwelling Older Adults. N. Engl. J. Med. 2020, 382, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Park, J.; Shin, H.; Bae, Y. Gastrocnemius Medial Head Stiffness Is Associated with Potential Fall Risk in Community-Dwelling Older Adults. Healthcare 2022, 10, 785. [Google Scholar] [CrossRef] [PubMed]
- Cattagni, T.; Harnie, J.; Jubeau, M.; Hucteau, E.; Couturier, C. Neural and muscular factors both contribute to plantar- fl exor muscle weakness in older fallers. Exp. Gerontol. 2018, 112, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Karamanidis, K.; Arampatzis, A.; Mademli, L. Age-related deficit in dynamic stability control after forward falls is affected by muscle strength and tendon stiffness. J. Electromyogr. Kinesiol. 2008, 18, 980–989. [Google Scholar] [CrossRef]
- Lima, J.d.S.; de Quadros, D.V.; da Silva, S.L.C.; Tavares, J.P.; Pai, D.D. Custos das autorizações de internação hospitalar por quedas de idosos no Sistema Único de Saúde, Brasil, 2000–2020: Um estudo descritivo. Epidemiol. E Serviços Saúde 2022, 31, e2021603. [Google Scholar] [CrossRef]
- Rodrigues, F.; Domingos, C.; Monteiro, D.; Morouço, P. A Review on Aging, Sarcopenia, Falls, and Resistance Training in Community-Dwelling Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 874. [Google Scholar] [CrossRef]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical Costs of Fatal and Nonfatal Falls in Older Adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef]
- Hartholt, K.A.; van Beeck, E.F.; Polinder, S.; van der Velde, N.; van Lieshout, E.M.M.; Panneman, M.J.M.; van der Cammen, T.J.M.; Patka, P. Societal Consequences of Falls in the Older Population: Injuries, Healthcare Costs, and Long-Term Reduced Quality of Life. J. Trauma Inj. Infect. Crit. Care 2011, 71, 748–753. [Google Scholar] [CrossRef]
- Liu, M.; Hou, T.; Li, Y.; Sun, X.; Szanton, S.L.; Clemson, L.; Davidson, P.M. Fear of falling is as important as multiple previous falls in terms of limiting daily activities: A longitudinal study. BMC Geriatr. 2021, 21, 350. [Google Scholar] [CrossRef]
- Era, P.; Schroll, M.; Ytting, H.; Gause-Nilsson, I.; Heikkinen, E.; Steen, B. Postural Balance and Its Sensory-Motor Correlates in 75-Year-Old Men and Women: A Cross-National Comparative Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1996, 51, M53–M63. [Google Scholar] [CrossRef]
- Hof, A.L. The equations of motion for a standing human reveal three mechanisms for balance. J. Biomech. 2007, 40, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Roh, C.G. Physical exercise goals of the elderly through the analysis of kinetic and kinematic variables of quick walking—Results of the koreans elderly using a motion analysis system. Appl. Sci. 2021, 11, 225. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Masani, K. Effects of age-related changes in step length and step width on the required coefficient of friction during straight walking. Gait Posture 2019, 69, 195–201. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef]
- Roelker, S.A.; Caruthers, E.J.; Hall, R.K.; Pelz, N.C.; Chaudhari, A.M.W.; Siston, R.A. Effects of optimization technique on simulated muscle activations and forces. J. Appl. Biomech. 2020, 36, 259–278. [Google Scholar] [CrossRef] [PubMed]
- Hamner, S.R.; Delp, S.L. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J. Biomech. 2013, 46, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Żuk, M.; Syczewska, M.; Pezowicz, C. Use of the surface electromyography for a quantitative trend validation of estimated muscle forces. Biocybern. Biomed. Eng. 2018, 38, 243–250. [Google Scholar] [CrossRef]
- Trinler, U.; Leboeuf, F.; Hollands, K.; Jones, R.; Baker, R. Estimation of muscle activation during different walking speeds with two mathematical approaches compared to surface EMG. Gait Posture 2018, 64, 266–273. [Google Scholar] [CrossRef]
- Michaud, F.; Lamas, M.; Lugrís, U.; Cuadrado, J. A fair and EMG—Validated comparison of recruitment criteri, musculotendon models and muscle coordination strategie, for the inverse—Dynamics based optimization of muscle forces during gait. J. Neuroeng. Rehabil. 2021, 18, 17. [Google Scholar] [CrossRef]
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance And Gait In The Elderly: A Contemporary Review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Choi, J.; Kang, D.; Yang, S.; Kim, D.; Tack, G. Forward and inverse dynamic study during pedaling: Comparison between the young and the elderly. Technol. Health Care 2016, 24 (Suppl. S2), S659–S664. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.T.; Hemmati, F.; Mardani, M.A.; Sharifmoradi, K.; Hosseini, S.I.; Fadayevatan, R.; Esrafilian, A. Determination of the correlation between muscle forces obtained from OpenSim and muscle activities obtained from electromyography in the elderly. Phys. Eng. Sci. Med. 2021, 44, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Schloemer, S.A.; Thompson, J.A.; Silder, A.; Thelen, D.G.; Siston, R.A. Age-Related Differences in Gait Kinematics, Kinetics, and Muscle Function: A Principal Component Analysis. Ann. Biomed. Eng. 2017, 45, 695–710. [Google Scholar] [CrossRef]
- Lin, Y.C.; Walter, J.P.; Pandy, M.G. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait. Ann. Biomed. Eng. 2018, 46, 1216–1227. [Google Scholar] [CrossRef]
- Graham, D.F.; Modenese, L.; Trewartha, G.; Carty, C.P.; Constantinou, M.; Lloyd, D.G.; Barrett, R.S. Hip joint contact loads in older adults during recovery from forward loss of balance by stepping. J. Biomech. 2016, 49, 2619–2624. [Google Scholar] [CrossRef]
- Leboeuf, F.; Baker, R.; Barré, A.; Reay, J.; Jones, R.; Sangeux, M. The conventional gait model, an open-source implementation that reproduces the past but prepares for the future. Gait Posture 2019, 69, 235–241. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Rajagopal, A.; Dembia, C.L.; DeMers, M.S.; Delp, D.D.; Hicks, J.L.; Delp, S.L. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait. IEEE Trans. Biomed. Eng. 2016, 63, 2068–2079. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Sakurai, S.; Ahn, J.-H. Errors in the Measurement of Center of Pressure (CoP) Computed with Force Plate Affect on 3D Lower Limb Joint Moment During Gait. Int. J. Sport Health Sci. 2007, 5, 71–82. [Google Scholar] [CrossRef]
Muscle | Stance Phase | Swing Phase |
---|---|---|
Tibialis Anterior | 0.51 (0.12) | 0.87 (0.06) |
Peroneus Longus | 0.44 (0.15) | 0.92 (0.02) |
Soleus | 0.57 (0.12) | 0.51 (0.14) |
Gastrocnemius Lateralis | 0.41 (0.21) | 0.69 (0.09) |
Gluteus Maximus | 0.82 (0.1) | 0.77 (0.13) |
Gluteus Medius | 0.69 (0.1) | 0.65 (0.13) |
Biceps Femoris Long Head | 0.60 (0.13) | 0.69 (0.09) |
Semitendinosus | 0.58 (0.12) | 0.68 (0.09) |
Tensor Fasciae Latae | 0.58 (0.12) | 0.74 (0.1) |
Rectus Femoris | 0.46 (0.14) | 0.61 (0.12) |
Vastus Lateralis | 0.64 (0.1) | 0.68 (0.09) |
Vastus Medialis | 0.85 (0.07) | 0.85 (0.08) |
Percentage | Tibialis Anterior | Peroneus Longus | Soleus | Gastrocnemius Lateralis | Tensor Fasciae Latae | Rectus Femoris |
0–10% | 0.65 (0.1) | 0.86 (0.08) | 0.9 (0.03) | 0.5 (0.08) | 0.42 (0.1) | 0.63 (0.15) |
10–20% | 0.92 (0.06) | 0.93 (0.04) | 0.89 (0.07) | 0.93 (0.04) | 0.79 (0.11) | 0.85 (0.13) |
20–30% | 0.96 (0.05) | 0.94 (0.1) | 0.96 (0.04) | 0.91 (0.11) | 0.93 (0.04) | 0.83 (0.14) |
30–40% | 0.96 (0.04) | 0.97 (0.01) | 0.98 (0.02) | 0.93 (0.09) | 0.89 (0.11) | 0.95 (0.04 |
40–50% | 0.95 (0.05) | 0.92 (0.03) | 0.93 (0.05) | 0.93 (0.05) | 0.89 (0.09) | 0.9 (0.14) |
50–60% | 0.87 (0.09) | 0.86 (0.07) | 0.91 (0.06) | 0.84 (0.09) | 0.82 (0.09) | 0.91 (0.08) |
60–70% | 0.83 (0.13) | 0.76 (0.16) | 0.56 (0.15) | 0.78 (0.12) | 0.83 (0.15) | 0.95 (0.03) |
70–80% | 0.97 (0.03) | 0.99 (0.01) | 0.96 (0.03) | 0.91 (0.1) | 0.89 (0.06) | 0.91 (0.09) |
80–90% | 0.87 (0.11) | 0.98 (0.02) | 0.96 (0.04) | 0.93 (0.07) | 0.9 (0.05) | 0.66 (0.14) |
90–100% | 0.96 (0.03) | 0.98 (0.01) | 0.98 (0.01) | 0.93 (0.06) | 0.83 (0.09) | 0.65 (0.11) |
Percentage | Vastus Lateralis | Vastus Medialis | Gluteus Maximus | Gluteus Medius | Biceps Femoris Long Head | Semitendinosus |
0–10% | 0.85 (0.03) | 0.93 (0.03) | 0.86 (0.07) | 0.9 (0.04) | 0.87 (0.04) | 0.87 (0.05) |
10–20% | 0.89 (0.05) | 0.95 (0.03) | 0.95 (0.04) | 0.91 (0.06) | 0.89 (0.07) | 0.93 (0.05) |
20–30% | 0.91 (0.07) | 0.93 (0.08) | 0.96 (0.03) | 0.96 (0.06) | 0.93 (0.06) | 0.93 (0.07) |
30–40% | 0.9 (0.12) | 0.94 (0.03) | 0.97 (0.03) | 0.96 (0.08) | 0.94 (0.06) | 0.95 (0.02) |
40–50% | 0.93(0.05) | 0.98 (0.01) | 0.95 (0.07) | 0.94 (0.06) | 0.96 (0.05) | 0.96 (0.04) |
50–60% | 0.91 (0.1) | 0.98 (0.02) | 0.94 (0.08) | 0.77 (0.26) | 0.95 (0.05) | 0.96 (0.02) |
60–70% | 0.95 (0.04) | 0.97 (0.03) | 0.96 (0.04) | 0.88 (0.1) | 0.93 (0.09) | 0.92 (0.06) |
70–80% | 0.9 (0.12) | 0.97 (0.03) | 0.95 (0.05) | 0.89 (0.09 | 0.96 (0.04) | 0.92 (0.08) |
80–90% | 0.84 (0.15) | 0.95 (0.05) | 0.95 (0.04) | 0.88 (0.08) | 0.93 (0.04) | 0.9 (0.09) |
90–100% | 0.97 (0.03) | 0.98 (0.02) | 0.9 (0.09) | 0.86 (0.07) | 0.88 (0.04) | 0.9 (0.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkrekidis, A.; Giarmatzis, G.; Menychtas, D.; Karakasis, E.; Gourgoulis, V.; Michalopoulou, M.; Smilios, I.; Douda, H.T.; Sirakoulis, G.C.; Aggelousis, N. Clinical Validation of Estimated Muscle Activations during Phases of Elderly Gait. Biomechanics 2023, 3, 552-560. https://doi.org/10.3390/biomechanics3040044
Gkrekidis A, Giarmatzis G, Menychtas D, Karakasis E, Gourgoulis V, Michalopoulou M, Smilios I, Douda HT, Sirakoulis GC, Aggelousis N. Clinical Validation of Estimated Muscle Activations during Phases of Elderly Gait. Biomechanics. 2023; 3(4):552-560. https://doi.org/10.3390/biomechanics3040044
Chicago/Turabian StyleGkrekidis, Athanasios, Georgios Giarmatzis, Dimitrios Menychtas, Evangelos Karakasis, Vassilios Gourgoulis, Maria Michalopoulou, Ilias Smilios, Helen T. Douda, Georgios Ch. Sirakoulis, and Nikolaos Aggelousis. 2023. "Clinical Validation of Estimated Muscle Activations during Phases of Elderly Gait" Biomechanics 3, no. 4: 552-560. https://doi.org/10.3390/biomechanics3040044
APA StyleGkrekidis, A., Giarmatzis, G., Menychtas, D., Karakasis, E., Gourgoulis, V., Michalopoulou, M., Smilios, I., Douda, H. T., Sirakoulis, G. C., & Aggelousis, N. (2023). Clinical Validation of Estimated Muscle Activations during Phases of Elderly Gait. Biomechanics, 3(4), 552-560. https://doi.org/10.3390/biomechanics3040044