Influence of Pasture Diversity and NDVI on Sheep Foraging Behavior in Central Italy
Abstract
:1. Introduction
- Evaluate differences in NDVI values between the two pastures and their seasonal trends;
- Analyze the influence of pasture conditions on the distance traveled by sheep during foraging.
2. Materials and Methods
2.1. Study Area
- -
- “Delizie dei Fratelli Angeli”company
- -
- “Azienda Agricola Piselli” company
2.2. Study Sample
- Ten Comisana lactating sheep on pasture 1;
- Ten mixed-breed lactating sheep on pasture 2.
2.3. Animals’ Movement
Behavioral Segmentation
2.4. Environmental Variables
NDVI
2.5. Statistical Analysis
2.5.1. Differences Between Pastures
2.5.2. Distance Moved During Foraging
3. Results
3.1. Differences Between Pastures
3.2. Distance Moved During Foraging
4. Discussion
Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NDVI | Normalized Difference Vegetation Index |
EmBC | Expectation Maximization Binary Clustering |
VeDBA | Vectorial Dynamic Body Acceleration |
References
- Catsadorakis, G. The conservation of natural and cultural heritage in Europe and the Mediterranean: A Gordian knot? In Natural Heritage; Routledge: London, UK, 2013; pp. 1–13. [Google Scholar]
- Pardini, A.; Nori, M. Agro-silvo-pastoral systems in Italy: Integration and diversification. Pastoralism 2011, 1, 26. [Google Scholar] [CrossRef]
- Macdonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Lazpita, J.G.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Bailey, D.W.; Gross, J.E.; Laca, E.A.; Rittenhouse, L.R.; Coughenour, M.B.; Swift, D.M.; Sims, P.L. Mechanisms that result in large herbivore grazing distribution patterns. J. Range Manag. 1996, 49, 386–400. [Google Scholar] [CrossRef]
- Dumont, B.; Petit, M. Spatial memory of sheep at pasture. Appl. Anim. Behav. Sci. 1998, 60, 43–53. [Google Scholar] [CrossRef]
- Edwards, G.R.; Newman, J.A.; Parsons, A.J.; Krebs, J.R. The use of spatial memory by grazing animals to locate food patches in spatially heterogeneous environments: An example with sheep. Appl. Anim. Behav. Sci. 1996, 50, 147–160. [Google Scholar] [CrossRef]
- Wang, M.; Alves, J.; Tucker, M.; Yang, W.; Ruckstuhl, K.E.; Chaves, A.V. Effects of intrinsic and extrinsic factors on ruminating, grazing, and bedding time in bighorn sheep (Ovis canadensis). PLoS ONE 2018, 13, e0206664. [Google Scholar] [CrossRef]
- Festa-Bianchet, M. Seasonal range selection in bighorn sheep: Conflicts between forage quality, forage quantity, and predator avoidance. Oecologia 1988, 75, 580–586. [Google Scholar] [CrossRef]
- Young, N.E.; Anderson, R.S.; Chignell, S.M.; Vorster, A.G.; Lawrence, R.; Evangelista, P.H. A survival guide to Landsat preprocessing. Ecology 2017, 98, 920–932. [Google Scholar] [CrossRef]
- Corbane, C.; Lang, S.; Pipkins, K.; Alleaume, S.; Deshayes, M.; Millán, V.E.G.; Strasser, T.; Borre, J.V.; Toon, S.; Michael, F. Remote sensing for mapping natural habitats and their conservation status—New opportunities and challenges. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 7–16. [Google Scholar] [CrossRef]
- Borre, J.V.; Paelinckx, D.; Mucher, C.A.; Kooistra, L.; Haest, B.; De Blust, G.; Schmidt, A.M. Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward. J. Nat. Conserv. 2011, 19, 116–125. [Google Scholar] [CrossRef]
- Schmidt, T.; Schuster, C.; Kleinschmit, B.; Förster, M. Evaluating an intra-annual time series for grassland classification—How many acquisitions and what seasonal origin are optimal? IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3428–3439. [Google Scholar] [CrossRef]
- Pesaresi, S.; Mancini, A.; Quattrini, G.; Casavecchia, S. Mapping Mediterranean forest plant associations and habitats with functional principal component analysis using Landsat 8 NDVI time series. Remote Sens. 2020, 12, 1132. [Google Scholar] [CrossRef]
- Pesaresi, S.; Mancini, A.; Quattrini, G.; Casavecchia, S. Functional analysis for habitat mapping in a special area of conservation using Sentinel-2 time-series data. Remote Sens. 2022, 14, 1179. [Google Scholar] [CrossRef]
- Stendardi, L.; Karlsen, S.R.; Niedrist, G.; Gerdol, R.; Zebisch, M.; Rossi, M.; Notarnicola, C. Exploiting time series of Sentinel-1 and Sentinel-2 imagery to detect meadow phenology in mountain regions. Remote Sens. 2019, 11, 542. [Google Scholar] [CrossRef]
- Féret, J.-B.; Corbane, C.; Alleaume, S. Detecting the phenology and discriminating Mediterranean natural habitats with multispectral sensors—An analysis based on multiseasonal field spectra. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2294–2305. [Google Scholar] [CrossRef]
- Rapinel, S.; Mony, C.; Lecoq, L.; Clément, B.; Thomas, A.; Hubert-Moy, L. Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities. Remote Sens. Environ. 2019, 223, 115–129. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the NASA’s Goddard Space Flight Center, Washington, DC, USA, 10–14 December 1973; Volume 1, pp. 309–317. [Google Scholar]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jedrzejewska, B.; Lima, M.; Kausrud, K. The normalized difference vegetation index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [Google Scholar] [CrossRef]
- White, M.A.; Hoffman, F.; Hargrove, W.W.; Nemani, R.R. A global framework for monitoring phenological responses to climate change. Geophys. Res. Lett. 2005, 32, L04705. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Holden, C.E.; Kaufman, L.; Woodcock, C.E.; Nagendra, H.; He, K. From imagery to ecology: Leveraging time series of all available Landsat observations to map and monitor ecosystem state and dynamics. Remote Sens. Ecol. Conserv. 2016, 2, 152–170. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; da Silva, J.M. Monitoring seasonal pasture quality degradation in the Mediterranean Montado ecosystem: Proximal versus remote sensing. Water 2018, 10, 1422. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Marques da Silva, J. Evaluation of normalized difference water index as a tool for monitoring pasture seasonal and inter-annual variability in a Mediterranean agro-silvo-pastoral system. Water 2019, 11, 62. [Google Scholar] [CrossRef]
- Serrano, J.; Roma, L.; Shahidian, S.; Belo, A.D.F.; Carreira, E.; Paniagua, L.L.; Moral, F.; Paixão, L.; da Silva, J.M. A technological approach to support extensive livestock management in the Portuguese Montado ecosystem. Agronomy 2022, 12, 1212. [Google Scholar] [CrossRef]
- Vrieling, M.; Meroni, M.; Mude, A. Determining optimal seasonal integration times of NDVI series for index-based livestock insurance in East Africa. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 169–172. [Google Scholar] [CrossRef]
- Hurley, M.A.; Hebblewhite, M.; Gaillard, J.; Dray, S.; Taylor, K.A.; Smith, W.K.; Zager, P.; Bonenfant, C. Functional analysis of normalized difference vegetation index curves reveals overwinter mule deer survival is driven by both spring and autumn phenology. Philos. Trans. R. Soc. B 2014, 369, 20130196. [Google Scholar] [CrossRef]
- Balata, D.; Gama, I.; Domingos, T.; Proença, V. Using satellite NDVI time-series to monitor grazing effects on vegetation productivity and phenology in heterogeneous Mediterranean forests. Remote Sens. 2022, 14, 2322. [Google Scholar] [CrossRef]
- Dumont, B.; Carrère, P.; D’Hour, P. Foraging in patchy grasslands: Diet selection by sheep and cattle is affected by the abundance and spatial distribution of preferred species. Anim. Res. 2002, 51, 367–381. [Google Scholar] [CrossRef]
- Donald, G.; Ahmad, W.; Hulm, E.; Trotter, M.; Lamb, D. Integrating MODIS satellite imagery and proximal vegetation sensors to enable precision livestock management. In Proceedings of the 2012 First International Conference on Agro—Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2–4 August 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Fernando, G.; Víctor, C. Pasture monitoring applying normalized difference vegetation index (NDVI) time series with Sentinel-2 and Landsat 8 images, to improve milk production at Santa Mónica Farm, Imbabura, Ecuador. In Computational Science and Its Applications—ICCSA 2020, Proceedings of the 20th International Conference, Cagliari, Italy, 1–4 July 2020; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B., Rocha, A.M., Tarantino, E., Torre, C., et al., Eds.; Springer: Cham, Switzerland, 2020; pp. 481–496. [Google Scholar] [CrossRef]
- Wikelski, M.; Mueller, U.; Scocco, P.; Catorci, A.; Desinov, L.V.; Belyaev, M.Y.; Keim, D.; Pohlmeier, W.; Fechteler, G.; Mai, P.M. Potential short-term earthquake forecasting by farm animal monitoring. Ethology 2020, 126, 931–941. [Google Scholar] [CrossRef]
- Wild, M.; Gauly, M.; Zanon, T.; Isselstein, J.; Komainda, M. Tracking free-ranging sheep to evaluate interrelations between selective grazing, movement patterns and the botanical composition of alpine summer pastures in northern Italy. Pastoralism 2023, 13, 25. [Google Scholar] [CrossRef]
- Parnell, D.; Kardailsky, I.; Parnell, J.; Badgery, W.B.; Ingram, L. Understanding sheep baa-haviour: Investigating the relationship between pasture and animal grazing patterns. Grassl. Res. 2022, 1, 143–156. [Google Scholar] [CrossRef]
- Caldeira, M.C.; Hector, A.; Loreau, M.; Pereira, J.S. Species richness, temporal variability and resistance of biomass production in a Mediterranean grassland. Oikos 2007, 117, 1230–1240. [Google Scholar] [CrossRef]
- Mysterud, A.; Langvatn, R.; Yoccoz, N.G.; Stenseth, N.C. Plant phenology, migration and geographical variation in body weight of a large herbivore: The effect of a variable topography. J. Anim. Ecol. 2011, 80, 715–723. [Google Scholar] [CrossRef]
- Shepard, E.; Wilson, R.; Quintana, F.; Laich, A.G.; Liebsch, N.; Albareda, D.; Halsey, L.; Gleiss, A.; Morgan, D.; Myers, A.; et al. Identification of animal movement patterns using tri-axial accelerometry. Endanger. Species Res. 2008, 10, 47–60. [Google Scholar] [CrossRef]
- Börger, L.; Franconi, N.; Ferretti, F.; Meschi, F.; De Michele, G.; Gantz, A.; Coulson, T. An integrated approach to identify spatiotemporal and individual-level determinants of animal home range size. Am. Nat. 2006, 168, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Pesaresi, S.; Biondi, E.; Casavecchia, S. Bioclimates of Italy. J. Maps 2017, 13, 955–960. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Rivas-Sáenz, S.; Penas, A. Worldwide Bioclimatic Classification System. Glob. Geobot. 2011, 1, 1–634. [Google Scholar] [CrossRef]
- Catorci, A.; Cesaretti, S.; Gatti, R. Biodiversity conservation: Geosynphytosociology as a tool of analysis and modelling of grassland systems. Hacquetia 2009, 8, 129–146. [Google Scholar] [CrossRef]
- Mucina, L.; Bültmann, H.; Dierßen, K.; Theurillat, J.; Raus, T.; Čarni, A.; Šumberová, K.; Willner, W.; Dengler, J.; García, R.G.; et al. Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl. Veg. Sci. 2016, 19, 3–264. [Google Scholar] [CrossRef]
- Wikelski, M.; Davidson, S.C.; Kays, R. Movebank: Archive, Analysis and Sharing of Animal Movement Data. Hosted by the Max Planck Institute of Animal Behavior. Available online: http://www.movebank.org (accessed on 10 September 2023).
- Kranstauber, B.; Safi, K.; Scharf, A.K. Move2: R package for processing movement data. Methods Ecol. Evol. 2024, 15, 1561–1567. [Google Scholar] [CrossRef]
- Pettorelli, N.; Laurance, W.F.; O’BRien, T.G.; Wegmann, M.; Nagendra, H.; Turner, W.; Milner-Gulland, E. Satellite remote sensing for applied ecologists: Opportunities and challenges. J. Appl. Ecol. 2014, 51, 839–848. [Google Scholar] [CrossRef]
- Fernández-Habas, J.; Moreno, A.M.G.; Hidalgo-Fernández, M.T.; Leal-Murillo, J.R.; Oar, B.A.; Gómez-Giráldez, P.J.; González-Dugo, M.P.; Fernández-Rebollo, P. Investigating the potential of Sentinel-2 configuration to predict the quality of Mediterranean permanent grasslands in open woodlands. Sci. Total Environ. 2021, 791, 148101. [Google Scholar] [CrossRef]
- Cribari-Neto, F.; Zeileis, A. Beta Regression in R. J. Stat. Softw. 2010, 34, 1–24. [Google Scholar] [CrossRef]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B. 2011, 73, 3–36. [Google Scholar] [CrossRef]
- Borowik, T.; Pettorelli, N.; Sönnichsen, L.; Jędrzejewska, B. Normalized Difference Vegetation Index (NDVI) as a predictor of forage availability for ungulates in forest and field habitats. Eur. J. Wildl. Res. 2013, 59, 675–682. [Google Scholar] [CrossRef]
- Sanz, E.; Saa-Requejo, A.; Díaz-Ambrona, C.H.; Ruiz-Ramos, M.; Rodríguez, A.; Iglesias, E.; Esteve, P.; Soriano, B.; Tarquis, A.M. Normalized Difference Vegetation Index Temporal Responses to Temperature and Precipitation in Arid. Rangel. Remote Sens. 2021, 13, 840. [Google Scholar] [CrossRef]
- Chynoweth, M.W.; Litton, C.M.; Lepczyk, C.A.; Hess, S.C.; Cordell, S. Biology and impacts of Pacific Island invasive species. 9. Capra hircus, the feral goat (Mammalia: Bovidae). Pac. Sci. 2013, 67, 141–156. [Google Scholar] [CrossRef]
- Hebblewhite, M.; Haydon, D.T. Distinguishing technology from biology: A critical review of the use of GPS telemetry data in ecology. Philos. Trans. R. Soc. B 2010, 365, 2303–2312. [Google Scholar] [CrossRef]
- Augustine, D.J.; Derner, J.D.; Fernández-Giménez, M.E.; Porensky, L.M.; Wilmer, H.; Briske, D.D. Adaptive, multipaddock rotational grazing management: A ranch-scale assessment of effects on vegetation and livestock performance in semiarid rangeland. Rangel. Ecol. Manag. 2020, 73, 796–810. [Google Scholar] [CrossRef]
- Berger-Tal, O.; Polak, T.; Oron, A.; Lubin, Y.; Kotler, B.P.; Saltz, D. Integrating animal behavior and conservation biology: A conceptual framework. Behav. Ecol. 2011, 22, 236–239. [Google Scholar] [CrossRef]
- Pesaresi, S.; Mancini, A.; Quattrini, G.; Casavecchia, S. Evaluation and selection of multi-spectral indices to classify vegetation using multivariate functional principal component analysis. Remote Sens. 2024, 16, 1224. [Google Scholar] [CrossRef]
- Park, Y.; Guldmann, J.-M. Measuring continuous landscape patterns with gray-level co-occurrence matrix (GLCM) indices: An alternative to patch metrics? Ecol. Indic. 2020, 109, 105802. [Google Scholar] [CrossRef]
- Gao, F.; Liu, T.; Wang, H.; Shi, H.; Yuan, C.; Song, S.; HaSi, B.; Wu, X. Spatial and temporal variation patterns of summer grazing trajectories of Sunit sheep. Ecol. Inform. 2023, 78, 102322. [Google Scholar] [CrossRef]
- Fynn, R.W. Functional resource heterogeneity increases livestock and rangeland productivity. Rangel. Ecol. Manag. 2012, 65, 319–329. [Google Scholar] [CrossRef]
- Andriamandroso, A.; Bindelle, J.; Mercatoris, B.; Lebeau, F. A review on the use of sensors to monitor cattle jaw movements and behavior when grazing. Biotechnol. Agron. Soc. Environ. 2016, 20, 427–442. [Google Scholar] [CrossRef]
- Debauche, O.; Elmoulat, M.; Mahmoudi, S.; Bindelle, J.; Lebeau, F. Farm animals’ behaviors and welfare analysis with AI algorithms: A review. Rev. Intell. Artif. 2021, 35, 289–299. [Google Scholar] [CrossRef]
- Brennan, J.; Johnson, P.; Olson, K. Classifying season long livestock grazing behavior with the use of a low-cost GPS and accelerometer. Comput. Electron. Agric. 2021, 181, 105957. [Google Scholar] [CrossRef]
- Perron Chambard, R.; Garel, M.; Marchand, P.; Choler, P. Fine-scale tracking of sheep grazing pressures in mountain pastures: Frugal solution and relevant indicators for improved ecosystem and practice management. SSRN 2024, 4875408. [Google Scholar] [CrossRef]
- Muzzo, B.I.; Bladen, K.; Perea, A.; Nyamuryekung’e, S.; Villalba, J.J. Multi-sensor integration and machine learning for high-resolution classification of herbivore foraging behavior. Animals 2025, 15, 913. [Google Scholar] [CrossRef]
- Hlimi, A.; El Otmani, S.; Elame, F.; Chentouf, M.; El Halimi, R.; Chebli, Y. Application of precision technologies to characterize animal behavior: A review. Animals 2024, 14, 416. [Google Scholar] [CrossRef]
Weight | 69 grammes |
Model | GPS-datalogger series 4000 |
Manufacturer | Max-Planck-Institute Radolfzell |
Data connection | sigfox-network, movebank |
Power supply | Li-Ion battery 17,500 |
GPS accuracy | ±2.5 m |
3-axis acceleration sensor |
Predictor | Estimate | Std. Error | z Value | Pr(>|z|) |
---|---|---|---|---|
(Intercept) | 0.38858 | 0.01752 | 22.185 | <0.001 |
Pasture (pasture 2) | −0.26544 | 0.02358 | 11.259 | <0.001 |
Month (July) | −0.41617 | 0.02292 | −18.156 | <0.001 |
Month (August) | −0.72458 | 0.023 | −31.501 | <0.001 |
Month (September) | −0.54077 | 0.02211 | −24.455 | <0.001 |
Month (October) | −0.30669 | 0.02185 | −14.035 | <0.001 |
Pasture2:month (July) | −0.10337 | 0.03059 | −3.379 | <0.001 |
Pasture2:month (August) | −0.18349 | 0.03095 | −5.928 | <0.001 |
Pasture2:month (September) | −0.25641 | 0.03013 | −8.51 | <0.001 |
Pasture2:month (October) | −0.28106 | 0.02982 | −9.424 | <0.001 |
Predictor | Estimate | Std. Error | t/F Value | p-Value |
---|---|---|---|---|
Intercept | 8.31005 | 0.19233 | 43.208 | <0.001 |
Pasture (pasture 2) | 1.45374 | 0.29254 | 4.969 | <0.001 |
NDVI | −0.90237 | 0.18394 | −4.906 | <0.001 |
Pasture 2 * NDVI | −0.02898 | 0.33542 | −0.086 | 0.931 |
Smooth Terms | edf | Ref.df | F value | p-value |
s(week(time)) | 8.852 | 8.852 | 44.44 | <0.001 |
s(yday(time)) | 1.741 | 8.000 | 0.02 | 0.686 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moscatelli, S.; Pesaresi, S.; Wikelski, M.; Tardella, F.M.; Catorci, A.; Quattrini, G. Influence of Pasture Diversity and NDVI on Sheep Foraging Behavior in Central Italy. Geographies 2025, 5, 26. https://doi.org/10.3390/geographies5020026
Moscatelli S, Pesaresi S, Wikelski M, Tardella FM, Catorci A, Quattrini G. Influence of Pasture Diversity and NDVI on Sheep Foraging Behavior in Central Italy. Geographies. 2025; 5(2):26. https://doi.org/10.3390/geographies5020026
Chicago/Turabian StyleMoscatelli, Sara, Simone Pesaresi, Martin Wikelski, Federico Maria Tardella, Andrea Catorci, and Giacomo Quattrini. 2025. "Influence of Pasture Diversity and NDVI on Sheep Foraging Behavior in Central Italy" Geographies 5, no. 2: 26. https://doi.org/10.3390/geographies5020026
APA StyleMoscatelli, S., Pesaresi, S., Wikelski, M., Tardella, F. M., Catorci, A., & Quattrini, G. (2025). Influence of Pasture Diversity and NDVI on Sheep Foraging Behavior in Central Italy. Geographies, 5(2), 26. https://doi.org/10.3390/geographies5020026