Spatiotemporal Gait Variability in Children Aged 2 to 10 Decreases throughout Pre-Adolescence
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Subjects
2.3. Experimental Procedures
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Mean Stride Time and Stride Length
3.2. SD Stride Time and Stride Length
3.3. CV Stride Time and Stride Length
3.4. SE Stride Time and Stride Length
3.5. DFA α Stride Time and Stride Length
4. Discussion
4.1. Linear Variability
4.2. Nonlinear Variability
4.3. Theoretical Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sutherland, D.; Olshen, R.; Biden, E. The Development of Mature Walking; Cambridge University Press: Cambridge, UK, 1988; ISBN 0-521-41221-8. [Google Scholar]
- Hausdorff, J.M.; Zemany, L.; Peng, C.-K.; Goldberger, A.L. Maturation of gait dynamics: Stride-to-stride variability and its temporal organization in children. J. Appl. Physiol. 1999, 86, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Ganley, K.J.; Powers, C.M. Gait kinematics and kinetics of 7-year-old children: A comparison to adults using age-specific anthropometric data. Gait Posture 2005, 21, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef] [PubMed]
- Todd, F.N.; Lamoreux, L.W.; Skinner, S.R.; Johanson, M.E.; St Helen, R.; Moran, S.A.; Ashley, R.K. Variations in the gait of normal children. A graph applicable to the documentation of abnormalities. JBJS 1989, 71, 196–204. [Google Scholar] [CrossRef]
- Rose, V.L.; Arellano, C.J. Simple models highlight differences in the walking biomechanics of young children and adults. J. Exp. Biol. 2021, 224, jeb243040. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, D. The development of mature gait. Gait Posture 1997, 6, 163–170. [Google Scholar] [CrossRef]
- Manicolo, O.; Grob, A.; Lemola, S.; Arx, P.H. Age-related decline of gait variability in children with attention-deficit/hyperactivity disorder: Support for the maturational delay hypothesis in gait. Gait Posture 2016, 44, 245–249. [Google Scholar] [CrossRef]
- Hallemans, A.; Verbecque, E.; Dumas, R.; Cheze, L.; Van Hamme, A.; Robert, T. Developmental changes in spatial margin of stability in typically developing children relate to the mechanics of gait. Gait Posture 2018, 63, 33–38. [Google Scholar] [CrossRef]
- Nigg, B.M.; Cole, G.K.; Nachbauer, W. Effects of arch height of the foot on angular motion of the lower extremities in running. J. Biomech. 1993, 26, 909–916. [Google Scholar] [CrossRef]
- Vaughan, C.L.; Davis, B.L.; O’connor, J.C. Dynamics of Human Gait; Human Kinetics Publishers: Champaign, IL, USA, 1992; ISBN 0873223683. [Google Scholar]
- Fonseca, M.; Gasparutto, X.; Leboeuf, F.; Dumas, R.; Armand, S. Impact of knee marker misplacement on gait kinematics of children with cerebral palsy using the Conventional Gait Model—A sensitivity study. PLoS ONE 2020, 15, e0232064. [Google Scholar] [CrossRef]
- Rapp, P.E.; Albano, A.M.; Schmah, T.I.; Farwell, L.A. Filtered noise can mimic low-dimensional chaotic attractors. Phys. Rev. E 1993, 47, 2289–2297. [Google Scholar] [CrossRef]
- Zeni, J.A.; Richards, J.G.; Higginson, J.S. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 2008, 27, 710–714. [Google Scholar] [CrossRef]
- Peng, C.-K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos Interdiscip. J. Nonlinear Sci. 1995, 5, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Mitchell, S.L.; Firtion, R.; Peng, C.K.; Cudkowicz, M.E.; Wei, J.Y.; Goldberger, A.L. Altered fractal dynamics of gait: Reduced stride-interval correlations with aging and Huntington’s disease. J. Appl. Physiol. 1997, 82, 262–269. [Google Scholar] [CrossRef]
- Gouelle, A.; Leroux, J.; Bredin, J.; Mégrot, F. Changes in Gait Variability From First Steps to Adulthood: Normative Data for the Gait Variability Index. J. Mot. Behav. 2016, 48, 249–255. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Edelberg, H.K.; Mitchell, S.L.; Goldberger, A.L.; Wei, J.Y. Increased gait unsteadiness in community-dwelling elderly fallers. Arch. Phys. Med. Rehabil. 1997, 78, 278–283. [Google Scholar] [CrossRef]
- Granata, K.P.; Padua, D.A.; Abel, M.F. Repeatability of surface EMG during gait in children. Gait Posture 2005, 22, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Albesher, R.A.; Spittle, A.J.; Dobson, F.L.; Mentiplay, B.F.; FitzGerald, T.L.; Cameron, K.L.; Zannino, D.; Josev, E.K.; Doyle, L.W.; Cheong, J.L.Y.; et al. Spatiotemporal gait variables and step-to-step variability in preschool-aged children born < 30 weeks’ gestation and at term in preferred speed, dual-task paradigm, and tandem walking. Gait Posture 2022, 92, 236–242. [Google Scholar] [CrossRef] [PubMed]
- McGibbon, C.A. Toward a Better Understanding of Gait Changes With Age and Disablement: Neuromuscular Adaptation. Exerc. Sport Sci. Rev. 2003, 31, 102. [Google Scholar] [CrossRef]
- Arif, M.; Ohtaki, Y.; Nagatomi, R.; Inooka, H. Estimation of the Effect of Cadence on Gait Stability in Young and Elderly People using Approximate Entropy Technique. Meas. Sci. Rev. 2004, 4, 29–40. [Google Scholar]
- Leban, B.; Cimolin, V.; Porta, M.; Arippa, F.; Pilloni, G.; Galli, M.; Pau, M. Age-Related Changes in Smoothness of Gait of Healthy Children and Early Adolescents. J. Mot. Behav. 2020, 52, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Kelso, J.A.S. Dynamic Patterns: The Self-Organization of Brain and Behavior; MIT Press: Cambridge, MA, USA, 1995; ISBN 978-0-262-61131-2. [Google Scholar]
- Scholz, J.P. Dynamic Pattern Theory—Some Implications for Therapeutics. Phys. Ther. 1990, 70, 827–843. [Google Scholar] [CrossRef] [PubMed]
- Bisi, M.C.; Stagni, R. Development of gait motor control: What happens after a sudden increase in height during adolescence? Biomed. Eng. OnLine 2016, 15, 47. [Google Scholar] [CrossRef] [PubMed]
- Lipsitz, L.A.; Goldberger, A.L. Loss of “Complexity” and Aging: Potential Applications of Fractals and Chaos Theory to Senescence. JAMA 1992, 267, 1806–1809. [Google Scholar] [CrossRef]
- Kraan, C.M.; Tan, A.H.J.; Cornish, K.M. The developmental dynamics of gait maturation with a focus on spatiotemporal measures. Gait Posture 2017, 51, 208–217. [Google Scholar] [CrossRef]
2–3-Year-Olds (n = 7) | 4–5-Year-Olds (n = 7) | 6–7-Year-Olds (n = 7) | 8–10-Year-Olds (n = 7) | |||||
---|---|---|---|---|---|---|---|---|
Sex (male/female) | 4/3 | 3/4 | 3/4 | 3/4 | ||||
Age (months) | 35.9 | ±7.3 | 58.57 | ±5.7 | 81.57 | ±6.37 | 115.6 | ±6.02 |
Body mass (kg) | 13.67 | ±2.5 | 17.31 | ±1.4 | 25.99 | ±4.97 | 38.44 | ±5.23 |
Body height (m) | 0.92 | ±0.08 | 1.04 | ±0.03 | 1.22 | ±0.06 | 1.38 | ±0.03 |
Onset of walking (months) | 12.14 | ±0.69 | 12.57 | 2.15 | 12.21 | ±1.30 | 13.29 | ±0.95 |
Walking speed (m) | 0.56 | ±0.16 | 0.78 | ±0.14 | 0.92 | ±0.08 | 1.07 | ±0.11 |
2–3-Year-Olds (n = 7) | 4–5-Year-Olds (n = 7) | 6–7-Year-Olds (n = 7) | 8–10-Year-Olds (n = 7) | Significance | |
---|---|---|---|---|---|
Stride time (s) | 0.938 ± 0.05 | 0.963 ± 0.05 | 0.982 ± 0.05 | 1.022 ± 0.02 | § |
Stride length (mm) | 519.3 ± 93.8 | 664.4 ± 106.7 | 834.5 ± 53.4 | 1025.4 ± 58.9 | *, †, ‡, §, ‖, ¶ |
Stride time SD (s) | 0.09 ± 0.04 | 0.07 ± 0.2 | 0.049 ± 0.01 | 0.038 ± 0.01 | † ‡, ‖ |
Stride length SD (mm) | 58.0 ± 14.1 | 60.2 ± 11.2 | 58.6 ± 12.8 | 47.3 ± 8.7 | |
Stride time CV (%) | 9.3 ± 4 | 6.5 ± 1 | 5.1 ± 1 | 3.6 ± 0.7 | *, †, ‡ |
Stride length CV (%) | 11.4 ± 3 | 9.2 ± 1.8 | 7.0 ± 1.3 | 4.6 ± 1 | *, †, ‡, §, ‖, ¶ |
Stride time SE (bits) | 2.05 ± 0.3 | 1.72 ± 0.03 | 1.69 ± 0.2 | 1.57 ± 0.04 | |
Stride length SE (bits) | 2.00 ± 0.3 | 1.86 ± 0.16 | 1.77 ± 0.3 | 1.66 ± 0.1 | |
Stride time DFA α | 0.97 ± 0.12 | 0.89 ± 0.05 | 0.85 ± 0.4 | 0.82 ± 0.10 | ‡ |
Stride length DFA α | 0.91 ± 0.04 | 0.89 ± 0.10 | 0.86 ± 0.05 | 0.81 ± 0.03 | †, ‡ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Applequist, B.C.; Motz, Z.L.; Kyvelidou, A. Spatiotemporal Gait Variability in Children Aged 2 to 10 Decreases throughout Pre-Adolescence. Biomechanics 2023, 3, 571-582. https://doi.org/10.3390/biomechanics3040046
Applequist BC, Motz ZL, Kyvelidou A. Spatiotemporal Gait Variability in Children Aged 2 to 10 Decreases throughout Pre-Adolescence. Biomechanics. 2023; 3(4):571-582. https://doi.org/10.3390/biomechanics3040046
Chicago/Turabian StyleApplequist, Bryon C., Zachary L. Motz, and Anastasia Kyvelidou. 2023. "Spatiotemporal Gait Variability in Children Aged 2 to 10 Decreases throughout Pre-Adolescence" Biomechanics 3, no. 4: 571-582. https://doi.org/10.3390/biomechanics3040046
APA StyleApplequist, B. C., Motz, Z. L., & Kyvelidou, A. (2023). Spatiotemporal Gait Variability in Children Aged 2 to 10 Decreases throughout Pre-Adolescence. Biomechanics, 3(4), 571-582. https://doi.org/10.3390/biomechanics3040046