Evaluation of High Andean Plant Species in the Absorption and Translocation of Heavy Metals in the Moorlands of Reten IchuBamba, Ecuador
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling, Collection, and Identification of Plant Species
2.3. Metal Analysis by Spectrometry
2.4. Translocation Factor
2.5. Cluster Analysis
3. Results
3.1. Floristic Inventory Importance Value Index (IVI)
3.2. Metal Analysis by Spectrometry
3.3. Translocation Factor
3.4. Cluster Analysis
4. Discussion
4.1. Floristic Diversity-Importance Value Index (IVI)
4.2. Translocation Factor
4.3. Cluster Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sánchez-Mateos, S.; Pérez, L.V.; Córdova Suárez, M.A.; Cabrera-Riofrio, D.A. Heavy metal contamination in the Cotopaxi and Tungurahua rivers: A health risk. Environ. Earth Sci. 2020, 79, 144. [Google Scholar] [CrossRef]
- Smolders, A.J.P.; Lock, R.A.C.; Van der Velde, G.; Hoyos, R.I.M.; Roelofs, J.G.M. Effects of Mining Activities on Heavy Metal Concentrations in Water, Sediment, and Macroinvertebrates in Different Reaches of the Pilcomayo River, South America. Arch. Environ. Contam. Toxicol. 2003, 44, 314–323. [Google Scholar] [CrossRef]
- Kumar, P.; Gacem, A.; Ahmad, M.T.; Yadav, V.K.; Singh, S.; Yadav, K.K.; Alam, M.M.; Dawane, V.; Piplode, S.; Maurya, P.; et al. Environmental and human health implications of metal(loid)s: Source identification, contamination, toxicity, and sustainable clean-up technologies. Front. Environ. Sci. 2022, 10, 949581. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Kumar, P.S.; Rozbu, M.R.; Chowdhury, A.T.; Nuzhat, S.; Rafa, N.; Mahlia, T.; Ong, H.C.; Mofijur, M. Heavy metal toxicity, sources, and remediation techniques for contaminated water and soil. Environ. Technol Innov. 2022, 25, 102114. [Google Scholar] [CrossRef]
- Escobar-Segovia, K.; Jiménez-Oyola, S.; Garcés-León, D.; Paz-Barzola, D.; Navarrete, E.C.; Romero-Crespo, P.; Salgado, B. Heavy metals in rivers affected by mining activities in Ecuador: Pollution and human health implications. WIT Trans. Ecol. Environ. 2021, 250, 61–72. [Google Scholar] [CrossRef]
- Pesantes, A.A.; Carpio, E.P.; Vitvar, T.; López, M.M.M.; Menéndez-Aguado, J.M.A. Multi-Index Analysis Approach to Heavy Metal Pollution Assessment in River Sediments in the Ponce Enríquez Area, Ecuador. Water 2019, 11, 590. [Google Scholar] [CrossRef]
- Vinueza, D.; Ochoa-Herrera, V.; Maurice, L.; Tamayo, E.; Mejía, L.; Tejera, E.; Machado, A. Determining the microbial and chemical contamination in Ecuador’s main rivers. Sci. Rep. 2021, 11, 17640. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.W.; Qureshi, F.; Ahmed, S.; Kamyab, H.; Rajendran, S.; Ibrahim, H.; Yusuf, M. A comprehensive review on arsenic contamination in groundwater: Sources, detection, mitigation strategies and cost analysis. Environ. Res. 2024, 265, 120457. [Google Scholar] [CrossRef] [PubMed]
- Londoño, C.; Cleef, A.; Madriñán, S. Angiosperm flora and biogeography of the páramo region of Colombia, Northern Andes. Flora Morphol. Distrib. Funct. Ecol. Plants 2014, 209, 81–87. [Google Scholar] [CrossRef]
- Buytaert, W.; De Bievre, B.; Deckers, J.; Dercon, G.; Govers, G.; Poesen, J. Impact of land use changes on the hydrological properties of volcanic ash soils in South Ecuador. Soil Use Manag. 2002, 2, 94–100. [Google Scholar] [CrossRef]
- Ochoa-Tocachi, B.F.; Buytaert, W.; De Bièvre, B.; Célleri, R.; Crespo, P.; Villacís, M.; Llerena, C.A.; Acosta, L.; Villazón, M.; Guallpa, M.; et al. Impacts of land use on the hydrological response of tropical Andean catchments. Hydrol. Process. 2016, 30, 4074–4089. [Google Scholar] [CrossRef]
- Cushquicullma-Colcha, D.F.; Ati-Cutiupala, G.M.; Guilcapi-Pacheco, E.D.; Villacis-Uvidia, J.F.; Brito-Mancero, M.Y.; Vaca-Cárdenas, P.V.; Vasco-Lucio, M.M.; Muñoz-Jácome, E.A.; Vaca-Cárdenas, M.L. Influence of Altitude and Climatic Factors on the Floristic Composition of the Moorlands of the Guamote Canton, Ecuador: Key Revelations for Conservation. Sustainability 2025, 17, 383. [Google Scholar] [CrossRef]
- Capparelli, M.V.; Moulatlet, G.M.; Abessa, D.M.d.S.; Lucas-Solis, O.; Rosero, B.; Galarza, E.; Tuba, D.; Carpintero, N.; Ochoa-Herrera, V.; Cipriani-Avila, I. An integrative approach to identify the impacts of multiple metal contamination sources on the Eastern Andean foothills of the Ecuadorian Amazonia. Sci. Total Environ. 2020, 709, 136088. [Google Scholar] [CrossRef]
- Pathak, S.; Agarwal, A.V.; Pandey, V.C. Phytoremediation—A holistic approach for remediation of heavy metals and metalloids. In Bioremediation of Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–16. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Udawat, P.; Singh, J. Phytoremediation: A way towards sustainable Agriculture. Int. J. Environ. Agric. Biotechnol. 2020, 5, 1167–1173. [Google Scholar] [CrossRef]
- Ranjan, S.; Sow, S. Phytoremediation: An eco-friendly approach towards clean and green future. Pharma Innov. 2021, 10, 839–850. [Google Scholar] [CrossRef]
- Chinmayee, M.D.; Mahesh, B.; Pradesh, S.; Mini, I.; Swapna, T.S. The Assessment of Phytoremediation Potential of Invasive Weed Amaranthus spinosus L. Appl. Biochem. Biotechnol. 2012, 167, 1550–1559. [Google Scholar] [CrossRef]
- Štrbac, M.; Manojlović, M.; Čabilovski, R.; Petković, K.; Kovačević, D.; Pilipović, A. Woody plants in phytoremediation of pollution of agricultural land with nitrates and pesticides. Topola 2022, 210, 73–87. [Google Scholar] [CrossRef]
- Garad, A.D. Phytoremediation of Domestic Wastewater. Int. J. Recent Technol. Eng. 2022, 10, 73–75. [Google Scholar] [CrossRef]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: A Review. Water Air Soil Pollut. 2019, 230, 164. [Google Scholar] [CrossRef]
- Gratão, P.L.; Prasad, M.N.V.; Cardoso, P.F.; Lea, P.J.; Azevedo, R.A. Phytoremediation: Green technology for the clean up of toxic metals in the environment. Braz. J. Plant Physiol. 2005, 17, 53–64. [Google Scholar] [CrossRef]
- Martínez-Manchego, L.; Sarmiento-Sarmiento, G.; Bocardo-Delgado, E. Native plant species with potential for phytoremediation of high-andean soils contaminated by residues from mining activity. Bioagro 2021, 33, 161–170. [Google Scholar] [CrossRef]
- Llambí, L.D.; Soto-W, A.; Borja, P.; Soto-W, A.; Calle, T. Páramos Andinos Ecología, Hidrología y Suelos de Páramos; Monsalve Moreno: Quito, Ecuador, 2012; ISBN 9789942115492. [Google Scholar]
- Chávez Muyulema, N.; Llumi, M. Plan de Desarrollo y Ordenamiento Territorial Cebadas 2020–2030. 2020; Volume 1, pp. 1–443. Available online: https://www.gadcebadas.gob.ec/gad-parroquial/base-legal/acuerdos/02-transparencia-activa/10-planes-y-programas/10-1-plan-de-desarrollo-y-ordenamiento-territorial.html (accessed on 20 June 2025).
- Aguirre, N.; Ojeda, T.L.; Eguiguren, P.A.M. Cambio Climático y Biodiversidad: Estudio de Caso de los Páramos del Parque Nacional Podocarpus; EDILOJA Cía. Ltda.: Loja, Ecuador, 2015; 272p. [Google Scholar]
- Netto, P.; Mauricio, K. A new index for assessing the value of importance of species—VIS in experimental units that form the Site ECOSILVIBRAS of the Long Term Ecological Program (PELD), today named ELFA, supported by the Brazilian National Council of Scientific and Technol. Acad. Bras. Cienc. 2015, 87, 2265–2279. [Google Scholar] [CrossRef]
- Campo, A.M.; Duval, V.S. Diversidad y valor de importancia para la conservación de la vegetación natural. Parque Nacional Lihué Calel (Argentina). An. Geogr. Univ. Complut. 2014, 34, 25–42. [Google Scholar] [CrossRef]
- Mueller-Dombois, D.; Ellenberg, H. Aims and Methods of Vegetation Ecology. Geogr. Rev. 1976, 66, 114. [Google Scholar] [CrossRef]
- Rendón-Pérez, M.A.; Hernández-De la Rosa, P.; Velázquez-Martínez, A.; Alcántara-Carbajal, J.L.; Reyes-Hernández, V.J. Composition, diversity, and structure of a managed forest in central mexico. Madera Bosques 2021, 27, 1–19. [Google Scholar] [CrossRef]
- Ventura, L.M.B.; Amaral, B.S.; Wanderley, K.B.; Godoy, J.M.; Gioda, A. Validation method to determine metals in atmospheric particulate matter by inductively coupled plasma optical emission spectrometry. J. Braz. Chem. Soc. 2014, 25, 1571–1582. [Google Scholar] [CrossRef]
- Morgano, M.A.; Queiroz, S.C.D.N.; Ferreira, M.M.C. Determinação dos teores de minerais em sucos de frutas por espectrometria de emissão óptica em plasma indutivamente acoplado (ICP-OES). Food Sci. Technol. 1999, 19, 344–348. [Google Scholar] [CrossRef]
- Singh, M.K.; Singh, A. Inductively coupled plasma–atomic emission spectrometry. Charact. Polym. Fibres 2022, 421–434. [Google Scholar] [CrossRef]
- Javier, C. Heavy metals remediation with potential application in cocoa cultivation. LA GRANJA Rev. Cienc. Vida 2018, 27, 21–35. [Google Scholar] [CrossRef]
- Cerrón, R.M.; Sánchez, G.G.; Yachachi, Y.M.; Ramos, F.P.; Gonzales, L.V.; Torres, R.C. Lead and cadmium uptake by sunflower from contaminated soil and remediated with organic amendments in the form of compost and vermicompost. Sci. Agropecu. 2020, 11, 177–186. [Google Scholar] [CrossRef]
- Bello, A.O.; Tawabini, B.S.; Khalil, A.B.; Boland, C.R.; Saleh, T.A. Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems. Ecol. Eng. 2018, 120, 126–133. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Rascio, N.; Navari-Izzo, F. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 2011, 180, 169–181. [Google Scholar] [CrossRef]
- Zacchini, M.; Pietrini, F.; Mugnozza, G.S.; Iori, V.; Pietrosanti, L.; Massacci, A. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut. 2009, 197, 23–34. [Google Scholar] [CrossRef]
- Baker, A.J.M. Accumulators and Excluders—Strategies in the Response of Plants to Heavy Metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Borracci, R.A.; Arribalzaga, E.B. Aplicación de análisis de conglomerados y redes neuronales artificiales para la clasificación y selección de candidatos a residencias médicas. Educ. Médica 2005, 8, 22–30. [Google Scholar] [CrossRef]
- Batista, M.J.; Gonzalez-Fernandez, O.; Abreu, M.M.; Queralt, I.; Carvalho, M.L. Pioneer Mediterranean Shrub Species Revegetating Soils Developed on Mining Soils/Spoils. Land Degrad. Dev. 2017, 28, 718–730. [Google Scholar] [CrossRef]
- Gałuszka, A.; Krzciuk, K.; Migaszewski, Z.M. A new two-step screening method for prospecting of trace element accumulating plants. Int. J. Environ. Sci. Technol. 2015, 12, 3071–3078. [Google Scholar] [CrossRef]
- Leyva-Castañeda, D.; Sigala-Rodríguez, J.; Ocampo, G. Species richness estimation of the asteraceae family in four areas for conservation from central Mexico using non-parametric methods to measure biodiversity. Bot. Sci. 2020, 98, 317–327. [Google Scholar] [CrossRef]
- Villaseñor, J.L. Diversidad y distribucion de la familia Asteraceae en Mexico. Bot. Sci. 2018, 96, 332–358. [Google Scholar] [CrossRef]
- Atuesta-Ibargüen, D.J. Composición florística y formas de vida de las macrófitas acuáticas de la serranía de La Lindosa (Guaviare), Guayana colombiana. Caldasia 2019, 41, 301–312. [Google Scholar] [CrossRef]
- Salamanca-Rivera, A.P.; Silva, D.A.; Cardozo-Muñoz, J.; Rojas-Sánchez, F.; Meléndez-Mazabel, J.C.; Borda-Chingate, L.S. Fitorremediación con Brassicaceae y Apiaceae en suelos contaminados con metales pesados. Rev. Biol. Trop. 2023, 71, e51493. [Google Scholar] [CrossRef]
- Vigosa-Mercado, J.L.; Delgado-Salinas, A.; Cárdenas, L.O.A.; Eguiarte, L.E. Revision of the genus Agrostis (Poaceae, Pooideae, Poeae) in Megamexico. PhytoKeys 2023, 230, 157–256. [Google Scholar] [CrossRef]
- Larridon, I.; Zuntini, A.R.; Léveillé-Bourret, É.; Barrett, R.L.; Starr, J.R.; Muasya, A.M.; Villaverde, T.; Bauters, K.; Brewer, G.E.; Bruhl, J.J.; et al. A new classification of Cyperaceae (Poales) supported by phylogenomic data. J. Syst. Evol. 2021, 59, 852–895. [Google Scholar] [CrossRef]
- Aksu, G.; Altay, H. The Effects of Potassium Applications on Drought Stress in Sugar Beet: Part II. Plant Nutrition Content. Health Sci. Q. 2020, 4, 203–216. [Google Scholar] [CrossRef]
- Jēkabsone, A.; Karlsons, A.; Osvalde, A.; Ievinsh, G. Effect of Na, K and Ca Salts on Growth, Physiological Performance, Ion Accumulation and Mineral Nutrition of Mesembryanthemum crystallinum. Plants 2024, 13, 190. [Google Scholar] [CrossRef]
- Azzouz, F.; Bousiani, E. Impact of salt and metallic stress on the sodium and potassium uptake by the Vicia faba L. plants. Plan Arch. 2022, 21, 1676–1680. [Google Scholar] [CrossRef]
- Ben Paragamac, J.; Maglinab, J.; Barroga, M.; Garcia, M.; Hume, P.; Gacad, F. Heavy metal concentration in soil and accumulation in selected plant species: A case study of Tampakan, South Cotabato. Univ. Mindanao Int. Multidiscip. Res. J. 2020, 6, 45–55. [Google Scholar] [CrossRef]
- Pogoson, E.; Carey, M.; Meharg, C.; Meharg, A. Reducing the cadmium, inorganic arsenic and dimethylarsinic acid content of rice through food-safe chemical cooking pre-treatment. Food Chem. 2021, 338, 127842. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Su, Q.; Yin, Y.; Zhu, T.; Li, X. Extraordinary Detoxification Effect of Arsenic on the Cadmium-Poisoned V 2 O 5/TiO 2 Catalyst for Selective Catalytic Reduction of NO x by NH 3. ACS EST Eng. 2023, 3, 725–733. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Barker, J.; Mokhberdoran, F.; Ramakrishnan, M.; Liu, G.; Li, Y. Nitric oxide ameliorates plant metal toxicity by increasing antioxidant capacity and reducing Pb and Cd translocation. Antioxidants 2021, 10, 1981. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, W.; Tong, T.; Chen, G.; Zeng, F.; Jang, S.; Gao, W.; Li, Z.; Mak, M.; Deng, F.; et al. Molecular Interaction and Evolution of Jasmonate Signaling With Transport and Detoxification of Heavy Metals and Metalloids in Plants. Front. Plant Sci. 2021, 12, 665842. [Google Scholar] [CrossRef]
- Xu, L.; Xue, X.; Yan, Y.; Zhao, X.; Li, L.; Sheng, K.; Zhang, Z. Silicon combined with Melatonin reduces Cd absorption and Translocation in Maize. Plants 2023, 12, 3537. [Google Scholar] [CrossRef]
- Ghosh, R.; Ganguly, S. Silicon fertilizers inciting plant defence against pathogenic fungi. J. Mycopathol. Res. 2022, 60, 515–521. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.-P.; Tian, D.-D.; Guo, D.-J.; Chen, Z.-L.; Zhong, C.-S.; Nikpay, A.; Singh, M.; Rajput, V.D.; Singh, R.K.; et al. Influence of Silicon on Biocontrol Strategies to Manage Biotic Stress for Crop Protection, Performance, and Improvement. Plants 2021, 10, 2163. [Google Scholar] [CrossRef]
- Izco, J.; Pulgar, Í.; Aguirre, Z.; Santin, F. Estudio florístico de los páramos de pajonal meridionales de Ecuador. Rev. Peru Biol. 2007, 14, 237–246. [Google Scholar] [CrossRef]
- Arakaki, M.; Cano, A. Composición florística de la cuenca del río Ilo-Moquegua y Lomas de Ilo, Moquegua, Perú. Rev. Peru Biol. 2003, 10, 5–19. [Google Scholar] [CrossRef]
- Flores, M.; Alegría, J.; Granda, A. Diversidad florística asociada a las lagunas andinas Pomacocha y Habascocha, Junín, Perú. Rev. Peru Biol. 2005, 12, 125–134. [Google Scholar] [CrossRef]
- Henry-Silva, G.G.; de Moura, R.S.T.; de Oliveira Dantas, L.L. Richness and distribution of aquatic macrophytes in Brazilian semi-arid aquatic ecosystems. Acta Limnol. Bras. 2010, 22, 147–156. [Google Scholar] [CrossRef]
- Yaranga, R.; Custodio, M.; Chanamé, F.; Pantoja, R. Floristic diversity in grasslands according to plant formation in the Shullcas river sub-basin, Junin, Peru. Sci. Agropecu. 2018, 9, 511–517. [Google Scholar] [CrossRef]
- Suárez-Mota, M.E.; Villaseñor, J.L.; López-Mata, L. The Bajio region, Mexico and the conservation of its floristic diversity. Rev. Mex. Biodivers. 2015, 86, 799–808. [Google Scholar] [CrossRef]
- Trinidad, J.C.; Barkan, D.T.; Gulledge, B.F.; Thalhammer, A.; Sali, A.; Schoepfer, R.; Burlingame, A.L. Global Identification and Characterization of Both O-GlcNAcylation and Phosphorylation at the Murine Synapse. Mol. Cell. Proteom. 2012, 11, 215–229. [Google Scholar] [CrossRef]
- Suárez-Mota, M.E.; Villaseñor, J.L.; Ramírez-Aguirre, M.B. Priority sites for the conservation of floristic richness and endemism of the Northern Sierra of Oaxaca, Mexico. Acta Bot. Mex. 2018, 124, 49–74. [Google Scholar] [CrossRef]
- Chitimus, D.; Nedeff, V.; Mosnegutu, E.; Barsan, N.; Irimia, O.; Nedeff, F. Studies on the Accumulation, Translocation, and Enrichment Capacity of Soils and the Plant Species Phragmites Australis (Common Reed) with Heavy Metals. Sustainability 2023, 15, 8729. [Google Scholar] [CrossRef]
- Jia, L.; Ma, H.; Guan, Y.; Zou, L.; Jiang, L.; Hang, Y.; Feng, X.; Ren, X.; Tian, Y.; Pan, H.; et al. Lead absorption capacity in different parts of plants and its influencing factors: A systematic review and meta-analysis. Environ. Sci. Pollut. Res. 2022, 1–12. [Google Scholar] [CrossRef]
- Yuan, S.; Jiang, Y.; Chen, P.; Tu, N.; Zhou, W.; Yi, Z. Difference in Cd accumulation among varieties with different growth duration corresponding to typical agro-climate condition in rice ratooning system. Front. Plant Sci. 2024, 15, 1383428. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wang, Y.; Yin, Y.; Ding, C.; Zhou, Z.; He, L.; Li, L.; Guo, Z.; Li, Z.; Nie, M.; et al. Deciphering Cadmium Accumulation in Peanut Kernels through Growth Stages and Source Organs: A Multi-Stable Isotope Labeling Study. J. Agric. Food Chem. 2024, 72, 24003–24012. [Google Scholar] [CrossRef]
- Ruwanpathirana, G.P.; Plett, D.C.; Williams, R.C.; Davey, C.E.; Johnston, L.A.; Kronzucker, H.J. Continuous monitoring of plant sodium transport dynamics using clinical PET. Plant Methods 2021, 17, 8. [Google Scholar] [CrossRef]
- Ochiai, K.; Oba, K.; Oda, K.; Miyamoto, T.; Matoh, T. Effects of improved sodium uptake ability on grain yields of rice plants under low potassium supply. Plant Direct 2022, 6, e387. [Google Scholar] [CrossRef] [PubMed]
- Atabaki, N.; Shaharuddin, N.A.; Ahmad, S.A.; Nulit, R.; Abiri, R. Assessment of Water Mimosa (Neptunia oleracea Lour.) Morphological, Physiological, and Removal Efficiency for Phytoremediation of Arsenic-Polluted Water. Plants 2020, 9, 1500. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-S.; Yu, Q.; Yuan, L.-W.; Anwar, W.; Li, Q.; Hao, Q.; Wu, G.-L.; Li, Y.; Lai, Y.-S. Absorption, translocation, and accumulation of the fungicide triadimefon in Pak choi (Brassica rapa var chinensis), pepper (Capsicum annuum), and cucumber (Cucumis sativus). Environ. Monit. Assess. 2023, 195, 1235. [Google Scholar] [CrossRef] [PubMed]
- Zunaidi, A.A.; Lim, L.H.; Metali, F. Transfer of heavy metals from soils to curly mustard (Brassica juncea (L.) Czern.) grown in an agricultural farm in Brunei Darussalam. Heliyon 2021, 7, e07945. [Google Scholar] [CrossRef]
- Nur Khasanah, R.A. Potency of silicon in reducing cadmium toxicity in Cempo Merah rice. Asian J. Agric. Biol. 2020, 8, 405–412. [Google Scholar] [CrossRef]
- Huang, X.; Fan, C.; Xie, D.; Chen, H.; Zhang, S.; Chen, H.; Qin, S.; Fu, T.; He, T.; Gao, Z. Synergistic Effects of Water Management and Silicon Foliar Spraying on the Uptake and Transport Efficiency of Cadmium in Rice (Oryza sativa L.). Plants 2023, 12, 1414. [Google Scholar] [CrossRef]
- Hou, L.; Ji, S.; Zhang, Y.; Wu, X.; Zhang, L.; Liu, P. The mechanism of silicon on alleviating cadmium toxicity in plants: A review. Front. Plant Sci. 2023, 14, 1141138. [Google Scholar] [CrossRef]
- Walczak-Skierska, J.; Krakowska-Sieprawska, A.; Monedeiro, F.; Złoch, M.; Pomastowski, P.; Cichorek, M.; Olszewski, J.; Głowacka, K.; Gużewska, G.; Szultka-Młyńska, M. Silicon’s Influence on Polyphenol and Flavonoid Profiles in Pea (Pisum sativum L.) under Cadmium Exposure in Hydroponics: A Study of Metabolomics, Extraction Efficacy, and Antimicrobial Properties of Extracts. ACS Omega 2024, 9, 14899–14910. [Google Scholar] [CrossRef]
- Alderete-Suarez, B.M.; Valles-Aragón, M.C.; Canales-Reyes, S.; Peralta-Pérez, M.D.R.; Orrantia-Borunda, E. Bioconcentración de pb, cd y as en biomasa de eleocharis macrostachya (Cyperaceae). Rev. Int. Contam. Ambiental. 2019, 35, 93–101. [Google Scholar] [CrossRef]
- Mukhomorov, V.; Anikina, L. Interrelation of Chemical Elements Content in Plants underConditions of Primary Soil Formation. Open J. Soil Sci. 2011, 1, 1–7. [Google Scholar] [CrossRef]
- Meleshko, T.; Rukavchuk, R.; Buhyna, L.; Pallah, O.; Sukharev, S.; Drobnych, V.; Boyko, N. Biologically Active Substance Content in Edible Plants of Zakarpattia and Their Elemental Composition Model. Biol. Trace Elem. Res. 2021, 199, 2387–2398. [Google Scholar] [CrossRef]
- Alekseenko, V.A.; Shvydkaya, N.V.; Alekseenko, A.V.; Machevariani, M.M.; Bech, J.; Pashkevich, M.A.; Puzanov, A.V.; Nastavkin, A.V.; Roca, N. Element Accumulation Patterns of Native Plant Species under the Natural Geochemical Stress. Plants 2020, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga, J.; Rodríguez, N.; Rivas-Ramirez, I.; de la Fuente, V.; Rufo, L.; Amils, R. An Improved Semiquantitative Method for Elemental Analysis of Plants Using Inductive Coupled Plasma Mass Spectrometry. Biol. Trace Element Res. 2011, 144, 1302–1317. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, E.O.; Custodio, M.; Ascención, J.; Bastos, M.C. Heavy Metals in Soils from High Andean Zones and Potential Ecological Risk Assessment in Peru’s Central Andes. J. Ecol. Eng. 2020, 21, 108–119. [Google Scholar] [CrossRef]
- Castro-Bedriñana, J.; Chirinos-Peinado, D.; Garcia-Olarte, E.; Quispe-Ramos, R. Lead transfer in the soil-root-plant system in a highly contaminated Andean area. PeerJ 2021, 9, e10624. [Google Scholar] [CrossRef] [PubMed]
- Loayza-Muro, R.A.; Duivenvoorden, J.F.; Kraak, M.H.S.; Admiraal, W. Metal leaching, acidity, and altitude confine benthic macroinvertebrate community composition in Andean streams. Environ. Toxicol. Chem. 2013, 33, 404–411. [Google Scholar] [CrossRef]
- Korzeniowska, J.; Krąż, P.; Dorocki, S. Heavy Metal Content in the Plants (Pleurozium schreberi and Picea abies) of Environmentally Important Protected Areas of the Tatra National Park (the Central Western Carpathians, Poland). Minerals 2021, 11, 1231. [Google Scholar] [CrossRef]
- Luitel, D.R.; Siwakoti, M.; Jha, P.K. Nutrients in finger millet and soil at different elevation gradients in Central Nepal. CABI Agric. Biosci. 2020, 1, 20. [Google Scholar] [CrossRef]
- Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 2019, 52, 39. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, L.; Chen, J.; Zhang, N.; Zhou, W.; Song, Y. Altitudinal variation of dragon fruit metabolite profiles as revealed by UPLC-MS/MS-based widely targeted metabolomics analysis. BMC Plant Biol. 2024, 24, 344. [Google Scholar] [CrossRef]
- Hashim, A.M.; Alharbi, B.M.; Abdulmajeed, A.M.; Elkelish, A.; Hassan, H.M.; Hozzein, W.N. Oxidative stress responses of some endemic plants to high altitudes by intensifying antioxidants and secondary metabolites content. Plants 2020, 9, 869. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Zeng, H.-T.; Sun, B.-Y.; Liu, S.-M. Multi-environment evaluations across ecological regions reveal climate and soil effects on amides contents in Chinese prickly ash peels (Zanthoxylum bungeanum Maxim.). BMC Plant Biol. 2023, 23, 313. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qin, L.; Tan, D.; Wu, D.; Wu, X.; Fan, Q.; Bai, C.; Yang, J.; Xie, J.; He, Y. Fatty acid metabolites of Dendrobium nobile were positively correlated with representative endophytic fungi at altitude. Front. Microbiol. 2023, 14, 1128956. [Google Scholar] [CrossRef]
- Burg, S.; Ovaskainen, O.; Furneaux, B.; Ivanova, N.; Abrahamyan, A.; Niittynen, P.; Somervuo, P.; Abrego, N. Experimental evidence that root-associated fungi improve plant growth at high altitude. Mol. Ecol. 2024, 33, e17376. [Google Scholar] [CrossRef]
- Ding, Y.; Ding, L.; Xia, Y.; Wang, F.; Zhu, C. Emerging Roles of microRNAs in Plant Heavy Metal Tolerance and Homeostasis. J. Agric. Food Chem. 2020, 68, 1958–1965. [Google Scholar] [CrossRef] [PubMed]
- Parera, V.; Pérez-Chaca, M.V.; Gallardo, L.V.; Gatica-Aguilar, C.V.; Parera, C.A.; Feresin, G.E. Adesmia pinifolia, a Native High-Andean Species, as a Potential Candidate for Phytoremediation of Cd and Hg. Plants 2024, 13, 464. [Google Scholar] [CrossRef]
- Kaspari, M. The seventh macronutrient: How sodium shortfall ramifies through populations, food webs and ecosystems. Ecol. Lett. 2020, 23, 1153–1168. [Google Scholar] [CrossRef]
- Pisani, O.; Liebert, D.; Strickland, T.C.; Coffin, A.W. Plant tissue characteristics of Miscanthus x giganteus. Sci. Data 2022, 9, 308. [Google Scholar] [CrossRef]
- Santiago-Rosario, L.Y.; Harms, K.E.; Elderd, B.D.; Hart, P.B.; Dassanayake, M. No escape: The influence of substrate sodium on plant growth and tissue sodium responses. Ecol. Evol. 2021, 11, 14231–14249. [Google Scholar] [CrossRef]
- Farzana, T.; Guo, Q.; Rahman, M.S.; Rose, T.J.; Barkla, B. Salinity and nitrogen source affect productivity and nutritional value of edible halophytes. PLoS ONE 2023, 18, e0288547. [Google Scholar] [CrossRef]
- Gelbicova, T.; Florianova, M.; Hluchanova, L.; Kalova, A.; Korena, K.; Strakova, N.; Karpiskova, R. Comparative Analysis of Genetic Determinants Encoding Cadmium, Arsenic, and Benzalkonium Chloride Resistance in Listeria monocytogenes of Human, Food, and Environmental Origin. Front. Microbiol. 2021, 11, 599882. [Google Scholar] [CrossRef] [PubMed]
- González-Moscoso, M.; Juárez-Maldonado, A.; Cadenas-Pliego, G.; Meza-Figueroa, D.; SenGupta, B.; Martínez-Villegas, N. Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. Environ. Sci. Pollut. Res. 2022, 29, 34147–34163. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, G.D.P.; Batista, B.L.; de Souza, A.L.M.; Brito, A.E.D.A.; Nascimento, V.R.; Neto, C.F.D.O.; de Paiva, A.P.; Teixeira, J.S.S.; Júnior, M.L.D.S. The effect of silicon (Si) on the growth and nutritional status of Schizolobium amazonicum seedlings subjected to zinc toxicity. Aust. J. Crop Sci. 2020, 14, 325–332. [Google Scholar] [CrossRef]
- Hu, A.Y.; Xu, S.N.; Ni Qin, D.; Li, W.; Zhao, X.Q. Role of Silicon in Mediating Phosphorus Imbalance in Plants. Plants 2020, 10, 51. [Google Scholar] [CrossRef]
- Al Murad, M.; Khan, A.L.; Muneer, S. Silicon in Horticultural Crops: Cross-talk, Signaling, and Tolerance Mechanism under Salinity Stress. Plants 2020, 9, 460. [Google Scholar] [CrossRef]
- You, C.; Li, J.; Yang, K.; Tan, B.; Yin, R.; Li, H.; Zhang, L.; Cui, X.; Liu, S.; Wang, L.; et al. Variations and patterns of C and N stoichiometry in the first five root branch orders across 218 woody plant species. New Phytol. 2023, 238, 1838–1848. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Zhao, N.; Sun, X.; Hou, S.; Wang, P. Physiological Nitrogen Uptake and Utilisation Responses in Two Native Plants from the Qinghai-Tibet Plateau under Different Water and Fertiliser Conditions. Agronomy 2024, 14, 440. [Google Scholar] [CrossRef]
- Du, Z.; Lin, W.; Yu, B.; Zhu, J.; Li, J. Integrated Metabolomic and Transcriptomic Analysis of the Flavonoid Accumulation in the Leaves of Cyclocarya paliurus at Different Altitudes. Front. Plant Sci. 2022, 12, 794137. [Google Scholar] [CrossRef]
- Thakur, D.; Rathore, N.; Chawla, A. Increase in light interception cost and metabolic mass component of leaves are coupled for efficient resource use in the high altitude vegetation. Oikos 2019, 128, 254–263. [Google Scholar] [CrossRef]
Concentration (mg/kg) | Classification |
---|---|
FT > 1 | Transfers (hyperaccumulator) |
FT < 1 | Stabilizes |
Family | Species | Family | Species | Family | Specie |
---|---|---|---|---|---|
Apiaceae | Azorella pedunculata | Bryaceae | Bryaceae | Lamiaceae | Clinopodium nubigenum |
Apiaceae | Daucus montanus | Caprifoliaceae | Valeriana microphylla | Lamiaceae | Stachys elliptica |
Apiaceae | Hydrocotyle bonplandii | Caryophyllaceae | Drymaria ovata | Lycopodiaceae | Huperzia crassa |
Asteraceae | Bidens andicola | Cyperaceae | Eleocharis | Peltigeraceae | Peltigera |
Asteraceae | Diplostephium glandulosum | Cyperaceae | Carex bonplandii | Plantaginaceae | Plantago australis |
Asteraceae | Baccharis genistelloides | Dryopteridaceae | Polystichum orbiculatum | Poaceae | Calamagrostis intermedia |
Asteraceae | Hypochaeris sessiliflora | Dryopteridaceae | Elaphoglossum cuspidatum | Poaceae | Agrostis perennnans |
Asteraceae | Gnaphalium | Ericaceae | Pernettya prostrata | Poaceae | Agrostis breviculmis |
Asteraceae | Lasiocephalus ovatus | Fabaceae | Vicia andicola | Polygonaceae | Rumex acetocella |
Asteraceae | Baccharis salicifolia | Fabaceae | Trifolium repens | Ranunculaceae | Ranunculus praemorsus |
Asteraceae | Gynoxys sp. | Gentianaceae | Halenia weddeliana | Rosaceae | Acaena ovalifolia |
Asteraceae | Monticalia arbutifolia | Gentianaceae | Gentiana sedifolia | Rosaceae | Lachemilla orbiculata |
Asteraceae | Taraxacum officinale | Geraniaceae | Geranium laxicaule | Equisetaceae | Equisetum bogotense |
Bartramiaceae | Breutelia tomentosa | Gunneraceae | Gunnera magellanica | ||
Brassicaceae | Nasturtium officinale | Iridaceae | Orthrosanthus chimboracensis |
Family | Species | Individuals | Frequency | Relative Density% | Relative Frequency% | IVI% |
---|---|---|---|---|---|---|
Poaceae | Calamagrostis intermedia | 9217 | 42 | 51.21 | 10.97 | 31.09 |
Rosaceae | Lachemilla orbiculata | 4481 | 43 | 24.89 | 11.23 | 18.06 |
Plantaginaceae | Plantago australis | 937 | 38 | 5.21 | 9.92 | 7.56 |
Polygonaceae | Rumex acetocella | 669 | 31 | 3.72 | 8.09 | 5.91 |
Cyperaceae | Carex bonplandii | 436 | 29 | 2.42 | 7.57 | 5.00 |
Lamiaceae | Clinopodium nubigenum | 667 | 24 | 3.71 | 6.27 | 4.99 |
Equisetaceae | Equisetum bogotense | 160 | 22 | 0.89 | 5.74 | 3.32 |
Cyperaceae | Eleocharis sp. | 222 | 20 | 1.23 | 5.22 | 3.23 |
Asteraceae | Taraxacum officinale | 181 | 20 | 1.01 | 5.22 | 3.11 |
Ericaceae | Pernettya prostrata | 111 | 21 | 0.62 | 5.48 | 3.05 |
Asteraceae | Baccharis salicifolia | 189 | 11 | 1.05 | 2.87 | 1.96 |
Asteraceae | Gynoxys buxifolia | 96 | 8 | 0.53 | 2.09 | 1.31 |
Heavy Metals | Plant Species | Lachemilla orbiculata | Carex bonplandii | Baccharis salicifolia | Taraxacum officinale | Pernettya postrata | Equisetum bogotense | Rumex acetocella L. | Calamagrostis intermedia | Eleocharis sp. | Plantago australis | Clinopodium Nubigenum | Gynoxys sp. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cadmium | root | 0.50 | 0.14 | 0.14 | 2.17 | 0.19 | 1.20 | 0.16 | 0.14 | 0.21 | 0.13 | 0.78 | 0.64 |
stem | 1.04 | 0.60 | 10.61 | 1.62 | 0.38 | 0.13 | 0.94 | 5.23 | 0.14 | 1.40 | 0.52 | 0.53 | |
leaves | 0.55 | 0.38 | 12.01 | 2.05 | 0.66 | 0.41 | 1.10 | 0.93 | 3.47 | 1.21 | 0.51 | 7.23 | |
Chromium | root | 0.00 | 21.88 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
stem | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
leaves | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Lead | root | 0.03 | 0.02 | 0.00 | 0.44 | 0.03 | 0.02 | 0.01 | 0.10 | 0.16 | 0.00 | 0.26 | 0.13 |
stem | 0.19 | 0.10 | 0.13 | 0.40 | 0.04 | 0.00 | 0.07 | 0.03 | 0.00 | 0.43 | 0.19 | 0.09 | |
leaves | 0.12 | 0.06 | 0.29 | 0.39 | 0.10 | 0.04 | 0.13 | 0.11 | 0.06 | 0.13 | 0.11 | 0.14 | |
Mercury | root | 1.31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
stem | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
leaves | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Silicon | root | 300.00 | 280.00 | 320.00 | 250.00 | 348.00 | 324.80 | 371.20 | 290.00 | 403.68 | 376.77 | 430.59 | 336.40 |
stem | 250.00 | 310.00 | 370.00 | 220.00 | 290.00 | 359.60 | 429.20 | 255.20 | 336.40 | 417.14 | 497.87 | 296.03 | |
leaves | 350.00 | 240.00 | 230.00 | 300.00 | 406.00 | 278.40 | 266.80 | 348.00 | 470.96 | 322.94 | 309.49 | 403.68 | |
Arsenic | root | 1.91 | 1.99 | 2.22 | 2.46 | 2.59 | 3.67 | 2.93 | 3.20 | 3.18 | 3.18 | 3.34 | 3.35 |
stem | 1.84 | 2.09 | 2.37 | 2.48 | 2.55 | 3.11 | 2.90 | 3.04 | 3.19 | 3.22 | 3.26 | 3.38 | |
leaves | 1.93 | 2.11 | 2.33 | 2.57 | 2.61 | 2.89 | 2.99 | 3.04 | 3.13 | 3.19 | 3.29 | 3.35 | |
Sodium | root | 951.07 | 54.53 | 0.00 | 0.00 | 21.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
stem | 513.02 | 25.30 | 0.00 | 0.00 | 21.21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
leaves | 98.68 | 0.00 | 0.00 | 19.88 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Species | Heavy Metal Leaves/Roots (mg/kg) | ||||||
---|---|---|---|---|---|---|---|
Cd | Cr | Pb | Hg | Si | As | Na | |
Lachemilla orbiculata | 1.11 | 0.00 | 4.01 | 0.00 | 1.17 | 1.01 | 0.10 |
Carex bonplandii | 2.77 | 0.00 | 3.53 | 0.00 | 0.86 | 1.06 | 0.00 |
Baccharis salicifolia | 86.28 | 0.00 | 0.00 | 0.00 | 0.72 | 1.05 | 0.00 |
Taraxacum officinale | 0.95 | 0.00 | 0.88 | 0.00 | 1.20 | 1.05 | 0.00 |
Pernettya prostrata | 3.56 | 0.00 | 3.55 | 0.00 | 1.17 | 1.01 | 0.00 |
Equisetum bogotense | 0.34 | 0.00 | 1.66 | 0.00 | 0.86 | 0.79 | 0.00 |
Rumex acetocella L. | 6.93 | 0.00 | 9.27 | 0.00 | 0.72 | 1.02 | 0.00 |
Calamagrostis intermedia | 6.59 | 0.00 | 1.12 | 0.00 | 1.20 | 0.95 | 0.00 |
Eleocharis sp. | 16.50 | 0.00 | 0.36 | 0.00 | 1.17 | 0.98 | 0.00 |
Plantago australis | 9.01 | 0.00 | 0.00 | 0.00 | 0.86 | 1.00 | 0.00 |
Clinopodium nubigenum | 0.66 | 0.00 | 0.40 | 0.00 | 0.72 | 0.99 | 0.00 |
Gynoxys sp. | 11.22 | 0.00 | 1.12 | 0.00 | 1.20 | 1.00 | 0.00 |
Species | Heavy Metal Stem/Root (mg/kg) | ||||||
---|---|---|---|---|---|---|---|
Cd | Cr | Pb | Hg | Si | As | Na | |
Lachemilla orbiculata | 2.08 | 0.00 | 6.50 | 0.00 | 0.83 | 0.96 | 0.54 |
Carex bonplandii | 4.38 | 0.00 | 5.76 | 0.00 | 1.11 | 1.05 | 0.46 |
Baccharis salicifolia | 76.17 | 0.00 | 0.00 | 0.00 | 1.16 | 1.07 | 0.00 |
Taraxacum officinale | 0.75 | 0.00 | 0.91 | 0.00 | 0.88 | 1.01 | 0.00 |
Pernettya prostrata | 2.02 | 0.00 | 1.42 | 0.00 | 0.83 | 0.99 | 1.00 |
Equisetum bogotense | 0.11 | 0.00 | 0.00 | 0.00 | 1.11 | 0.85 | 0.00 |
Rumex acetocella L. | 5.90 | 0.00 | 4.96 | 0.00 | 1.16 | 0.99 | 0.00 |
Calamagrostis intermedia | 37.16 | 0.00 | 0.29 | 0.00 | 0.88 | 0.95 | 0.00 |
Eleocharis sp. | 0.67 | 0.00 | 0.00 | 0.00 | 0.83 | 1.00 | 0.00 |
Plantago australis | 10.45 | 0.00 | 0.00 | 0.00 | 1.11 | 1.01 | 0.00 |
Clinopodium nubigenum | 0.67 | 0.00 | 0.71 | 0.00 | 1.16 | 0.98 | 0.00 |
Gynoxys sp. | 0.82 | 0.00 | 0.72 | 0.00 | 0.88 | 1.01 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaca-Cárdenas, M.L.; González-Cabrera, M.V.; Andino-Peñafiel, E.E.; Guallpa-Calva, M.Á.; Vasco-Lucio, M.M.; Vaca-Cárdenas, P.V.; Muñoz-Jácome, E.A.; Zavala-Toscano, C.A.; Ati-Cutiupala, G.M.; Cushquicullma-Colcha, D.F. Evaluation of High Andean Plant Species in the Absorption and Translocation of Heavy Metals in the Moorlands of Reten IchuBamba, Ecuador. Conservation 2025, 5, 34. https://doi.org/10.3390/conservation5030034
Vaca-Cárdenas ML, González-Cabrera MV, Andino-Peñafiel EE, Guallpa-Calva MÁ, Vasco-Lucio MM, Vaca-Cárdenas PV, Muñoz-Jácome EA, Zavala-Toscano CA, Ati-Cutiupala GM, Cushquicullma-Colcha DF. Evaluation of High Andean Plant Species in the Absorption and Translocation of Heavy Metals in the Moorlands of Reten IchuBamba, Ecuador. Conservation. 2025; 5(3):34. https://doi.org/10.3390/conservation5030034
Chicago/Turabian StyleVaca-Cárdenas, Maritza Lucia, María Verónica González-Cabrera, Erica Estefania Andino-Peñafiel, Miguel Ángel Guallpa-Calva, Martha Marisol Vasco-Lucio, Pedro Vicente Vaca-Cárdenas, Eduardo Antonio Muñoz-Jácome, Carmen Alicia Zavala-Toscano, Guicela Margoth Ati-Cutiupala, and Diego Francisco Cushquicullma-Colcha. 2025. "Evaluation of High Andean Plant Species in the Absorption and Translocation of Heavy Metals in the Moorlands of Reten IchuBamba, Ecuador" Conservation 5, no. 3: 34. https://doi.org/10.3390/conservation5030034
APA StyleVaca-Cárdenas, M. L., González-Cabrera, M. V., Andino-Peñafiel, E. E., Guallpa-Calva, M. Á., Vasco-Lucio, M. M., Vaca-Cárdenas, P. V., Muñoz-Jácome, E. A., Zavala-Toscano, C. A., Ati-Cutiupala, G. M., & Cushquicullma-Colcha, D. F. (2025). Evaluation of High Andean Plant Species in the Absorption and Translocation of Heavy Metals in the Moorlands of Reten IchuBamba, Ecuador. Conservation, 5(3), 34. https://doi.org/10.3390/conservation5030034