Vegetation Structure and Distribution Across Scales in a Large Metropolitan Area: Case Study of Austin MSA, Texas, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. LiDAR Vegetation Mapping
2.3. Vegetation Classification Based on Height
2.4. Selection of Predictor/Independent Variables and Overlay Analyses
2.5. Statistical Analyses
3. Results
3.1. Parcel Characteristics
3.2. Vegetation Characteristics
3.3. Vegetation and Parcel Comparisons at MSA Scale
3.4. Variation Among Cities
3.5. City-Scale Variation in Vegetation
4. Discussion
4.1. The Role of Physical Geography in Vegetation Structure
4.2. Metropolitan-Scale Vegetation Patterns
4.3. Socioeconomic Factors Affecting Vegetation Distribution
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cousins, S.A.; Auffret, A.G.; Lindgren, J.; Tränk, L. Regional-scale land-cover change during the 20th century and its consequences for biodiversity. Ambio 2015, 44, 17–27. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J. Land-Use and Land-Cover Change: Local Processes and Global Impacts; Springer Science & Business Media: Heidelburg, Germany, 2008; pp. 9–15. [Google Scholar]
- Vitousek, P.M. Beyond global warming: Ecology and global change. Ecology 1994, 75, 1861–1876. [Google Scholar] [CrossRef]
- Brunner, J.; Cozens, P. ‘Where have all the trees gone?’Urban consolidation and the demise of urban vegetation: A case study from Western Australia. Plan. Pract. Res. 2013, 28, 231–255. [Google Scholar] [CrossRef]
- Fuller, R.A.; Gaston, K.J. The scaling of green space coverage in European cities. Biol. Lett. 2009, 5, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zhou, W.; Li, W.; Han, L. Understanding the dynamic of greenspace in the urbanized area of Beijing based on high resolution satellite images. Urban For. Urban Green. 2015, 14, 39–47. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, Y.; Deng, J.; Shen, Z.; Wang, K.; Zhu, J.; Gan, M. Dynamics of hierarchical urban green space patches and implications for management policy. Sensors 2017, 17, 1304. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Cadenasso, M.L. Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sens. Environ. 2017, 195, 43. [Google Scholar] [CrossRef]
- Lo, A.Y.; Jim, C.Y. Differential community effects on perception and use of urban greenspaces. Cities 2010, 27, 430–442. [Google Scholar] [CrossRef]
- Sivam, A.; Karuppannan, S.; Mobbs, M. How “open” are open spaces: Evaluating transformation of open space at residential level in Adelaide–a case study. Local Environ. 2012, 17, 815–836. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Gou, S.; Zhang, Q.; Zhang, J.; Xu, L. Detecting global urban expansion over the last three decades using a fully convolutional network. Environ. Res. Lett. 2019, 14, 034008. [Google Scholar] [CrossRef]
- Pregitzer, C.C.; Ashton, M.S.; Charlop-Powers, S.; D’Amato, A.W.; Frey, B.R.; Gunther, B.; Hallett, R.A.; Pregitzer, K.S.; Woodall, C.W.; Bradford, M.A. Defining and assessing urban forests to inform management and policy. Environ. Res. Lett. 2019, 14, 085002. [Google Scholar] [CrossRef]
- Benn, S.; Gaus, G. Public and Private in Social Life; Croom Helm: London, UK, 1983; pp. 121–125. [Google Scholar]
- Madanipour, A. Why are the design and development of public spaces significant for cities? Environ. Plan. B Plan. Des. 1999, 26, 879–891. [Google Scholar] [CrossRef]
- Steenberg, J.W.; Millward, A.A.; Duinker, P.N.; Nowak, D.J.; Robinson, P.J. Neighbourhood-scale urban forest ecosystem classification. J. Environ. Manag. 2015, 163, 134–145. [Google Scholar] [CrossRef]
- Jamil, R.; Julian, J.P.; Jensen, J.L.; Meitzen, K.M. Urban Green Infrastructure Connectivity: The Role of Private Semi-Natural Areas. Land 2024, 13, 1213. [Google Scholar] [CrossRef]
- Harris, V.; Kendal, D.; Hahs, A.K.; Threlfall, C.G. Green space context and vegetation complexity shape people’s preferences for urban public parks and residential gardens. Landsc. Res. 2018, 43, 150–162. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef]
- Belaire, J.A.; Whelan, C.J.; Minor, E.S. Having our yards and sharing them too: The collective effects of yards on native bird species in an urban landscape. Ecol. Appl. 2014, 24, 2132–2143. [Google Scholar] [CrossRef]
- Paker, Y.; Yom-Tov, Y.; Alon-Mozes, T.; Barnea, A. The effect of plant richness and urban garden structure on bird species richness, diversity and community structure. Landsc. Urban Plan. 2014, 122, 186–195. [Google Scholar] [CrossRef]
- Vergnes, A.; Le Viol, I.; Clergeau, P. Green corridors in urban landscapes affect the arthropod communities of domestic gardens. Biol. Conserv. 2012, 145, 171–178. [Google Scholar] [CrossRef]
- Casalegno, S.; Anderson, K.; Cox, D.T.; Hancock, S.; Gaston, K.J. Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar. Sci. Rep. 2017, 7, 45571. [Google Scholar] [CrossRef]
- Ossola, A.; Hopton, M.E. Measuring urban tree loss dynamics across residential landscapes. Sci. Total Environ. 2018, 612, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.G.; Bennett, E.M.; Gonzalez, A. Linking landscape connectivity and ecosystem service provision: Current knowledge and research gaps. Ecosystems 2013, 16, 894–908. [Google Scholar] [CrossRef]
- Kolbe, J.J.; VanMiddlesworth, P.; Battles, A.C.; Stroud, J.T.; Buffum, B.; Forman, R.T.; Losos, J.B. Determinants of spread in an urban landscape by an introduced lizard. Landsc. Ecol. 2016, 31, 1795–1813. [Google Scholar] [CrossRef]
- Treby, D.L.; Castley, J.G. Distribution and abundance of hollow-bearing trees in urban forest fragments. Urban For. Urban Green. 2015, 14, 655–663. [Google Scholar] [CrossRef]
- Stagoll, K.; Lindenmayer, D.B.; Knight, E.; Fischer, J.; Manning, A.D. Large trees are keystone structures in urban parks. Conserv. Lett. 2012, 5, 115–122. [Google Scholar] [CrossRef]
- Fontana, S.; Sattler, T.; Bontadina, F.; Moretti, M. How to manage the urban green to improve bird diversity and community structure. Landsc. Urban Plan. 2011, 101, 278–285. [Google Scholar] [CrossRef]
- Savard, J.-P.L.; Clergeau, P.; Mennechez, G. Biodiversity concepts and urban ecosystems. Landsc. Urban Plan. 2000, 48, 131–142. [Google Scholar] [CrossRef]
- Forman, R.T. Towns, Ecology, and the Land; Cambridge University Press: Cambridge, UK, 2019; pp. 9–18. [Google Scholar]
- Dobbs, C.; Nitschke, C.; Kendal, D. Assessing the drivers shaping global patterns of urban vegetation landscape structure. Sci. Total Environ. 2017, 592, 171–177. [Google Scholar] [CrossRef]
- Groffman, P.M.; Cavender-Bares, J.; Bettez, N.D.; Grove, J.M.; Hall, S.J.; Heffernan, J.B.; Hobbie, S.E.; Larson, K.L.; Morse, J.L.; Neill, C. Ecological homogenization of urban USA. Front. Ecol. Environ. 2014, 12, 74–81. [Google Scholar] [CrossRef]
- Steele, M.; Wolz, H. Heterogeneity in the land cover composition and configuration of US cities: Implications for ecosystem services. Landsc. Ecol. 2019, 34, 1247–1261. [Google Scholar] [CrossRef]
- Cox, L.; Hansen, V.; Andrews, J.; Thomas, J.; Heilke, I.; Flanders, N.; Walton, B. Land Use: A Powerful Determinant of Sustainable & Healthy Communities; US Environmental Protection Agency: Washington, DC, USA, 2013. Available online: https://www.epa.gov/sites/default/files/2016-09/documents/fy13productnheerl4121land_use_synthesis.pdf (accessed on 25 February 2024).
- McDonald, R.I.; Biswas, T.; Chakraborty, T.; Kroeger, T.; Cook-Patton, S.C.; Fargione, J.E. Current inequality and future potential of US urban tree cover for reducing heat-related health impacts. NPJ Urban Sustain. 2024, 4, 18. [Google Scholar] [CrossRef]
- Ziter, C.D.; Pedersen, E.J.; Kucharik, C.J.; Turner, M.G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. USA 2019, 116, 7575–7580. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Greenfield, E.J. Tree and impervious cover in the United States. Landsc. Urban Plan. 2012, 107, 21–30. [Google Scholar] [CrossRef]
- Locke, D.H.; Hall, B.; Grove, J.M.; Pickett, S.T.; Ogden, L.A.; Aoki, C.; Boone, C.G.; O’Neil-Dunne, J.P. Residential housing segregation and urban tree canopy in 37 US Cities. NPJ Urban Sustain. 2021, 1, 15. [Google Scholar] [CrossRef]
- Liu, H.; Dong, P. A new method for generating canopy height models from discrete-return LiDAR point clouds. Remote Sens. Lett. 2014, 5, 575–582. [Google Scholar] [CrossRef]
- Kulawardhana, R.W.; Popescu, S.C.; Feagin, R.A. Fusion of lidar and multispectral data to quantify salt marsh carbon stocks. Remote Sens. Environ. 2014, 154, 345–357. [Google Scholar] [CrossRef]
- Hartfield, K.A.; Landau, K.I.; Van Leeuwen, W.J. Fusion of high resolution aerial multispectral and LiDAR data: Land cover in the context of urban mosquito habitat. Remote Sens. 2011, 3, 2364–2383. [Google Scholar] [CrossRef]
- MacFaden, S.W.; O′Neil-Dunne, J.P.; Royar, A.R.; Lu, J.W.; Rundle, A.G. High-resolution tree canopy mapping for New York City using LIDAR and object-based image analysis. J. Cell. Physiol. 2012, 6, 063567. [Google Scholar] [CrossRef]
- Data USA. San Marcos, TX. Available online: https://datausa.io/profile/geo/san-marcos-tx/ (accessed on 29 August 2024).
- Service, N.W. Austin Climate Summary. Available online: https://www.weather.gov/media/ewx/climate/ClimateSummary-ewx-Austin.pdf (accessed on 29 August 2024).
- TPWD, T.P.A.W. By Ecoregion (Vector). Available online: https://tpwd.texas.gov/gis/programs/landscape-ecology/by-ecoregion-vector (accessed on 29 August 2023).
- Chapman, B.R.; Bolen, E.G. The Natural History of the Edwards Plateau: The Texas Hill Country; Texas A&M University Press: College Station, TX, USA, 2020; pp. 51–55. [Google Scholar]
- Diamond, D.D.; Smeins, F.E. Composition, classification and species response patterns of remnant tallgrass prairies in Texas. Am. Midl. Nat. 1985, 113, 294–308. [Google Scholar] [CrossRef]
- Heidemann, H.K. Lidar Base Specification; 2328-7055; US Geological Survey: Washington, DC, USA, 2012; pp. 41–42.
- Jamil, R. Social Demands and Geospatial Distributions of Urban Green Spaces and Blue Spaces. Ph.D. Dissertation, Texas State University, San Marcos, TX, USA, 2024. Available online: https://digital.library.txst.edu/items/0e6cd5d2-8801-4370-b427-c7e1d0d8d551/full (accessed on 28 February 2025).
- Jennings, S.; Brown, N.; Sheil, D. Assessing Forest Canopies and Understorey Illumination: Canopy Closure, Canopy Cover and Other Measures; Oxford University Press: Oxford, UK, 1999; Volume 72, pp. 59–74. [Google Scholar] [CrossRef]
- Hermansen-Baez, A. Urban Tree Canopy Assessment: A Community’s Path to Understanding and Managing the Urban Forest; FS-1121; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 2019; pp. 1–16.
- Brokaw, N.V. The definition of treefall gap and its effect on measures of forest dynamics. Biotropica 1982, 14, 158–160. [Google Scholar] [CrossRef]
- Ucar, Z.; Bettinger, P.; Merry, K.; Akbulut, R.; Siry, J. Estimation of Urban Woody Vegetation Cover Using Multispectral Imagery and LiDAR; Elsevier: Amsterdam, The Netherlands, 2018; Volume 29, pp. 248–260. [Google Scholar] [CrossRef]
- Weinstein, B.G.; Marconi, S.; Bohlman, S.A.; Zare, A.; Singh, A.; Graves, S.J.; White, E.P. A Remote Sensing Derived Data Set of 100 Million Individual Tree Crowns for the National Ecological Observatory Network; eLife Sciences Publications, Ltd.: Zurich, Switzerland, 2021; Volume 10. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; Macintyre, H. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health 2016, 15, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Li, Z.; Lin, S.; Xu, W. Assessment and zoning of eco-environmental sensitivity for a typical developing province in China. Stoch. Environ. Res. Risk Assess. 2012, 26, 1095–1107. [Google Scholar] [CrossRef]
- Cook, E.M.; Hall, S.J.; Larson, K.L. Residential landscapes as social-ecological systems: A synthesis of multi-scalar interactions between people and their home environment. Urban Ecosyst. 2012, 15, 19–52. [Google Scholar] [CrossRef]
- Pickett, S.T.; Cadenasso, M.L.; Grove, J.M.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.P.; Nilon, C.H. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Manag. 2011, 92, 331–362. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.M.; Gaston, K.J.; Warren, P.H.; Thompson, K. Urban domestic gardens (V): Relationships between landcover composition, housing and landscape. Landsc. Ecol. 2005, 20, 235–253. [Google Scholar] [CrossRef]
- Verbeeck, K.; Van Orshoven, J.; Hermy, M. Measuring extent, location and change of imperviousness in urban domestic gardens in collective housing projects. Landsc. Urban Plan. 2011, 100, 57–66. [Google Scholar] [CrossRef]
- Breen, R. Regression Models: Censored, Sample Selected, or Truncated Data; Sage: Riverside County, CA, USA, 1996; pp. 12–18. [Google Scholar]
- Omernik, J.M.; Griffith, G.E. Ecoregions of the conterminous United States: Evolution of a hierarchical spatial framework. Environ. Manag. 2014, 54, 1249–1266. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Sorice, M.G.; Young, M.H. Dryland ecohydrology in the anthropocene: Taking stock of human–ecological interactions. Geogr. Compass 2011, 5, 112–127. [Google Scholar] [CrossRef]
- Nielsen-Gammon, J.W.; Banner, J.L.; Cook, B.I.; Tremaine, D.M.; Wong, C.I.; Mace, R.E.; Gao, H.; Yang, Z.L.; Gonzalez, M.F.; Hoffpauir, R. Unprecedented drought challenges for Texas water resources in a changing climate: What do researchers and stakeholders need to know? Earth′s Future 2020, 8, e2020EF001552. [Google Scholar] [CrossRef]
- Willis, E.M.; Koeser, A.K.; Clarke, M.; Hansen, G.; Hilbert, D.R.; Lusk, M.G.; Roman, L.A.; Warner, L.A. Greening development: Reducing urban tree canopy loss through incentives. Urban For. Urban Green. 2024, 91, 128184. [Google Scholar] [CrossRef]
- Lavy, B.L.; Hagelman III, R.R. Protecting the urban forest: Variations in standards and sustainability dimensions of municipal tree preservation ordinances. Urban For. Urban Green. 2019, 44, 126394. [Google Scholar] [CrossRef]
- Larson, K.L.; Andrade, R.; Nelson, K.C.; Wheeler, M.M.; Engebreston, J.M.; Hall, S.J.; Avolio, M.L.; Groffman, P.M.; Grove, M.; Heffernan, J.B. Municipal regulation of residential landscapes across US cities: Patterns and implications for landscape sustainability. J. Environ. Manag. 2020, 275, 111132. [Google Scholar] [CrossRef] [PubMed]
- Jim, C.Y. Green-space preservation and allocation for sustainable greening of compact cities. Cities 2004, 21, 311–320. [Google Scholar] [CrossRef]
- Tan, P.Y.; Wang, J.; Sia, A. Perspectives on five decades of the urban greening of Singapore. Cities 2013, 32, 24–32. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Kroeger, T.; Wagner, J.E. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef]
- Jim, C.Y.; Shan, X. Socioeconomic effect on perception of urban green spaces in Guangzhou, China. Cities 2013, 31, 123–131. [Google Scholar] [CrossRef]
- Morgan Grove, J.; Cadenasso, M.L.; Burch Jr, W.R.; Pickett, S.T.; Schwarz, K.; O′Neil-Dunne, J.; Wilson, M.; Troy, A.; Boone, C. Data and methods comparing social structure and vegetation structure of urban neighborhoods in Baltimore, Maryland. Soc. Nat. Resour. 2006, 19, 117–136. [Google Scholar] [CrossRef]
- Troy, A.R.; Grove, J.M.; O’Neil-Dunne, J.P.; Pickett, S.T.; Cadenasso, M.L. Predicting opportunities for greening and patterns of vegetation on private urban lands. Environ. Manag. 2007, 40, 394–412. [Google Scholar] [CrossRef]
- Hope, D.; Gries, C.; Zhu, W.; Fagan, W.F.; Redman, C.L.; Grimm, N.B.; Nelson, A.L.; Martin, C.; Kinzig, A. Socioeconomics drive urban plant diversity. Proc. Natl. Acad. Sci. USA 2003, 100, 8788–8792. [Google Scholar] [CrossRef]
- Martin, C.A.; Warren, P.S.; Kinzig, A.P. Neighborhood socioeconomic status is a useful predictor of perennial landscape vegetation in residential neighborhoods and embedded small parks of Phoenix, AZ. Landsc. Urban Plan. 2004, 69, 355–368. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Adams, D.C.; Timilsina, N. Urban forest structure effects on property value. Ecosyst. Serv. 2015, 12, 209–217. [Google Scholar] [CrossRef]
- Sayler, K.L.; Acevedo, W.; Taylor, J.L. Status and trends of land change in selected US ecoregions-2000 to 2011. Photogramm. Eng. Remote Sens. 2016, 82, 687–697. [Google Scholar] [CrossRef]
- Kovacs, K.; West, G.; Nowak, D.J.; Haight, R.G. Tree cover and property values in the United States: A national meta-analysis. Ecol. Econ. 2022, 197, 107424. [Google Scholar] [CrossRef]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The new geography of contemporary urbanization and the environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Bell, V.; Davies, H.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The impact of projected increases in urbanization on ecosystem services. Proc. R. Soc. B Biol. Sci. 2011, 278, 3201–3208. [Google Scholar] [CrossRef]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- Bergen, K.; Goetz, S.; Dubayah, R.; Henebry, G.; Hunsaker, C.; Imhoff, M.; Nelson, R.; Parker, G.; Radeloff, V. Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions. J. Geophys. Res. Biogeosciences 2009, 114, 883. [Google Scholar] [CrossRef]
Vegetation Metrics | Parcel Characteristics |
---|---|
Vegetation cover by type: grass (%), shrub (%), tree (%) Median tree height (meters) | Parcel size (ha) |
Distance to city center (km) | |
Home age (years since construction) | |
Maximum tree height (meters) | Home value (2020 market price in USD) |
Total vegetation cover (%) | |
Non-vegetation cover (%) |
Name | Ecoregion | Number of Parcels | Median Parcel Size (ha) | Median Home Value (USD) | Median Distance to City Center (km) | Median Age | 2020 City Population |
---|---|---|---|---|---|---|---|
Austin | EP | 246,347 | 0.09 | 476,969 | 14.81 | 29 | 974,000 |
BP | 0.07 | 366,106 | 7.52 | 49 | |||
Buda | EP | 9429 | 0.09 | 301,380 | 11.65 | 10 | 16,000 |
BP | 0.09 | 234,320 | 10.27 | 13 | |||
Cedar Park | EP | 15,744 | 0.10 | 289,587 | 5.24 | 16 | 77,000 |
Georgetown | EP | 15,987 | 0.15 | 314,508 | 4.55 | 15 | 86,000 |
BP | 0.10 | 223,173 | 6.33 | 15 | |||
Hutto | BP | 5390 | 0.10 | 217,572 | 2.42 | 14 | 36.000 |
Kyle | EP | 18,451 | 0.07 | 236,190 | 3.18 | 11 | 57,000 |
BP | 0.07 | 216,470 | 3.18 | 15 | |||
Leander | EP | 18,167 | 0.10 | 291,416 | 5.33 | 16 | 74,000 |
Pflugerville | BP | 11,427 | 0.08 | 244,803 | 4.03 | 21 | 65,000 |
Round Rock | EP | 35,765 | 0.12 | 304,492 | 4.69 | 16 | 126,000 |
BP | 0.11 | 208,030 | 3.34 | 7 | |||
San Marcos | EP | 14,903 | 0.10 | 241,990 | 2.74 | 21 | 68,000 |
BP | 0.08 | 168,490 | 3.48 | 17 | |||
Entire MSA | EP | 391,610 | 0.10 | 307,067 | 5.23 | 17 | 2,176,000 |
BP | 0.09 | 234,871 | 3.92 | 20 |
Parcel Size | Home Age | Home Value | Distance to City Center | Median Tree Height | Grass Cover | Shrub Cover | Tree Cover | Total Vegetation | |
---|---|---|---|---|---|---|---|---|---|
Parcel size | 1 | −0.31 | 0.07 | 0.04 | −0.01 | 0.03 | 0.02 | 0.008 | 0.04 |
Home age | 1 | −0.10 | −0.01 | −0.31 | 0.31 | 0.29 | −0.2 | −0.41 | |
Home value | 1 | −0.14 | 0.14 | −0.13 | 0.03 | 0.22 | 0.16 | ||
Distance to city center | 1 | −0.10 | 0.23 | 0.04 | −0.12 | 0.03 | |||
Median tree height | 1 | −0.31 | −0.27 | 0.63 | 0.36 | ||||
Grass cover | 1 | −0.08 | −0.52 | 0.08 | |||||
Shrub cover | 1 | 0.14 | 0.51 | ||||||
Tree cover | 1 | 0.73 | |||||||
Total vegetation | 1 |
Vegetation Characteristics | Step | Parcel Characteristics | Multivariate Sequential r2 | AIC | Bivariate r |
---|---|---|---|---|---|
Tree cover(%) | 1 | Home age | 0.294 | 1129318 | −0.542 |
2 | Home value | 0.301 | 1127982 | 0.134 | |
3 | Distance to city center | 0.302 | 1127845 | 0.093 | |
4 | Parcel size | 0.302 | 1127842 | 0.013 | |
Shrub cover (%) | 1 | Home value | 0.002 | 921614 | −0.048 |
2 | Parcel size | 0.003 | 921467 | 0.032 | |
3 | Distance to city center | 0.004 | 921439 | −0.019 | |
Grass cover (%) | 1 | Home age | 0.088 | 1011918 | 0.296 |
2 | Distance to city center | 0.093 | 1011213 | −0.103 | |
3 | Home value | 0.093 | 1011097 | −0.060 | |
4 | Parcel size | 0.094 | 1010973 | 0.020 | |
Median tree height (m) | 1 | Home age | 0.114 | 382953 | −0.337 |
2 | Distance to city center | 0.119 | 382226 | 0.108 | |
3 | Home value | 0.123 | 381652 | 0.097 | |
4 | Parcel size | 0.123 | 381631 | −0.001 |
Vegetation Characteristics | Step | Parcel Characteristics | Multivariate Sequential r2 | AIC | Bivariate r |
---|---|---|---|---|---|
Tree cover (%) | 1 | Home age | 0.301 | 1039880 | −0.549 |
2 | Home value | 0.318 | 1036934 | 0.273 | |
3 | Distance to city center | 0.322 | 1036310 | −0.079 | |
4 | Parcel size | 0.323 | 1036075 | −0.036 | |
Shrub cover (%) | 1 | Home age | 0.050 | 839288 | −0.224 |
2 | Home value | 0.062 | 837778 | −0.044 | |
3 | Distance to city center | 0.063 | 837638 | 0.001 | |
4 | Parcel size | 0.063 | 837625 | −0.014 | |
Grass cover (%) | 1 | Home age | 0.089 | 966284 | 0.299 |
2 | Parcel size | 0.110 | 963491 | 0.148 | |
3 | Home value | 0.132 | 960557 | −0.218 | |
4 | Distance to city center | 0.132 | 960528 | 0.108 | |
Median tree height (m) | 1 | Home age | 0.128 | 381141 | −0.357 |
2 | Home value | 0.147 | 378484 | 0.229 | |
3 | Distance to city center | 0.153 | 377553 | −0.018 | |
4 | Parcel size | 0.154 | 377476 | −0.019 |
Variable | PC1 | PC2 |
---|---|---|
Home value | 0.17 | 0.24 |
Home age | 0.07 | 0.22 |
Parcel size | 0.04 | 0.07 |
Distance to city center | 0.09 | 0.22 |
Median tree height | 0.03 | 0.08 |
Grass % | −0.17 | −0.16 |
Shrub % | 0.24 | −0.16 |
Tree % | 0.27 | 0.06 |
Vegetation % | 0.23 | −0.20 |
Non-vegetation % | −0.23 | 0.20 |
Large Cities (>100,000) | Medium Cities (50,000–100,000) | Small Cities (<50,000) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Austin | Round Rock | Georgetown | Cedar Park | Leander | San Marcos | Pflugerville | Kyle | Hutto | Buda | ||
EP (Tree) | Parcel size | 4.6 × 10−5 | 0.001 | 0.001 | 0.001 | 5.6 × 10−4 | −3 × 10−6 | No EP | −0.235 | No EP | 1.3 × 10−5 |
Home value | 2 × 10−7 | −1 × 10−6 | −5 × 10−6 | −4 × 10−6 | −4 × 10−6 | 3 × 10−6 | 1 × 10−5 | 4.4 × 10−6 | |||
Home age | −0.611 | −0.776 | −0.566 | −0.9 | −0.900 | −0.152 | −0.10−5 | −1.114 | |||
Distance | −0.001 | 1 × 10−5 | 4 × 10−5 | −6 × 106 | −6 × 10−6 | 0.001 | −6 × 10−4 | −8 × 10−4 | |||
BP (Tree) | Parcel size | 1 × 10−4 | 1 × 10−4 | 1 × 10−4 | No BP | No BP | −2 × 10−4 | 0.003 | −1 × 10−6 | −5 × 10−5 | 1 × 10−5 |
Home value | 2 × 10−7 | 1 × 10−6 | −3 × 10−6 | 1 × 10−6 | −8 × 10−7 | 4 × 10−7 | −2 × 10−7 | 4 × 10−6 | |||
Home age | −0.002 | −0.281 | −0.164 | −0.346 | −1.117 | −0.692 | −0.153 | −1.114 | |||
Distance | 1 × 10−5 | −1 × 10−6 | −7 × 10−5 | −0.001 | 0.002 | −0.001 | 2 × 10−5 | −0.001 | |||
EP (Shrub) | Parcel size | 2 × 10−7 | 1 × 10−4 | 0.001 | 0.001 | 2 × 104 | 6 × 10−6 | No EP | 6 × 10−7 | No EP | −6 × 10−5 |
Home value | −0.477 | −1 × 10−6 | 5 × 10−7 | −2 × 10−4 | −2 × 10−4 | 4 × 10−7 | 2 × 10−6 | −8 × 10−7 | |||
Home age | 1 × 10−4 | −0.346 | −0.221 | −0.356 | −0.356 | 0.009 | −0.007 | −0.355 | |||
Distance | 1 × 10−4 | 1 × 10−5 | −1 × 10−5 | 1 × 10−5 | 1 × 10−5 | 5 × 10−5 | −4 × 10−4 | −5 × 10−5 | |||
BP (Shrub) | Parcel size | 5 × 10−5 | 1 × 10−4 | −3 × 10−5 | No BP | No BP | −1 × 10−4 | −3 × 10−4 | −3 × 10−6 | −0.001 | −6 × 10−5 |
Home value | −5 × 10−6 | −2 × 10−7 | −4 × 10−6 | −2 × 10−6 | 4 × 10−7 | −5 × 10−7 | 1 × 10−7 | −8 × 10−7 | |||
Home age | −0.088 | −0.155 | −0.161 | −0.054 | −0.256 | −0.477 | −0.289 | −0.355 | |||
Distance | −8 × 10−5 | 1 × 10−5 | 1 × 10−4 | −2 × 10−5 | 5 × 10−5 | −7 × 10−4 | −1 × 10−5 | −5 × 10−5 | |||
EP (Grass) | Parcel size | 9 × 10−5 | 0.001 | 1 × 10−5 | 0.001 | 0.001 | 5 × 10−5 | No EP | −4 × 10−7 | No EP | 8 × 10−4 |
Home value | 2 × 10−7 | −2 × 10−6 | 6 × 10−6 | −2 × 10−6 | −2 × 10−6 | 3 × 10−8 | −1 × 10−5 | −8 × 10−7 | |||
Home age | 0.179 | 0.369 | 0.06 | 0.288 | 0.289 | −0.077 | 0.046 | −0.222 | |||
Distance | 6 × 10−5 | −2 × 10−5 | −2 × 10−5 | −3 × 10−6 | −3 × 10−6 | −1 × 10−4 | 6 × 10−4 | 6 × 10−4 | |||
BP (Grass) | Parcel size | 0.001 | 1 × 10−4 | 0.001 | No BP | No BP | 6 × 10−4 | 2 × 10−4 | 1 × 10−4 | −0.001 | 0.001 |
Home value | 5 × 10−6 | −2 × 10−7 | −1 × 10−5 | 7 × 10−7 | −3 × 10−6 | 4 × 10−7 | −2 × 10−6 | −8 × 10−7 | |||
Home age | 0.075 | −0.155 | 0.101 | 0.1418 | −7.035 | −0.107 | 0.148 | −0.222 | |||
Distance | 1 × 10−4 | 1 × 10−5 | 1 × 10−4 | 0.003 | −6 × 105 | 0.002 | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamil, R.; Julian, J.P.; Steele, M.K. Vegetation Structure and Distribution Across Scales in a Large Metropolitan Area: Case Study of Austin MSA, Texas, USA. Geographies 2025, 5, 11. https://doi.org/10.3390/geographies5010011
Jamil R, Julian JP, Steele MK. Vegetation Structure and Distribution Across Scales in a Large Metropolitan Area: Case Study of Austin MSA, Texas, USA. Geographies. 2025; 5(1):11. https://doi.org/10.3390/geographies5010011
Chicago/Turabian StyleJamil, Raihan, Jason P. Julian, and Meredith K. Steele. 2025. "Vegetation Structure and Distribution Across Scales in a Large Metropolitan Area: Case Study of Austin MSA, Texas, USA" Geographies 5, no. 1: 11. https://doi.org/10.3390/geographies5010011
APA StyleJamil, R., Julian, J. P., & Steele, M. K. (2025). Vegetation Structure and Distribution Across Scales in a Large Metropolitan Area: Case Study of Austin MSA, Texas, USA. Geographies, 5(1), 11. https://doi.org/10.3390/geographies5010011