Comparing the Effects of an Off-Ice Sprint-Change of Direction Task on Trunk Kinematics and Gait Laterality in Collegiate Ice Hockey Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures and Design
2.3. Experimental Procedure
2.4. Data Collection
3. Statistical Analysis
4. Results
4.1. Participants’ Laterality
4.2. Athletes’ Trunk Acceleration
5. Discussion
5.1. Athlete Laterality
5.2. Athlete Trunk Acceleration
5.3. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burr, J.F.; Jamnik, R.K.; Macpherson, A.; Gledhill, N.; McGuire, E.J. Relationship of physical fitness test results and hockey playing potential in elite level ice hockey players. J. Strength Cond. Res. 2010, 22, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Geithner, C.A. Predicting performance in women’s ice hockey. In Advances in Strength and Conditioning Research; Nova Science Publishers: Hauppauge, NY, USA, 2015; pp. 42–47. [Google Scholar]
- Montgomery, D.L. Physiology of ice hockey. Sports Med. 1988, 5, 99–126. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.H.; Miles, D.S.; Verde, T.J.; Rhodes, E.C. Applied physiology of ice hockey. Sports Med. 1995, 19, 184–201. [Google Scholar] [CrossRef] [PubMed]
- Bracko, M.R. On-ice performance characteristics of elite and non-elite women’s ice hockey players. J. Strength Cond. Res. 2001, 15, 42–47. [Google Scholar] [CrossRef]
- Novák, D.; Lipinska, P.; Roczniok, R.; Mpieszny, M.; Stastny, P. Off-ice agility provides motor transfer to on-ice skating performance and agility in adolescent ice hockey players. J. Sports Sci. Med. 2019, 18, 680. [Google Scholar]
- Hojka, V.; Stastny, P.; Rehak, T.; Gołas, A.; Mostowik, M.; Zawart, M.A.; Musálek, A. systematic review of the main factors that determine agility in sport using structural equation modelling. J. Hum. Kinet. 2016, 52, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Young, J.W.; Dawson, B.; Henry, G. Agility and change-of-direction speed are independent skills: Implications for training for agility in invasion sports. Int. J. Sports Sci. Coach. 2015, 10, 159–169. [Google Scholar] [CrossRef]
- Peterson, B.J.; Fitzgerald, J.S.; Dietz, C.C.; Ziegler, K.S.; Baker, S.E.; Snyder, E.M. Off-ice anaerobic power does not predict on-ice repeated shift performance in hockey. J. Strength Cond. Res. 2016, 30, 2375–2381. [Google Scholar] [CrossRef]
- Arboix-Alió, B.; Buscà, B.A.; Busquets, J.; Aguilera-Castells, B.; de Pablo, A.M.; Montalvo, A.; Fort-Vanmeerhaeghe, A. Relationship between inter-limb asymmetries and physical performance in rink hockey players. Symmetry 2020, 12, 2035. [Google Scholar] [CrossRef]
- Leblanc, G. Outcome of a Plyometric Training Program for Ice Hockey; Université du Québec à Montréal: Montreal, QB, Canada, 2012. [Google Scholar]
- Chung, E.J.; Kim, J.H.; Lee, B.H. The effects of core stabilization exercise on dynamic balance and gait function in stroke patients. J. Phys. Ther. Sci. 2013, 25, 803–806. [Google Scholar] [CrossRef]
- Richardson, C.; Jull, G.; Hodges, P.; Hides, J. Therapeutic Exercise for Spinal Segmental Stabilization in Low Back Pain: Scientific Basis and Clinical Approach; Churchill Livingstone: Edinburgh, NY, USA, 1999. [Google Scholar]
- Kibler, W.B.; Press, J.; Sciascia, A. The role of core stability in athletic function. Sports Med. 2006, 36, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Raymond, M.; Pontier, D.; Dufour, A.B.; Møller, A.P. Frequency-dependent maintenance of left-handedness in humans. Proc. R. Soc. Lond. B 1996, 263, 1627–1633. [Google Scholar]
- Hart, N.H.; Nimphius, S.; Weber, J.; Spiteri, T.; Rantalainen, M.; Dobbin, R.U. Newton, Musculoskeletal asymmetry in football athletes: A product of limb function over time. Med. Sci. Sports Exerc. 2016, 48, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Neeld, K. Preparing for the demands of professional hockey. Strength Cond. J. 2018, 40, 1–16. [Google Scholar] [CrossRef]
- Marshall, B.; Franklyn-Miller, A.; Moran, K.; King, E.; Richter, C.; Gore, S.; Strike, S.; Falvey, E. Biomechanical symmetry in elite rugby union players during dynamic tasks: An investigation using discrete and continuous data analysis techniques. BMC Sports Sci. Med. Rehabil. 2015, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Fort-Vanmeerhaeghe, A.; Gual, G.; Romero-Rodriguez, D.; Unnitha, V. Lower limb neuromuscular asymmetry in volleyball and basketball players. J. Hum. Kinet. 2015, 50, 135–143. [Google Scholar] [CrossRef]
- Girard, O.; Mendez-Villanueva, A.; Bishop, D. Repeated-sprint ability—Part I: Factors contributing to fatigue. Sports Med. 2011, 41, 673–694. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.; Al-Nakeeb, Y.; Nevill, A. The impact of moderate and high intensity total body fatigue on passing accuracy in expert and novice basketball players. J. Sports Sci. Med. 2006, 5, 215–227. [Google Scholar]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef]
- Puterman, J.; Schorer, J.; Baker, J. Laterality differences in elite ice hockey: An investigation of shooting and catching orientations. J. Sports Sci. 2010, 28, 1581–1593. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Den Hartigh, R.J.R.; Niessen, A.S.M.; Frencken, W.G.P.; Meijer, R.R. Selection procedures in sports: Improving predictions of athletes’ future performance. Eur. J. Sport Sci. 2018, 18, 1191–1198. [Google Scholar] [CrossRef]
- Loffing, F.; Hagemann, N.; Strauss, B.; MacMahon, C. Laterality in sports: Theories and applications. Academic press. In Laterality in Sports: Theories and Applications; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Baechle, R.; Earle, R.W. Essentials of Strength Training and Conditioning; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Janot, J.M.; Beltz, N.M.; Dalleck, L. Multiple off-ice performance variables predict on-ice skating performance in male and female division III ice hockey players. J. Sports Sci. Med. 2015, 14, 3522–3529. [Google Scholar]
- Brocherie, F.; Girad, O.; Millet, G.P. Updated analysis of changes in locomotor activities across periods in an international ice hockey game. Biol. Sport 2018, 35, 261. [Google Scholar] [CrossRef] [PubMed]
- Roczniok, R.; Stanula, A.; Maszczyk, A.; Mostowik, A.; Kowalczyk, M.; Zając, A. Physiological, physical and on ice performance criteria for selection of elite ice hockey teams. Biol. Sport 2016, 33, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Filho, C.; Gobbi, L.T.; Gurjao, A.L.; Gonçalves, R.; Prado, A.K.; Gobbi, S. Effect of different rest intervals, between sets, on muscle performance during leg press exercise, in trained older women. J. Sports Sci. Med. 2013, 12, 138–143. [Google Scholar] [PubMed]
- Evans, S.A.; James, D.A.; Rowland, D.; Lee, J.B. Variability of the center of mass in trained triathletes in running after cycling: A preliminary study conducted in a real-life setting. Front. Sports Act. Living 2022, 4, 852369. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.; Marshal, S.; Batterham, A. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Eikenberry, A.; Mcauliffe, J.; Welsh, T.N.; Zerpa, C.; McPherson, M.; Newhouse, I. Starting with the “right” foot minimizes sprint start time. Acta Psychol. 2008, 127, 495–500. [Google Scholar] [CrossRef]
- Granata, K.P.; Slota, G.P.; Wilson, S.E. Influence of fatigue in neuromuscular control of spinal stability. Hum. Factors 2004, 46, 81–91. [Google Scholar] [CrossRef]
- Gardner-Morse, M.; Stokes, L.A.; Liable, J.P. Role of muscles in lumbar spine stability in maximum extension efforts. J. Orthop. Res. 1995, 13, 802–808. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.M.; Blow, D.; Kirby, T.J.; Haines, T.L.; Dayne, A.M.; Triplett, N.J. Relationship between maximal squat strength and five-, ten-, and forty-yard sprint times. J. Strength Cond. Res. 2009, 23, 1633–1636. [Google Scholar] [CrossRef] [PubMed]
- Millot, M.; Blache, P.; Dinu, D.; Arnould, A.; Jussaeume, J.; Hanon, C.; Slawinski, J. Center of mass velocity comparison using a whole body magnetic inertial measurement unit system and force platforms in well trained sprinters in straight-line and curve sprinting. Gait Posture 2023, 99, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Gollhofer, A.; Komi, P.V.; Miyashita, M.; Aura, O. Fatigue during stretch shortening cycle exercises: Changes in mechanical performance of human skeletal muscle. Int. J. Sports Med. 1987, 8, 71–78. [Google Scholar] [CrossRef]
- Parnianpour, M.; Nordin, M.; Khanovitz, N.; Frankel, V. The triaxial coupling of torque generation of trunk muscles during isometric exertions and the effect of fatiguing isoinertial movements on the motor output and movement patterns. Spine 1998, 13, 982–992. [Google Scholar] [CrossRef]
Distance (meters) | Right Rear Foot Mean (mm: ss) | CV (%) | Left Foot Rear Mean (mm: ss) | CV (%) | Effect Size (d) | t | p |
---|---|---|---|---|---|---|---|
Sprint Split 0–10 m (a to b) | 03.94 ± 0.38 | 9.92 | 03.96 ± 0.13 | 29.07 | 0.7 (large) | −4.39 | 0.004 * |
Sprint split 10–15 m (b to c) | 02.80 ± 0.25 | 19.00 | 02.81 ± 0.15 | 11.45 | 0.7 (large) | −4.89 | 0.001 * |
Sprint split 15–10 m (c to Finish line) | 02.96 ± 0.34 | 25.9 | 02.99 ± 0.36 | 19.08 | 0.5 (moderate) | −4.59 | 0.003 * |
Distance (meters) | Right Rear Foot Mean (g) | Left Foot Rear Mean (g) | Effect Size (d) | t | p |
---|---|---|---|---|---|
x | x | ||||
Sprint split 0–10 m (a to b) | 0.90 ± 0.1 | 0.98 ± 0.1 | 0.5 (moderate) | 2.63 | <0.001 * |
Sprint split 10–15 m (b to c) | 1.13 ± 0.1 | 1.15 ± 0.2 | 0.9 (very large) | 2.67 | <0.001 * |
Sprint split 15–10 m (c to Finish line) | 1.28 ± 0.2 | 1.34 ± 0.2 | 0.7 (large) | 4.21 | 0.006 * |
y | y | ||||
Sprint split 0–10 m (a to b) | 1.25 ± 0.3 | 1.25 ± 0.2 | 0.5 (moderate) | 2.19 | 0.367 |
Sprint split 10–15 m (b to c) | 1.48 ± 0.2 | 1.51 ± 0.2 | 0.5 (moderate) | 5.05 | 0.002 * |
Sprint split 15–10 m (c to Finish line) | 1.59 ± 0.2 | 2.31 ± 0.2 | 0.9 (very large) | 4.75 | <0.001 * |
z | z | ||||
Sprint split 0–10 m (a to b) | 1.05 ± 0.3 | 1.13 ± 0.3 | 0.7 (large) | 3.81 | 0.250 |
Sprint split 10–15 m (b to c) | 1.59 ± 0.2 | 2.23 ± 0.5 | 0.9 (very large) | 4.41 | <0.001 * |
Sprint split 15–10 m (c to Finish line) | 1.85 ± 0.3 | 2.39 ± 0.2 | 0.9 (very large) | 5.01 | <0.001 * |
Right Foot Rear Setback | Left Foot Rear Setback | |||||||
---|---|---|---|---|---|---|---|---|
Defensive (n = 6) | Offensive (n = 6) | p | Effect Size (d) | Defensive (n = 6) | Offensive (n = 6) | p | Effect Size (d) | |
x | x | |||||||
Sprint split 0–10 m (a to b) | 0.93 ± 0.1 | 0.91 ± 0.1 | 0.003 * | 0.7 (large) | 0.97 ± 0.1 | 0.96 ± 0.1 | 0.6667 | 0.1 (small) |
Sprint split 10–15 m (b to c) | 1.12 ± 0.1 | 1.11 ± 0.1 | 0.235 | 0.2 (small) | 1.13 ± 0.2 | 1.14 ± 0.1 | 0.777 | 0.1 (small) |
Sprint split 15–10 m (c to Finish line) | 1.28 ± 0.1 | 1.27 ± 0.2 | 0.523 | 0.2 (small) | 1.34 ± 0.1 | 1.33 ± 0.2 | 0.878 | 0.1 (small) |
y | y | |||||||
Sprint split 0–10 m (a to b) | 1.25 ± 0.2 | 1.23 ± 0.2 | 0.024 * | 0.3 (moderate) | 1.25 ± 0.1 | 1.24 ± 0.2 | 0.259 | 0.1 (small) |
Sprint split 10–15 m (b to c) | 1.47 ± 0.1 | 1.46 ± 0.1 | 0.528 | 0.2 (small) | 1.48 ± 0.1 | 1.47 ± 0.1 | 0.422 | 0.1 (small) |
Sprint split 15–10 m (c to Finish line) | 1.59 ± 0.1 | 1.59 ± 0.1 | 0.183 | 0.2 (small) | 1.60 ± 0.1 | 1.60 ± 0.1 | 0.0572 | 0.4 (moderate) |
z | z | |||||||
Sprint split 0–10 m (a to b) | 1.05 ± 0.2 | 1.03 ± 0.1 | 0.092 | 0.3 (moderate) | 1.06 ± 0.1 | 1.06 ± 0.1 | 0.689 | 0.1 (small) |
Sprint split 10–15 m (b to c) | 1.58 ± 0.2 | 1.57 ± 0.2 | 0.259 | 0.2 (small) | 1.60 ± 0.2 | 1.58 ± 0.2 | 0.003 * | 0.7 (large) |
Sprint split 15–10 m (c to Finish line) | 1.86 ± 0.2 | 1.84 ± 0.2 | 0.002 * | 0.7 (large) | 1.87 ± 0.1 | 1.85 ± 0.2 | 0.1181 | 0.9 (very large) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evans, S.; Gleadhill, S. Comparing the Effects of an Off-Ice Sprint-Change of Direction Task on Trunk Kinematics and Gait Laterality in Collegiate Ice Hockey Players. Biomechanics 2024, 4, 296-308. https://doi.org/10.3390/biomechanics4020019
Evans S, Gleadhill S. Comparing the Effects of an Off-Ice Sprint-Change of Direction Task on Trunk Kinematics and Gait Laterality in Collegiate Ice Hockey Players. Biomechanics. 2024; 4(2):296-308. https://doi.org/10.3390/biomechanics4020019
Chicago/Turabian StyleEvans, Stuart, and Sam Gleadhill. 2024. "Comparing the Effects of an Off-Ice Sprint-Change of Direction Task on Trunk Kinematics and Gait Laterality in Collegiate Ice Hockey Players" Biomechanics 4, no. 2: 296-308. https://doi.org/10.3390/biomechanics4020019
APA StyleEvans, S., & Gleadhill, S. (2024). Comparing the Effects of an Off-Ice Sprint-Change of Direction Task on Trunk Kinematics and Gait Laterality in Collegiate Ice Hockey Players. Biomechanics, 4(2), 296-308. https://doi.org/10.3390/biomechanics4020019