Tired of ACL Injures: A Review of Methods and Outcomes of Neuromuscular Fatigue as a Risk Factor for ACL Injuries
Abstract
:1. Introduction
1.1. Central Fatigue
1.2. Peripheral Fatigue
2. A Review: Fatigue and ACL Injuries
Search and Analysis Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Campbell, C.J.; Carson, J.D.; Diaconescu, E.D.; Celebrini, R.; Rizzardo, M.R. Canadian academy of sport and exercise medicine position statement: Neuromuscular training programs can decrease anterior cruciate ligament injuries in youth soccer Players. Clin. J. Sport Med. 2014, 24, 263–267. [Google Scholar] [CrossRef]
- Gornitzky, A.L.; Lott, A.; Yellin, J.L.; Fabricant, P.D.; Lawrence, J.T.; Ganley, T.J. Sport-specific yearly risk and incidence of anterior cruciate ligament tears in high school athletes. Am. J. Sports Med. 2016, 44, 2716–2723. [Google Scholar] [CrossRef]
- Grassi, A.; Macchiarola, L.; Filippini, M.; Lucidi, G.A.; Della Villa, F.; Zaffagnini, S. Epidemiology of anterior cruciate ligament injury in italian first division soccer players. Sports Health 2020, 12, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Shultz, S.J. ACL Injury in the female athlete: A multifactorial problem that remains poorly understood. J. Athl. Train. 2008, 43, 455. [Google Scholar] [CrossRef]
- Park, J.S.; Nam, D.C.; Kim, D.H.; Kim, H.K.; Hwang, S.C. Measurement of knee morphometrics using MRI: A comparative study between ACL-injured and non-injured knees. Knee Surg. Relat. Res. 2012, 24, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Chia, L.; De Oliveira Silva, D.; Whalan, M.; McKay, M.J.; Sullivan, J.; Fuller, C.W.; Pappas, E. Non-contact anterior cruciate ligament injury epidemiology in team-ball sports: A systematic review with meta-analysis by sex, age, sport, participation level, and exposure type. Sports Med. 2022, 52, 2447–2467. [Google Scholar] [CrossRef]
- Bayer, S.; Meredith, S.J.; Wilson, K.; de Sa, D.; Pauyo, T.; Byrne, K.; McDonough, C.M.; Musahl, V. Knee morphological risk factors for anterior cruciate ligament injury: A systematic review. J. Bone Jt. Surg. Am. Vol. 2020, 102, 703–718. [Google Scholar] [CrossRef]
- Sharir, R.; Rafeeuddin, R.; Staes, F.; Dingenen, B.; George, K.; Vanrenterghem, J.; Robinson, M.A. Mapping current research trends on anterior cruciate ligament injury risk against the existing evidence: In vivo biomechanical risk factors. Clin. Biomech. 2016, 37, 34–43. [Google Scholar] [CrossRef]
- Boden, B.P.; Torg, J.S.; Knowles, S.B.; Hewett, T.E. Video analysis of anterior cruciate ligament injury: Abnormalities in hip and ankle kinematics. Am. J. Sports Med. 2009, 37, 252–259. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; Van Den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Krosshaug, T.; Steffen, K.; Kristianslund, E.; Nilstad, A.; Mok, K.-M.; Myklebust, G.; Andersen, T.E.; Holme, I.; Engebretsen, L.; Bahr, R. The vertical drop jump is a poor screening test for ACL injuries in female elite soccer and handball players. Am. J. Sports Med. 2016, 44, 874–883. [Google Scholar] [CrossRef]
- Leppänen, M.; Pasanen, K.; Kujala, U.M.; Vasankari, T.; Kannus, P.; Äyrämö, S.; Krosshaug, T.; Bahr, R.; Avela, J.; Perttunen, J.; et al. Stiff Landings Are Associated with Increased ACL Injury Risk in Young Female Basketball and Floorball Players. Am. J. Sports Med. 2017, 45, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Berns, G.S.; Hull, M.L.; Patterson, H.A. Strain in the anteromedial bundle of the anterior cruciate ligament under combined loading conditions. J. Orthop. Res. 1992, 10, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Neumann, D.A. Lower Extremity: Knee, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Potvin, J.R.; Fuglevand, A.J. A motor unit-based model of muscle fatigue. PLoS Comput. Biol. 2017, 13, e1005581. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M.; Duchateau, J. Translating Fatigue to Human Performance. Med. Sci. Sports Exerc. 2016, 48, 2228–2238. [Google Scholar] [CrossRef] [PubMed]
- Behrens, M.; Gube, M.; Chaabene, H.; Prieske, O.; Zenon, A.; Broscheid, K.-C.; Schega, L.; Husmann, F.; Weippert, M. Fatigue and Human Performance: An Updated Framework. Sports Med. 2023, 53, 7–31. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Amann, M.; Duchateau, J.; Meesuen, R.; Rice, C. Neural contributions to muscle fatigue: From the brain to the muscle and back again. Med. Sci. Sports Exerc. 2016, 48, 2294–2306. [Google Scholar] [CrossRef]
- Marcora, S.M.; Staiano, W.; Manning, V. Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 2009, 106, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, J.; Marcora, S.; De Pauw, K.; Bailey, S.; Meeusen, R.; Roelands, B. The effects of mental fatigue on physical performance: A systematic review. Sports Med. 2017, 47, 1569–1588. [Google Scholar] [CrossRef]
- Burke, R.E.; Levine, D.N.; Tsairis, P.; Zajac, F.E. Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J. Physiol. 1973, 234, 723–748. [Google Scholar] [CrossRef]
- Abergel, R.E.; Tuesta, E.; Jarvis, D.N. The effects of acute physical fatigue on sauté jump biomechanics in dancers. J. Sports Sci. 2021, 39, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Allison, K.F.; Sell, T.C.; Benjaminse, A.; Lephart, S.M. Force sense of the knee not affected by fatiguing the knee extensors and flexors. J. Sport. Rehabil. 2016, 25, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Bedo, B.L.S.; Catelli, D.S.; Lamontagne, M.; Moraes, R.; Pereira, D.R.; Graça, J.B.; Santiago, P.R.P. Fatigue modifies hip and knee kinematics during single- and double-leg dynamic tasks: An investigation with female handball players. J. Sports Sci. 2022, 40, 1964–1972. [Google Scholar] [CrossRef] [PubMed]
- Behrens, M.; Mau-Moeller, A.; Wassermann, F.; Plewka, A.; Bader, R.; Bruhn, S. Repetitive jumping and sprinting until exhaustion alters hamstring reflex responses and tibial translation in males and females. J. Orthop. Res. 2015, 33, 1687–1692. [Google Scholar] [CrossRef]
- Benjaminse, A.; Habu, A.; Sell, T.C.; Abt, J.P.; Fu, F.H.; Myers, J.B.; Lephart, S.M. Fatigue alters lower extremity kinematics during a single-leg stop-jump task. Knee Surg. Sports Traumatol. Arthrosc. 2008, 16, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Borotikar, B.S.; Newcomer, R.; Koppes, R.; McLean, S.G. Combined effects of fatigue and decision making on female lower limb landing postures: Central and peripheral contributions to ACL injury risk. Clin. Biomech. 2008, 23, 81–92. [Google Scholar] [CrossRef]
- Bossuyt, F.M.; García-Pinillos, F.; Raja Azidin, R.M.F.; Vanrenterghem, J.; Robinson, M.A. The Utility of a High-intensity Exercise Protocol to Prospectively Assess ACL Injury Risk. Int. J. Sports Med. 2015, 37, 125–133. [Google Scholar] [CrossRef]
- Brazen, D.M.; Kent Todd, M.; Ambegaonkar, J.P.; Wunderlich, R.; Peterson, C. The Effect of Fatigue on Landing Biomechanics in Single-Leg Drop Landings. Clin. J. Sport Med. 2010, 20, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Chappell, J.D.; Herman, D.C.; Knight, B.S.; Kirkendall, D.T.; Garrett, W.E.; Yu, B. Effect of fatigue on knee kinetics and kinematics in stop-jump tasks. Am. J. Sports Med. 2005, 33, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Bellin, G.; Beato, M.; Schena, F. Fatigue affects peak joint torque angle in hamstrings but not in quadriceps. J. Sports Sci. 2015, 33, 1276–1282. [Google Scholar] [CrossRef]
- Cortes, N.; Greska, E.; Ambegaonkar, J.P.; Kollock, R.O.; Caswell, S.V.; Onate, J.A. Knee kinematics is altered post-fatigue while performing a crossover task. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 2202–2208. [Google Scholar] [CrossRef]
- Cortes, N.; Greska, E.; Kollock, R.; Ambegaonkar, J.; Onate, J.A. Changes in lower extremity biomechanics due to a short-term fatigue protocol. J. Athl. Train. 2013, 48, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Cortes, N.; Quammen, D.; Lucci, S.; Greska, E.; Onate, J. A functional agility short-term fatigue protocol changes lower extremity mechanics. J. Sports Sci. 2012, 30, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Dickin, D.C.; Johann, E.; Wang, H.; Popp, J.K. Combined effects of drop height and fatigue on landing mechanics in active females. J. Appl. Biomech. 2015, 31, 237–243. [Google Scholar] [CrossRef] [PubMed]
- El-Ashker, S.; Allardyce, J.M.; Carson, B.P. Sex-related differences in joint-angle-specific hamstring-to-quadriceps function following fatigue. Eur. J. Sport. Sci. 2019, 19, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Gehring, D.; Melnyk, M.; Gollhofer, A. Gender and fatigue have influence on knee joint control strategies during landing. Clin. Biomech. 2009, 24, 82–87. [Google Scholar] [CrossRef]
- Geiser, C.F.; O’Connor, K.M.; Earl, J.E. Effects of isolated hip abductor fatigue on frontal plane knee mechanics. Med. Sci. Sports Exerc. 2010, 42, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Gillot, T.; L’Hermette, M.; Garnier, T.; Tourny-Chollet, C. Effect of Fatigue on Functional Stability of the Knee: Particularities of Female Handball Players. Int. J. Sports Med. 2019, 40, 468–476. [Google Scholar] [CrossRef]
- Greco, C.C.; Da Silva, W.L.; Camarda, S.R.A.; Denadai, B.S. Fatigue and rapid hamstring/quadriceps force capacity in professional soccer players. Clin. Physiol. Funct. Imaging 2013, 33, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Greig, M. Concurrent changes in eccentric hamstring strength and knee joint kinematics induced by soccer-specific fatigue. Phys. Ther. Sport 2019, 37, 21–26. [Google Scholar] [CrossRef]
- Harato, K.; Morishige, Y.; Niki, Y.; Kobayashi, S.; Nagura, T. Fatigue and recovery have different effects on knee biomechanics of drop vertical jump between female collegiate and recreational athletes. J. Orthop. Surg. Res. 2021, 16, 739. [Google Scholar] [CrossRef] [PubMed]
- Hassanlouei, H.; Arendt-Nielsen, L.; Kersting, U.G.; Falla, D. Effect of exercise-induced fatigue on postural control of the knee. J. Electromyogr. Kinesiol. 2012, 22, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.A.; Hatfield, G.L. Ankle and knee biomechanics during normal walking following ankle plantarflexor fatigue. J. Electromyogr. Kinesiol. 2017, 35, 24–29. [Google Scholar] [CrossRef]
- Iguchi, J.; Tateuchi, H.; Taniguchi, M.; Ichihashi, N. The effect of sex and fatigue on lower limb kinematics, kinetics, and muscle activity during unanticipated side-step cutting. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 41–48. [Google Scholar] [CrossRef]
- Kellis, E.; Kouvelioti, V. Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing. J. Electromyogr. Kinesiol. 2009, 19, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Kernozek, T.W.; Torry, M.R.; Iwasaki, M. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am. J. Sports Med. 2008, 36, 554–565. [Google Scholar] [CrossRef]
- Khalid, A.J.; Ian Harris, S.; Michael, L.; Joseph, H.; Qu, X. Effects of neuromuscular fatigue on perceptual-cognitive skills between genders in the contribution to the knee joint loading during side-stepping tasks. J. Sports Sci. 2015, 33, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Lee, S.Y.; Lee, S.C.; Rosen, A.B.; Grindstaff, T.L.; Knarr, B.A. Effect of isolated hip abductor fatigue on single-leg landing mechanics and simulated ACL loading. Knee 2021, 31, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Youm, C.; Son, M.; Kim, J.; Lee, M. The effect of knee flexor and extensor fatigue on shock absorption during cutting movements after a jump landing. Knee 2017, 24, 1342–1349. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, P.J.; Petrella, R.J.; Sproule, J.R.; Fowler, P.J. Effects of fatigue on knee proprioception. Clin. J. Sports Med. 1997, 7, 22–27. [Google Scholar] [CrossRef]
- Lessi, G.C.; dos Santos, A.F.; Batista, L.F.; de Oliveira, G.C.; Serrão, F.V. Effects of fatigue on lower limb, pelvis and trunk kinematics and muscle activation: Gender differences. J. Electromyogr. Kinesiol. 2017, 32, 9–14. [Google Scholar] [CrossRef]
- Liederbach, M.; Kremenic, I.J.; Orishimo, K.F.; Pappas, E.; Hagins, M. Comparison of landing biomechanics between male and female dancers and athletes, part 2. Am. J. Sports Med. 2014, 42, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Longpre, H.S.; Acker, S.M.; Maly, M.R. Muscle activation and knee biomechanics during squatting and lunging after lower extremity fatigue in healthy young women. J. Electromyogr. Kinesiol. 2015, 25, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Longpré, H.S.; Potvin, J.R.; Maly, M.R. Biomechanical changes at the knee after lower limb fatigue in healthy young women. Clin. Biomech. 2013, 28, 441–447. [Google Scholar] [CrossRef]
- McEldowney, K.M.; Hopper, L.S.; Etlin-Stein, H.; Redding, E. Fatigue Effects on Quadriceps and Hamstrings Activation in Dancers Performing Drop Landings. J. Danc. Med. Sci. 2013, 17, 109–114. [Google Scholar] [CrossRef]
- McLean, S.G.; Felin, R.E.; Suedekum, N.; Calabrese, G.; Passerallo, A.; Joy, S. Impact of fatigue on gender-based high-risk landing strategies. Med. Sci. Sports Exerc. 2007, 39, 502–514. [Google Scholar] [CrossRef]
- McLean, S.G.; Samorezov, J.E. Fatigue-induced ACL injury risk stems from a degradation in central control. Med. Sci. Sports Exerc. 2009, 41, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Mejane, J.; Faubert, J.; Romeas, T.; Labbe, D.R. The combined impact of a perceptual–cognitive task and neuromuscular fatigue on knee biomechanics during landing. Knee 2019, 26, 52–60. [Google Scholar] [CrossRef]
- Miura, K.; Ishibashi, Y.; Tsuda, E.; Okamura, Y.; Otsuka, H.; Toh, S. The Effect of Local and General Fatigue on Knee Proprioception. Arthrosc. J. Arthrosc. Relat. Surg. 2004, 20, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Moran, K.A.; Clarke, M.; Reilly, F.; Wallace, E.S.; Brabazon, D.; Marshall, B. Does endurance fatigue increase the risk of injury when performing drop jumps? J. Strength. Cond. Res. 2009, 23, 1448–1455. [Google Scholar] [CrossRef]
- Moran, K.A.; Marshall, B.M. Effect of fatigue on tibial impact accelerations and knee kinematics in drop jumps. Med. Sci. Sports Exerc. 2006, 38, 1836–1842. [Google Scholar] [CrossRef] [PubMed]
- Murdock, G.H.; Hubley-Kozey, C.L. Effect of a high intensity quadriceps fatigue protocol on knee joint mechanics and muscle activation during gait in young adults. Eur. J. Appl. Physiol. 2012, 112, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Nyland, J.A.; Shapiro, R.; Rebecca Stine, P.I. Relationship of fatigued run and rapid stop to ground reaction forces, lower extremity kinematics, and muscle activation. J. Orthop. Sports Phys. Therpay 1994, 20, 132–137. [Google Scholar] [CrossRef]
- Sanna, G.; O’Connor, K.M. Fatigue-related changes in stance leg mechanics during sidestep cutting maneuvers. Clin. Biomech. 2008, 23, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Orishimo, K.F.; Kremenic, I.J. Effect of fatigue on single-leg hop landing biomechanics. J. Appl. Biomech. 2006, 22, 245–254. [Google Scholar] [CrossRef]
- Ortiz, A.; Olson, S.L.; Etnyre, B.; Trudelle-Jackson, E.E.; Bartlett, W.; Venegas-Rios, H.L. Fatigue effects on knee joint stability during two jump tasks in women. J. Strength. Cond. Res. 2010, 24, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Patrek, M.F.; Kernozek, T.W.; Willson, J.D.; Wright, G.A.; Doberstein, S.T. Hip-abductor fatigue and single-leg landing mechanics in women athletes. J. Athl. Train. 2011, 46, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Quammen, D.; Cortes, N.; Van Lunen, B.L.; Lucci, S.; Ringleb, S.I.; Onate, J. Two different fatigue protocols and lower extremity motion patterns during a stop-jump task. J. Athl. Train. 2012, 47, 32–41. [Google Scholar] [CrossRef]
- Qu, X.; Jiang, J.; Hu, X. Effects of subsensory noise and fatigue on knee landing and cross-over cutting biomechanics in male athletes. J. Appl. Biomech. 2018, 34, 205–210. [Google Scholar] [CrossRef]
- Radzak, K.N.; Stickley, C.D. Fatigue-induced hip-abductor weakness and changes in biomechanical risk factors for running-related injuries. J. Athl. Train. 2020, 55, 1270–1276. [Google Scholar] [CrossRef]
- Rahnama, N.; Reilly, T.; Lees, A.; Graham-Smith, P. Muscle fatigue induced by exercise simulating the work rate of competitive soccer. J. Sports Sci. 2003, 21, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.; Venâncio, J.; Quintas, P.; Oliveira, J. The effect of fatigue on knee position sense is not dependent upon the muscle group fatigued. Muscle Nerve 2011, 44, 217–220. [Google Scholar] [CrossRef]
- Salgado, E.; Ribeiro, F.; Oliveira, J. Joint-position sense is altered by football pre-participation warm-up exercise and match induced fatigue. Knee 2015, 22, 243–248. [Google Scholar] [CrossRef]
- Savage, R.J.; Lay, B.S.; Wills, J.A.; Lloyd, D.G.; Doyle, T.L.A. Prolonged running increases knee moments in sidestepping and cutting manoeuvres in sport. J. Sci. Med. Sport. 2018, 21, 508–512. [Google Scholar] [CrossRef]
- Schmitz, R.J.; Kim, H.; Shultz, S.J. Neuromuscular fatigue and tibiofemoral joint biomechanics when transitioning from non-weight bearing to weight bearing. J. Athl. Train. 2015, 50, 23–29. [Google Scholar] [CrossRef]
- Smeets, A.; Vanrenterghem, J.O.S.; Staes, F.; Verschueren, S. Match play-induced changes in landing biomechanics with special focus on fatigability. Med. Sci. Sports Exerc. 2019, 51, 1884–1894. [Google Scholar] [CrossRef]
- Thomas, A.C.; Mclean, S.G.; Palmieri-Smith, R.M. Quadriceps and hamstrings fatigue alters hip and knee mechanics. J. Appl. Biomech. 2010, 2, 159–170. [Google Scholar] [CrossRef]
- Thomas, A.C.; Palmieri-Smith, R.M.; Mclean, S.G. Isolated hip and ankle fatigue are unlikely risk factors for anterior cruciate ligament injury. Scand. J. Med. Sci. Sports. 2011, 21, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Tsai, L.C.; Sigward, S.M.; Pollard, C.D.; Fletcher, M.J.; Powers, C.M. Effects of fatigue and recovery on knee mechanics during side-step cutting. Med. Sci. Sports Exerc. 2009, 41, 1952–1957. [Google Scholar] [CrossRef] [PubMed]
- Weeks, B.K.; Carty, C.P.; Horan, S.A. Effect of sex and fatigue on single leg squat kinematics in healthy young adults Rehabilitation, physical therapy and occupational health. BMC Musculoskelet. Disord. 2015, 16, 271. [Google Scholar] [CrossRef]
- Weinhandl, J.T.; Smith, J.D.; Dugan, E.L. The effects of repetitive drop jumps on impact phase joint kinematics and kinetics. J. Appl. Biomech. 2011, 27, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Wojtys, E.M.; Wylie, B.B.; Huston, L.J. The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. Am. J. Sports Med. 1996, 24, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.L.; Huang, C.F.; Chen, P.C. Effects of lower extremity muscle fatigue on knee loading during a forward drop jump to a vertical jump in female athletes. J. Hum. Kinet. 2020, 72, 5–13. [Google Scholar] [CrossRef]
- Xia, R.; Zhang, X.; Wang, X.; Sun, X.; Fu, W. Effects of two fatigue protocols on impact forces and lower extremity kinematics during drop landings: Implications for noncontact anterior cruciate ligament injury. J. Healthc. Eng. 2017, 2017, 5690519. [Google Scholar] [CrossRef]
- Zago, M.; David, S.; Bertozzi, F.; Brunetti, C.; Gatti, A.; Salaorni, F.; Tarabini, M.; Galvani, C.; Sforza, C.; Galli, M. Fatigue induced by repeated changes of direction in élite female football (soccer) players: Impact on lower limb biomechanics and implications for ACL injury prevention. Front. Bioeng. Biotechnol. 2021, 9, 666841. [Google Scholar] [CrossRef]
- Zebis, M.K.; Bencke, J.; Andersen, L.L.; Alkjær, T.; Suetta, C.; Mortensen, P.; Kjær, M.; Aagaard, P. Acute fatigue impairs neuromuscular activity of anterior cruciate ligament-agonist muscles in female team handball players. Scand. J. Med. Sci. Sports 2011, 21, 833–840. [Google Scholar] [CrossRef]
- Boden, B.P.; Sheehan, F.T.; Torg, J.S.; Hewett, T.E. Non-contact ACL injuries: Mechanisms and risk factors. J. Am. Acad. Orthop. Surg. 2010, 18, 520–527. [Google Scholar] [CrossRef]
- Koga, H.; Muneta, T.; Bahr, R.; Engebretsen, L.; Krosshaug, T. ACL injury mechanisms: Lessons learned from video analysis. In Rotatory Knee Instability: An Evidence Based Approach; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 27–36. [Google Scholar] [CrossRef]
- Ni, Q.K.; Song, G.Y.; Zhang, Z.J.; Zheng, T.; Feng, Z.; Cao, Y.-W.; Feng, H.; Zhang, H. Steep posterior tibial slope and excessive anterior tibial translation are predictive risk factors of primary anterior cruciate ligament reconstruction failure: A case-control study with prospectively collected data. Am. J. Sports Med. 2020, 48, 2954–2961. [Google Scholar] [CrossRef]
- Hewett, T.E.; Ford, K.R.; Hoogenboom, B.J.; Myer, G.D. Understanding and preventing ACL injuries: Current biomechanical and epidemiologic considerations-update 2010. N. Am. J. Sports Phys. Ther. 2010, 5, 234–251. [Google Scholar] [PubMed]
- Myer, G.D.; Ford, K.R.; Barber Foss, K.D.; Liu, C.; Nick, T.G.; Hewett, T.E. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin. J. Sport Med. 2009, 19, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Wetters, N.; Weber, A.E.; Wuerz, T.H.; Schub, D.L.; Mandelbaum, B.R. Mechanism of injury and risk factors for anterior cruciate ligament injury. Oper. Tech. Sports Med. 2016, 24, 2–6. [Google Scholar] [CrossRef]
- Willigenburg, N.W.; McNally, M.P.; Hewett, T.E. Quadriceps and hamstrings strength in athletes. In Hamstring and Quadriceps Injuries in Athletes; Springer: Berlin/Heidelberg, Germany, 2014; pp. 15–28. [Google Scholar] [CrossRef]
- Bourne, M.N.; Webster, K.E.; Hewett, T.E. Is fatigue a risk factor for anterior cruciate ligament rupture? Sports Med. 2019, 49, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Doyle, T.L.; Schilaty, N.; Webster, K.; Hewett, T. Time of season and game segment is not related to likelihood of lower-limb injuries: A meta-analysis. Clin. J. Sport Med. 2021, 31, 304–312. [Google Scholar] [CrossRef]
- Hewett, T.E.; Webster, K.E.; Hurd, W.J. Systematic selection of key logistic regression variables for risk prediction analyses: A five factor maximum model. Clin. J. Sport Med. 2019, 29, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Nilstad, A.; Petushek, E.; Mok, K.M.; Bahr, R.; Krosshaug, T. Kiss goodbye to the ‘kissing knees’: No association between frontal plane inward knee motion and risk of future non-contact ACL injury in elite female athletes. Sports Biomech. 2023, 22, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Mouton, C.; Gokeler, A.; Urhausen, A.; Nuhrenborger, C.; Seil, R. High incidence of anterior cruciate ligament injuries within the first 2 months of the season in amateur. Sports Health 2022, 14, 183–187. [Google Scholar] [CrossRef]
- Della Villa, F.; Buckthorpe, M.; Grassi, A.; Nabiuzzi, A.; Tosarelli, F.; Zaffagnini, S.; Della Villa, S. Systematic video analysis of ACL injuries in professional male football (soccer): Injury mechanisms, situational patterns and biomechanics study on 134 consecutive cases. Br. J. Sports Med. 2020, 54, 1423–1432. [Google Scholar] [CrossRef]
- Zhou, J.; Schilaty, N.D.; Hewett, T.E.; Bates, N.A. Analysis of timing of secondary ACL injury in professional athletes does not support game timing or season timing as a contributor to injury risk. Int. J. Sports Phys. Ther. 2020, 15, 254–262. [Google Scholar] [CrossRef]
- Lundblad, M.; Waldén, M.; Magnusson, H.; Karlsson, J.; Ekstrand, J. The UEFA injury study: 11-year data concerning 346 MCL injuries and time to return to play. Br. J. Sports Med. 2013, 47, 759–762. [Google Scholar] [CrossRef]
- Barber-Westin, S.D.; Noyes, F.R. Effect of fatigue protocols on lower limb neuromuscular function and implications for anterior cruciate ligament injury prevention training: A systematic review. Am. J. Sports Med. 2017, 45, 3388–3396. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Chaloupka, E.C.; Mastrangelo, M.A.; Biren, G.B.; Robertson, R.J. Physiological comparisons among three maximal treadmill exercise protocols in trained and untrained individuals. Eur. J. Appl. Physiol. 2001, 84, 291–295. [Google Scholar] [CrossRef]
- Zeller, L.; Shimoni, N.; Vodonos, A.; Sagy, I.; Barski, L.; Buskila, D. Pain sensitivity and physical fitness. J. Sports Med. Phys. Fit. 2019, 59, 1635–1639. [Google Scholar]
- Gates, D.H.; Dingwell, J.B. The effects of neuromuscular fatigue on task performance during repetitive goal-directed movements. Exp. Brain Res. 2008, 187, 573–585. [Google Scholar] [CrossRef]
- De Ste Croix, M.B.A.; Priestley, A.M.; Lloyd, R.S.; Oliver, J.L. ACL injury risk in elite female youth soccer: Changes in neuromuscular control of the knee following soccer-specific fatigue. Scand. J. Med. Sci. Sports 2015, 25, e531–e538. [Google Scholar] [CrossRef] [PubMed]
- Thorlund, J.B.; Michalsik, L.B.; Madsen, K.; Aagaard, P. Acute fatigue-induced changes in muscle mechanical properties and neuromuscular activity in elite handball players following a handball match. Scand. J. Med. Sci. Sports 2008, 18, 462–472. [Google Scholar] [CrossRef]
- Jordan, M.J.; Aagaard, P.; Herzog, W. Asymmetry and Thigh Muscle Coactivity in Fatigued Anterior Cruciate Ligament-Reconstructed Elite Skiers. Med. Sci. Sports Exerc. 2017, 49, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Lessi, G.C.; Silva, R.S.; Serrao, F.V. Comparison of the effects of fatigue on kinematics and muscle activation between men and women after anterior cruciate ligament reconstruction. Phys. Ther. Sport 2018, 31, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.; Lessi, G.; Carvalho, C.; Serrao, F. Association of hip and trunk strength with three-dimensional trunk, hip, and knee kinematics during a single-leg drop veritcal jump. J. Strength Cond. Res. 2018, 33, 1902–1908. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- McManus, L.; Lowery, M.; Merletti, R.; Søgaard, K.; Besomi, M.; Clancy, E.A.; van Dieën, J.H.; Hug, F.; Wrigley, T.; Besier, T.; et al. Consensus for experimental design in electromyography (CEDE) project: Terminology matrix. J. Electromyogr. Kinesiol. 2021, 59, 102565. [Google Scholar] [CrossRef] [PubMed]
- Öberg, T.; Sandsjö, L.; Kadefors, R. Variability of the EMG mean power frequency: A study on the trapezius muscle. J. Electromyogr. Kinesiol. 1991, 1, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Moritani, T.; Muro, M.; Nagata, A. Intramuscular and surface electromyogram changes during muscle fatigue. J. Appl. Physiol. 1986, 60, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.R.; Potvin, J.R. Fatigue-related EMG responses of trunk muscles to a prolonged, isometric twist exertion. Clin. Biomech. 1997, 12, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Hummel, A.; Läubli, T.; Pozzo, M.; Schenk, P.; Spillmann, S.; Klipstein, A. Relationship between perceived exertion and mean power frequency of the EMG signal from the upper trapezius muscle during isometric shoulder elevation. Eur. J. Appl. Physiol. 2005, 95, 321–326. [Google Scholar] [CrossRef] [PubMed]
Author | Year | N | Mean (SD) Age | Male/ Female | Sport/ Activity | Fatigue Method | Fatigue Assessment | Testing Task |
---|---|---|---|---|---|---|---|---|
Abergel [22] | 2021 | 21 | 24.8 (5.5) | 0 M/ 21 F | Dancers |
| Borg RPE > 17 |
|
Allison [23] | 2016 | 20 | 23.35 (2.70) | 10 M/ 10 F | Healthy physically active |
| Torque decreased by 25% of initial value or 90 reps Confirmed post hoc with MPF analysis |
|
Bedo [24] | 2022 | 20 | 21 (3.4) | 0 M/ 20 F | Handball |
| Reduction in force during countermovement jump or inability to complete protocol |
|
Behrens [25] | 2015 | 26 | 26 (3) | 13 M/ 13 F | Healthy physically active |
| Inability to reach 50% of maximum jump height over 3 consecutive jumps |
|
Benjaminse [26] | 2008 | 30 | M22.7 (1.6)/ F22.1 (1.7) | 15 M/ 15 F | Healthy physically active |
| Unable to run at maximum effort |
|
Borotikar [27] | 2008 | 24 | 21.2 (2.5) | 0 M /24 F | D1 Basketball Soccer, Volleyball |
| Could no longer complete 3 consecutive squats |
|
Bossuyt [28] | 2016 | 15 | 22 (3) | 0 M/ 15 F | Healthy physically active |
| Completion of the protocol |
|
Brazen [29] | 2010 | 24 | M21.3 (2.8) F19.5 (1.7) | 12 M/ 12 F | Healthy physically active |
| Unable to complete a circuit, up to 6 circuits |
|
Chappel [30] | 2005 | 20 | M23.7 (0.8) F21.7 (2.1) | 10 M/ 10 F | Healthy physically active |
| Volitional exhaustion |
|
Coratella [31] | 2015 | 22 | 20.1 (2.4) | 20 M/ 0 F | Soccer |
| First and third tests ended when participants could not complete 2 consecutive shuttles |
|
Cortes [32] | 2014 | 18 | 19 (0.9) | 0 M/ 18 F | Soccer |
| Failure to meet jump standardand/orheart rate plateau within 90% max HR |
|
Cortes [33] | 2013 | 18 | 19.2 (0.9) | 0 M/ 18 F | Soccer |
| Failure to meet jump standardand/orheart rate plateau within 90% max HR |
|
Cortes [34] | 2012 | 15 | 19.2 (0.8) | 0 M/ 15 F | Soccer |
| 4 sets and 85% of estimated max HR |
|
Dickin [35] | 2015 | 11 | 22.58 (3.09) | 0 M/ 11 F | Healthy physically active |
| Unable to hit 80% max jump height |
|
El-Ashker [36] | 2019 | 100 | M28.7 (4.5) F27.0 (5.8) | 50 M/ 50 F | Healthy physically active |
| Unable to obtain 60% IMVC for three consecutive contractions |
|
Gehring [37] | 2009 | 13 | 25 (2.4) | 13 M/ 0 F | Healthy physically active |
| No longer able to perform the task |
|
Geiser [38] | 2010 | 20 | 20 (1.7) | 0 M/ 20 F | Healthy physically active |
| No longer able to adduct within 1 s |
|
Gillot [39] | 2019 | 19 | 20.9 (2.4) | 0 M/ 19 F | Handball |
| Completion of protocol |
|
Greco [40] | 2013 | 22 | 23.1 (3.4) | 22 M/ 0 F | Soccer |
| Completion of protocol |
|
Greig [41] | 2019 | 10 | 24.7 (4.4) | 10 M/ 0 F | Soccer |
| Completion of protocol |
|
Harato [42] | 2021 | 25 | 20.5 (1.5) | 0 M/ 20 F | 15 Basketball10 Recreational |
| Unable to complete fatigue protocol RPE >17 |
|
Hassanlouei [43] | 2012 | 9 | 27 (3) | 9 M/ 0 F | Healthy physically active |
| Volitional exhaustion |
|
Hunt [44] | 2017 | 18 | 25.2 (3.5) | 9 M/ 9 F | Healthy physically active |
| Ankle plantar flex MVIC <60% of pre-fatigue or self-reported fatigue |
|
Iguchi [45] | 2014 | 23 | M22.9 (1.0) F21.9 (1.2) | 11 M/ 12 F | Healthy physically active |
| <70% of the max CMJ height on 2 consecutive jumps |
|
Kellis [46] | 2009 | 20 | M24.3 (1.25) F23.5 (1.43) | 10 M/ 10 F | Healthy physically active |
| Unable to produce 30% of the maximum moment |
|
Kernozek [47] | 2008 | 30 | M23.8 (0.4) F23.0 (0.9) | 16 M/ 14 F | Healthy physically active |
| Completed at least 4 sets and could no longer lift the weight |
|
Khalid [48] | 2015 | 12 | M201.7 (1.83) F19.33 (1.97) | 6 M /6 F | Soccer |
| Failed to return to start position 2 consecutive times |
|
Kim [49] | 2021 | 10 | 26.6 (1.35) | 5 M/ 5 F | Healthy physically active |
| Unable to reach 35 deg target; confirmed with glute med MnPF |
|
Kim [50] | 2017 | 24 | M 21.3 (2.2) F20.8 (1.0) | 11 M/ 13 F | Healthy physically active |
| Knee flex/ext torque less than 50%/30% on 3 consecutive reps |
|
Lattanzio [51] | 1997 | 16 | M23.9 (2.85) F22.1 (2.3) | 8 M/ 8 F | Healthy physically active |
| Unable to maintain 60 rpm |
|
Lessi [52] | 2017 | 40 | M22.8 (2.9) F23.6 (3.0) | 20 M/ 20 F | Healthy physically active |
| Inability to hop 20% of maximal single leg hop distance |
|
Liederbach [53] | 2014 | 80 | 25 | 40 M/ 40 F | 40 Dancers40 athletes |
| 10% decrease in max vertical jump |
|
Longpre [54] | 2015 | 25 | 18–30 | 0 M/ 25 F | Healthy physically active |
| 25% decrease in either isometric flex or ext |
|
Longpre [55] | 2013 | 20 | 18–30 | 0 M/ 20 F | Healthy physically active |
| 25% decrease in torque |
|
McEldowney [56] | 2013 | 7 | 23.7 (6.1) | 0 M/ 7 F | Dancers |
| Completion of protocol |
|
McLean [57] | 2007 | 20 | M20.7 (1.3) F20.8 (0.8) | 10 M/ 10 F | D1 athletes |
| Completion of protocol |
|
McLean [58] | 2009 | 20 | 19.2 (1.7) | 0 M/ 20 F | D1 athletes |
| Unable to complete 3 sequential squats |
|
Mejane [59] | 2019 | 19 | 25 (2.4) | 0 M/ 19 F | Healthy physically active |
| Unable to complete 15 sequential squats |
|
Miura [60] | 2004 | 27 | 22.2 (19–31) | 27 M/ 0 F | Healthy physically active |
| Local—changes in peak torque General—change in HR |
|
Moran [61] | 2009 | 15 | 20.9 (1.1) | 0 M/ 15 F | Soccer |
| RPE of 17 |
|
Moran [62] | 2006 | 15 | 21.4 (1.5) | 15 M/ 0 F | Healthy physically active |
| RPE of 18 |
|
Murdock [63] | 2012 | 20 | 19–35 | 10 M/ 10 F | Healthy physically active |
| completion of protocolpost hoc analysis of torque and median PF |
|
Nyland [64] | 1994 | 19 | 20.8 (1.8) | 0 M/ 19 F | D1Volleyball Basketball |
| Volitional exhaustion |
|
O’Connor [65] | 2015 | 11 | 21.3 (1.2) | 0 M/ 11 F | Healthy physically active |
| 3 consecutive repetitions during the 3rd set below 25% peak flexor torque |
|
Orishimo [66] | 2006 | 13 | 33.9 (7.2) | 13 M/ 0 F | Healthy physically active |
| Hop distance reduced to 80% of max |
|
Ortiz [67] | 2010 | 15 | 24.6 (2.6) | 0 M/ 15 F | Healthy physically active |
| Fatigue index (change in power output) |
|
Patrek [68] | 2011 | 20 | 21.0 (1.3) | 0 M/ 20 F | Healthy physically active |
| RPE >19Confirmed (post hoc) by a decrease MnPF |
|
Quammen [69] | 2012 | 15 | 19.2 (0.8) | 0 M/ 15 F | Elite Soccer |
| 4 sets of the FAST-FPVolitional exhaustion for the oxidative fatigue protocol |
|
Qu [70] | 2018 | 32 | 22.6 (2.2) | 32 M/ 0 F | Healthy physically active |
| RPE of >17 |
|
Radzak [71] | 2020 | 38 | 21.6 (4.02) | 38 M/ 0 F | ROTC |
| RPE > 17 or an FAS score > 7, whichever came second |
|
Rahnama [72] | 2003 | 13 | 23.3 (3.9) | 13 M/ 0 F | Soccer |
| Completion of protocol |
|
Ribeiro [73] | 2011 | 40 | 22.1 (3.0) | 40 M/ 0 F | Healthy physically active |
| Completion of protocol |
|
Salgado [74] | 2015 | 14 | 25.9 (4.6) | 14 M/ 0 F | Semi-proSoccer |
|
| |
Sanna [65] | 2008 | 12 | 20.1 (1.2) | 0 M/ 12 F | D1 Soccer |
| Completion of protocol |
|
Savage [75] | 2018 | 8 | 19.4 (1.6) | 8 M/ 0 F | Australian Football |
| Completion of protocolPost hoc RPE and HR |
|
Schmitz [76] | 2015 | 10 | 25.3 (4.0) | 5 M/ 5 F | Healthy physically active |
| Unable to complete a full round of 15 presses |
|
Smeets [77] | 2019 | 18 | 21.3 (1.5) | 10 M /8 F | Healthy physically active |
| Completion of protocol |
|
Thomas [78] | 2010 | 42 | M20.3 (0.85) F20.3 (1.3) | 13 M/ 12 F | Healthy physically active |
| Until the first 5 reps fell below 50% MVCC |
|
Thomas [79] | 2011 | 16 | 18–22 | 0 M/ 16 F | Healthy physically active |
| Until the first 5 reps fell below 80% MVCC |
|
Tsai [80] | 2009 | 15 | 25.6 (3.7) | 0 M/ 15 F | Healthy physically active |
| Inability to reach a jump height of 50% max vertical jump |
|
Weeks [81] | 2015 | 60 | 25.3 (4.3) | 30 M/ 30 F | Healthy physically active |
| Vertical jump diminished by 20% or were unable to complete a set of lunges |
|
Weinhandl [82] | 2011 | 12 | M 22 (2) F 22 (1) | 6 M/ 6 F | Healthy physically active |
| Unable to jump to 80% of their max jump height |
|
Wojtys [83] | 1996 | 10 | 21.3 | 6 M/4 F | Healthy physically active |
| 50% decrease in work |
|
Wong [84] | 2020 | 12 | 21.3 (1.49) | 0 M/ 12 F | College athletes |
| 10% decreases in max vertical jump and RPE >17 |
|
Xia [85] | 2017 | 15 | 20.9 (0.8) | 15 M/ 0 F | Jumping athletes |
| Constant speed running—volitional failureShuttle—vertical jump less than 7% max |
|
Zago [86] | 2021 | 20 | 24.3 (3.6) | 0 M/ 20 F | Elite Soccer |
| Missed two beats in a row |
|
Zebis [87] | 2011 | 14 | 25 (5) | 0 M/ 14 F | Handball |
| Completion of protocol |
|
Author | Kinematics | Kinetics | Neuromuscular | Other |
---|---|---|---|---|
Abergel [22] | ||||
Allison [23] | ||||
Bedo [24] | ||||
Behrens [25] | ||||
Benjaminse [26] | ||||
Borotikar [27] | ||||
Bossuyt [28] | ||||
Brazen [29] | ||||
Chappel [30] | ||||
Coratella [31] | ||||
Cortes [32] | ||||
Cortes [33] | ||||
Cortes [34] | ||||
Dickin [35] | ||||
El-Ashker [36] | ||||
Gehring [37] | ||||
Geiser [38] | ||||
Gillot [39] | ||||
Greco [40] | ||||
Greig [41] | ||||
Harato [42] | ||||
Hassanlouei [43] | ||||
Hunt [44] | ||||
Iguchi [45] | ||||
Kellis [46] | ||||
Kernozek [47] | ||||
Khalid [48] | ||||
Kim [49] | ||||
Kim [50] | ||||
Lattanzio [51] | ||||
Lessi [52] | ||||
Liederbach [53] | ||||
Longpre [54] | ||||
Longpre [55] | ||||
McEldowney [56] | ||||
McLean [57] | ||||
McLean [58] | ||||
Mejane [59] | ||||
Miura [60] | ||||
Moran [61] | ||||
Moran [62] | ||||
Murdock [63] | ||||
Nyland [64] | ||||
O’Connor [65] | ||||
Orishimo [66] | ||||
Ortiz [67] | ||||
Patrek [68] | ||||
Quammen [69] | ||||
Qu [70] | ||||
Radzak [71] | ||||
Rahnama [72] | ||||
Ribeiro [73] | ||||
Salgado [74] | ||||
Sanna [65] | ||||
Savage [75] | ||||
Schmitz [76] | ||||
Smeets [77] | ||||
Thomas [78] | ||||
Thomas [79] | ||||
Tsai [80] | ||||
Weeks [81] | ||||
Weinhandl [82] | ||||
Wojtys [83] | ||||
Wong [84] | ||||
Xia [85] | ||||
Zago [86] | ||||
Zebis [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, J.L.I.; Burkhart, T.A. Tired of ACL Injures: A Review of Methods and Outcomes of Neuromuscular Fatigue as a Risk Factor for ACL Injuries. Biomechanics 2025, 5, 11. https://doi.org/10.3390/biomechanics5010011
Taylor JLI, Burkhart TA. Tired of ACL Injures: A Review of Methods and Outcomes of Neuromuscular Fatigue as a Risk Factor for ACL Injuries. Biomechanics. 2025; 5(1):11. https://doi.org/10.3390/biomechanics5010011
Chicago/Turabian StyleTaylor, Joshua L. I., and Timothy A. Burkhart. 2025. "Tired of ACL Injures: A Review of Methods and Outcomes of Neuromuscular Fatigue as a Risk Factor for ACL Injuries" Biomechanics 5, no. 1: 11. https://doi.org/10.3390/biomechanics5010011
APA StyleTaylor, J. L. I., & Burkhart, T. A. (2025). Tired of ACL Injures: A Review of Methods and Outcomes of Neuromuscular Fatigue as a Risk Factor for ACL Injuries. Biomechanics, 5(1), 11. https://doi.org/10.3390/biomechanics5010011