An Optimized Artificial Neural Network Model of a Limaçon-to-Circular Gas Expander with an Inlet Valve
Abstract
:1. Introduction
2. Classic Mathematical Model
2.1. L2C Positive Displacement Expander
- A 1D flow in the working chamber is assumed;
- The energy transfer to and from the fluid inside the chamber is adiabatic, and the change in enthalpy that occurs inside the chamber is only due to the mass transfer across the boundaries of the control volume;
- The kinetic energy of the fluid is small enough to be ignored in the energy balance equation;
- Losses due to mechanical friction are neglected in the analysis.
2.2. Inlet DDRV
2.3. Iterative Simulation
3. ANN Model
3.1. Dataset Preparation and Preprocessing
3.2. Training of ANN Model
3.3. Evaluation of ANN Model
4. Optimization of Model Parameters
5. Optimized ANN Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ORC | Organic Rankine Cycle |
WHR | Waste Heat Recovery |
CHP | Combined Heat and Power |
PID | Proportional–Integral–Derivative |
ANN | Artificial Neural Network |
L2C | Limaçon-to-Circular |
DDRV | Direct-Drive Rotary Valve |
NO | Normally Open |
RelU | Rectified Linear Unit |
tanh | Hyperbolic Tangent |
trainscg | Scaled Conjugate Gradient |
trainlm | Levenberg–Marquardt Backpropagation Algorithm |
Trainrp | Resilient Backpropagation Algorithm |
BFGS | Broyden–Fletcher–Goldfarb–Shanno |
Trainbfg | BFGS Quasi-Newton Algorithm |
Trainbr | Bayesian Regularization Algorithm |
Mean Squared Error | |
Mean Average Error | |
Coefficient of Determination | |
CV | Cross-Validation |
References
- IEA. CO2 Emissions in 2022; IEA: Paris, France, 2023; Available online: https://www.iea.org/reports/co2-emissions-in-2022 (accessed on 10 March 2024).
- Oyedepo, S.O.; Fakeye, B.A. Waste heat recovery technologies: Pathway to sustainable energy development. J. Therm. Eng. 2021, 7, 324–348. [Google Scholar] [CrossRef]
- Ononogbo, C.; Nwosu, E.; Nwakuba, N.; Nwaji, G.; Nwufo, O.; Chukwuezie, O.; Chukwu, M.; Anyanwu, E. Opportunities of waste heat recovery from various sources: Review of technologies and implementation. Heliyon 2023, 9, e13590. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; Guarracino, I.; Kalogirou, S.; Markides, C. A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage. Appl. Therm. Eng. 2017, 127, 1543–1554. [Google Scholar] [CrossRef]
- Wang, Y.; Song, J.; Chatzopoulou, M.A.; Sunny, N.; Simpson, M.C.; Wang, J.; Markides, C.N. A holistic thermoeconomic assessment of small-scale, distributed solar organic Rankine cycle systems: Comprehensive comparison of configurations, component and working fluid selection. Energy Convers. Manag. 2021, 248, 114618. [Google Scholar] [CrossRef]
- Markides, C.N. Low-Concentration Solar-Power Systems Based on Organic Rankine Cycles for Distributed-Scale Applications: Overview and Further Developments. Front. Energy Res. 2015, 3, 47. [Google Scholar] [CrossRef]
- Frate, G.F.; Baccioli, A.; Bernardini, L.; Ferrari, L. Off-design characterisation of a hybrid energy storage based on pumped thermal energy storage and low-concentration solar thermal collectors. In Proceedings of the 6th International Seminar on ORC Power Systems; Technical University of Munich: Munich, Germany, 2021. [Google Scholar] [CrossRef]
- Zhang, F.; Feng, Y.; He, Z.; Xu, J.; Zhang, Q.; Xu, K. Thermo-economic optimization of biomass-fired organic Rankine cycles combined heat and power system coupled CO2 capture with a rated power of 30 kW. Energy 2022, 254, 124433. [Google Scholar] [CrossRef]
- Tańczuk, M.; Ulbrich, R. Implementation of a biomass-fired co-generation plant supplied with an ORC (Organic Rankine Cycle) as a heat source for small scale heat distribution system—A comparative analysis under Polish and German conditions. Energy 2013, 62, 132–141. [Google Scholar] [CrossRef]
- Moya, D.; Aldás, C.; Kaparaju, P. Geothermal energy: Power plant technology and direct heat applications. Renew. Sustain. Energy Rev. 2018, 94, 889–901. [Google Scholar] [CrossRef]
- Song, J.; Loo, P.; Teo, J.; Markides, C.N. Thermo-Economic Optimization of Organic Rankine Cycle (ORC) Systems for Geothermal Power Generation: A Comparative Study of System Configurations. Front. Energy Res. 2020, 8, 6. [Google Scholar] [CrossRef]
- Liu, Q.; Lasala, S. Waste heat recovery from fossil-fired power plants by organic rankine cycles. In Organic Rankine Cycles for Waste Heat Recovery-Analysis and Applications; IntechOpen: London, UK, 2019. [Google Scholar]
- Krail, J.; Beckmann, G.; Schittl, F.; Piringer, G. Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid. Energy 2023, 266, 126352. [Google Scholar] [CrossRef]
- Serafino, A.; Obert, B.; Cinnella, P. Multi-fidelity robust design optimization of an ORC turbine for high temperature waste heat recovery. Energy 2023, 269, 126538. [Google Scholar] [CrossRef]
- Cruz, I.; Johansson, M.T.; Wren, J. Assessment of the potential for small-scale CHP production using Organic Rankine Cycle (ORC) systems in different geographical contexts: GHG emissions impact and economic feasibility. Energy Rep. 2022, 8, 7680–7690. [Google Scholar] [CrossRef]
- Simpson, M.C.; Chatzopoulou, M.A.; Oyewunmi, O.A.; Le Brun, N.; Sapin, P.; Markides, C.N. Technoeconomic analysis of internal combustion engine–organic Rankine cycle systems for combined heat and power in energy-intensive buildings. Appl. Energy 2019, 253, 113462. [Google Scholar] [CrossRef]
- Lu, X.; Du, B.; Zhu, W.; Yang, Y.; Xie, C.; Tu, Z.; Zhao, B.; Zhang, L.; Song, J.; Deng, Z. Thermodynamic and dynamic analysis of a hybrid PEMFC-ORC combined heat and power (CHP) system. Energy Convers. Manag. 2023, 292, 117408. [Google Scholar] [CrossRef]
- Ibarra, M.; Rovira, A.; Alarcón-Padilla, D.C.; Blanco, J. Performance of a 5kWe Organic Rankine Cycle at part-load operation. Appl. Energy 2014, 120, 147–158. [Google Scholar] [CrossRef]
- Alshammari, F.; Usman, M.; Pesyridis, A. Expanders for Organic Rankine Cycle Technology. In Organic Rankine Cycle Technology for Heat Recovery; Wang, E., Ed.; IntechOpen: Rijeka, Croatia, 2018; Chapter 3. [Google Scholar] [CrossRef]
- Al Jubori, A.M.; Jawad, Q.A. Investigation on performance improvement of small scale compressed-air energy storage system based on efficient radial-inflow expander configuration. Energy Convers. Manag. 2019, 182, 224–239. [Google Scholar] [CrossRef]
- Wang, C.; Liu, M.; Li, Z.; Xing, Z.; Shu, Y. Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion. Energy 2023, 273, 127249. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Y.; Wu, X.; Pan, X.; Xing, Z. Theoretical and experimental research on the performance of twin screw compressor using R513A as R134a replacement. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 170–177. [Google Scholar] [CrossRef]
- Song, X.; Wu, Y.; Shen, L.; Wang, W.; Lei, B.; Zhi, R.; Ma, C. Comparative experimental analysis of the effect of lubricant viscosity on the performance of a single-screw expander with different structures. J. Energy Storage 2022, 52, 104958. [Google Scholar] [CrossRef]
- Peng, X.; Xing, Z.; Li, L.; Shu, P. Thermodynamic analysis of the rotary tooth compressor. Proc. Inst. Mech. Eng. Part A J. Power Energy 2002, 216, 321–327. [Google Scholar] [CrossRef]
- Belfiore, C.; Lu, K.; Phung, T.; Sultan, I. Designs and applications of the rotary limaçon compressors and expanders—A review. AIP Conf. Proc. 2022, 2681, 020055. [Google Scholar] [CrossRef]
- Sultan, I.A. The Limaçon of Pascal: Mechanical Generation and Utilization for Fluid Processing. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2005, 219, 813–822. [Google Scholar] [CrossRef]
- Sultan, I.A. Profiling Rotors for Limaçon-to-Limaçon Compression-Expansion Machines. J. Mech. Des. 2005, 128, 787–793. [Google Scholar] [CrossRef]
- Sultan, I. A surrogate model for interference prevention in the limaçon-to-limaçon machines. Eng. Comput. 2007, 24, 437–449. [Google Scholar] [CrossRef]
- Sultan, I. A Geometric Design Model for the Circolimaçon Positive Displacement Machine. J. Mech. Des.-J. Mech. Design. 2008, 130, 062307. [Google Scholar] [CrossRef]
- Sultan, I.A. Inverse geometric design for a class of rotary positive displacement machines. Inverse Probl. Sci. Eng. 2008, 16, 127–139. [Google Scholar] [CrossRef]
- Sultan, I.A.; Schaller, C.G. Optimum Positioning of Ports in the Limaçon Gas Expanders. J. Eng. Gas Turbines Power 2011, 133, 103002. [Google Scholar] [CrossRef]
- Sultan, I.A. Optimum design of limaçon gas expanders based on thermodynamic performance. Appl. Therm. Eng. 2012, 39, 188–197. [Google Scholar] [CrossRef]
- Phung, T.; Sultan, I.; Boretti, A. Design of Limaçon Gas Expanders. In Nonlinear Approaches in Engineering Applications: Advanced Analysis of Vehicle Related Technologies; Springer International Publishing: Cham, Switzerland, 2016; pp. 91–119. [Google Scholar] [CrossRef]
- Phung, T.H.; Sultan, I.A.; Appuhamillage, G.K. On the apex seal analysis of limaçon positive displacement machines. Mech. Mach. Theory 2018, 127, 126–145. [Google Scholar] [CrossRef]
- Phung, T.H.; Sultan, I.A. Geometric Design of the Limaçon-to-Circular Fluid Processing Machine. J. Mech. Des. 2021, 143, 103501. [Google Scholar] [CrossRef]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP; Version 10.0; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. [Google Scholar] [CrossRef]
- Asgari, H.; Chen, X.; Menhaj, M.B.; Sainudiin, R. Artificial Neural Network–Based System Identification for a Single-Shaft Gas Turbine. J. Eng. Gas Turbines Power 2013, 135, 092601. [Google Scholar] [CrossRef]
- Liu, Z.; Karimi, I.A. Gas turbine performance prediction via machine learning. Energy 2020, 192, 116627. [Google Scholar] [CrossRef]
- Fast, M.; Assadi, M.; De, S. Development and multi-utility of an ANN model for an industrial gas turbine. Appl. Energy 2009, 86, 9–17. [Google Scholar] [CrossRef]
- Bartolini, C.; Caresana, F.; Comodi, G.; Pelagalli, L.; Renzi, M.; Vagni, S. Application of artificial neural networks to micro gas turbines. Energy Convers. Manag. 2011, 52, 781–788. [Google Scholar] [CrossRef]
- Nikpey, H.; Assadi, M.; Breuhaus, P. Development of an optimized artificial neural network model for combined heat and power micro gas turbines. Appl. Energy 2013, 108, 137–148. [Google Scholar] [CrossRef]
- Park, Y.; Choi, M.; Kim, K.; Li, X.; Jung, C.; Na, S.; Choi, G. Prediction of operating characteristics for industrial gas turbine combustor using an optimized artificial neural network. Energy 2020, 213, 118769. [Google Scholar] [CrossRef]
- Ye, W.; Wang, X.; Liu, Y. Application of artificial neural network for predicting the dynamic performance of a free piston Stirling engine. Energy 2020, 194, 116912. [Google Scholar] [CrossRef]
- Lemort, V.; Quoilin, S.; Cuevas, C.; Lebrun, J. Testing and modeling a scroll expander integrated into an Organic Rankine Cycle. Appl. Therm. Eng. 2009, 29, 3094–3102. [Google Scholar] [CrossRef]
- Matsui, N.; Nakamura, M.; Kosaka, T. Instantaneous torque analysis of hybrid stepping motor. IEEE Trans. Ind. Appl. 1996, 32, 1176–1182. [Google Scholar] [CrossRef]
- Iqteit, N.A.; Yahya, K.; Makahleh, F.M.; Attar, H.; Amer, A.; Solyman, A.A.A.; Qudaimat, A.; Tamizi, K. Simple Mathematical and Simulink Model of Stepper Motor. Energies 2022, 15, 6159. [Google Scholar] [CrossRef]
- Okhotnikov, I.; Noroozi, S.; Sewell, P.; Godfrey, P. Evaluation of steady flow torques and pressure losses in a rotary flow control valve by means of computational fluid dynamics. Int. J. Heat Fluid Flow 2017, 64, 89–102. [Google Scholar] [CrossRef]
- Amidror, I. Scattered data interpolation methods for electronic imaging systems: A survey. J. Electron. Imaging 2002, 11, 157–176. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of phases | 2 |
Phase voltages ( and ) | |
Step angle | |
Winding self inductance () | |
Winding resistance () | |
Maximum flux linkage () | |
Viscous friction coefficient (B) | Nm.s |
Total moment of inertia (J) | 2 |
Supply pressure () | 1000 |
Supply temperature () | 120∘ |
Valve ante-chamber pressure () | 600 |
Expander speed | 800 rpm |
Diameter of orifice () | 25 |
Diameter of valve shaft () | 15 |
Discharge velocity coefficient () | 0.98 |
Discharge coefficient () | 0.65 |
Jet angle () | 69∘ |
Cutoff angle () | 90∘ |
Pass angle () | 180∘ |
Parameter | Value |
---|---|
Half of rotor chord length (l) | mm |
Base circle radius (r) | mm |
Limaçon aspect ratio () | 0.171 |
Housing rotor clearance (C) | mm |
Clearance ratio () | 0.0153 |
Design coefficient (a) | 1.73 |
Depth of rotor housing (H) | mm |
Fluid type | R245fa |
Outlet pressure () | 100 |
Inlet port start angle | ∘ |
Inlet port end angle | ∘ |
Inlet port length | mm |
Outlet port start angle | 140∘ |
Outlet port end angle | 175∘ |
Outlet port length | mm |
Hyperparameters | Value |
---|---|
Learning rate | 0.4 |
Training function | ‘Trainbr’ |
No. of hidden layers | 2 |
No. of neurons in layer 1 | 10 |
No. of neurons in layer 2 | 30 |
Activation function | ‘radbasn’ |
Epoch size | 200 |
Target | Error Threshold | Prediction Accuracy (%) | |
---|---|---|---|
ANN | LI | ||
Energy | 5 J | 93.95 | 89.68 |
Filling factor | 5 | 94.31 | 92.53 |
Isentropic efficiency | 5% | 98.58 | 91.10 |
Mass flow | 0.005 kg/min | 99.29 | 92.53 |
Average accuracy | 96.53 | 91.46 |
Run | Input | Run-Time (s) | |||
---|---|---|---|---|---|
(rpm) | (kPa) | Classic Model | ANN Model | ||
1 | 90 | 800 | 1000 | 363.78 | 0.0374 |
2 | 90 | 1000 | 1000 | 375.63 | 0.0109 |
3 | 150 | 800 | 1300 | 118.79 | 0.0073 |
4 | 79 | 900 | 1200 | 53.10 | 0.0077 |
5 | 120 | 800 | 1000 | 358.36 | 0.0083 |
Average time: | 253.93 | 0.0143 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.S.; Sultan, I.; Phung, T.; Kumar, A. An Optimized Artificial Neural Network Model of a Limaçon-to-Circular Gas Expander with an Inlet Valve. Thermo 2024, 4, 252-272. https://doi.org/10.3390/thermo4020014
Hossain MS, Sultan I, Phung T, Kumar A. An Optimized Artificial Neural Network Model of a Limaçon-to-Circular Gas Expander with an Inlet Valve. Thermo. 2024; 4(2):252-272. https://doi.org/10.3390/thermo4020014
Chicago/Turabian StyleHossain, Md Shazzad, Ibrahim Sultan, Truong Phung, and Apurv Kumar. 2024. "An Optimized Artificial Neural Network Model of a Limaçon-to-Circular Gas Expander with an Inlet Valve" Thermo 4, no. 2: 252-272. https://doi.org/10.3390/thermo4020014
APA StyleHossain, M. S., Sultan, I., Phung, T., & Kumar, A. (2024). An Optimized Artificial Neural Network Model of a Limaçon-to-Circular Gas Expander with an Inlet Valve. Thermo, 4(2), 252-272. https://doi.org/10.3390/thermo4020014