Determinants of the Willingness to Use Autonomous Mobility as a Service in Germany
Abstract
:1. Introduction
2. Definition of Main Terms and Literature Review
2.1. Definition of Main Terms “Mobility”, “Autonomous Driving”, and “Mobility as a Service”
2.2. Overview of Selected Studies on the Topic of Willingness to Use AMaaS
3. Methodology
3.1. Study Design
3.2. Data Collection
3.3. Data Analysis
- p—Probability that someone is willing to use an AMaaS-Offer
- —Intercept (also called constant)
- N—Number of independent variable
- —Coefficient
- —Independent variable
4. Results
4.1. Audience Demographics and Significance
4.2. Factors Influencing the Willingness to Use AMaaS
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Question (Type) | Answer Options | Result |
---|---|---|
Q1 Which term best describes where you live? (Single-selection) | A1–Large city (at least 100,000 inhabitants) | A1—25.75% |
A2—Medium-sized city (at least 20,000 to less than 100,000 inhabitants) | A2—30.75% | |
A3—Small town (at least 5000 to less than 20,000 inhabitants) | A3—24.00% | |
A4—Rural community (less than 5000 inhabitants) | A4—19.50% | |
Q2 How do you typically get most of your commute when you do not work from home? (Single-selection) | A1—Car | A1—52.00% |
A2—On foot | A2—6.75% | |
A3—Bus | A3—7.75% | |
A4—Long-distance train (ICE, IC, etc.) | A4—0.50% | |
A5—S-Bahn or subway | A5—4.00% | |
A6—Regional train | A6—2.50% | |
A7—Tram | A7—1.50% | |
A8—Taxi | A8—0.00% | |
A9—Bicycle | A9—7.25% | |
A10—E-scooters | A10—0.00% | |
A11—Scooter or moped | A11—0.50% | |
A12—I work exclusively from home | A12—4.25% | |
A13—I am currently unemployed | A13—10.25% | |
A14—Different (Please specify) | A14—2.75% * | |
Q3 Which means of transport do you prefer to use to cover distances in everyday life? (Multiple-selection) | A1—Car | A1—69.00% |
A2—On foot | A2—37.00% | |
A3—Bus | A3—16.75% | |
A4—Long-distance train (ICE, IC, etc.) | A4—4.75% | |
A5—S-Bahn or subway | A5—11.50% | |
A6—Regional train | A6—7.50% | |
A7—Tram | A7—7.25% | |
A8—Taxi | A8—2.50% | |
A9—Bicycle | A9—31.00% | |
A10—E-scooters | A10—3.50% | |
A11—Scooter or moped | A11—2.75% | |
A12—Other (Please specify) | A12—0.50% ** | |
A13—None of the above | A13—0.50% | |
Q4 Do you currently have a driving license that allows you to drive a car (driver’s license class B)? (Single-selection) | A1—Yes | A1—87.50% |
A2—No | A2—12.50% | |
Q5 Does your household have a car that you can use regularly? (Single-selection) | A1—Yes | A1—86.50% |
A2—No | A2—13.50% | |
Q6 How many kilometers do you cover on average every day? (Single-selection) | A1—0 to 10 km | A1—32.00% |
A2—Over 10 to 50 km | A2—48.75% | |
A3—Over 50 to 100 km | A3—14.75% | |
A4—Over 100 to 500 km | A4—0.50% | |
A5—Over 500 to 1000 km | A5—0.50% | |
A6—Over 1000 km | A6—0.00% | |
Q7 How much time in minutes do you spend on average per day on working days in local public transport (ÖPNV for short)? (OpenEndedNumerical) | Maximum 70, Upper quartile 30, Median 2.5, Lower quartile 0, Minimum 0 | |
Q8 How would you describe your connection to the public transport network at home? (Single-selection) | A1—Very good: I can easily access various means of transport, and the connections are frequent. | A1—26.00% |
A2—Good: I have access to at least one means of transport, and the connections are sufficient. | A2—31.00% | |
A3—Average: I have access, but transportation is not always reliable or frequent. | A3—20.50% | |
A4—Bad: There are few connections, and transport is difficult to access. | A4—11.75% | |
A5—Very bad: I have little or no access to public transport. | A5—6.50% | |
A6—Not applicable: I do not use public transport. | A6—4.25% | |
Q9 Suppose you had the opportunity to use a service where you could use an app to call a car that would drive up to you fully automatically. The vehicle can then be used as your own or can take you to your planned destination fully automatically. It will then be released to other users. Could you imagine using a service like this? (Single-selection) | A1—Yes | A1—69.00% |
A2—No | A2—21.25% | |
A3—It depends (Please specify) | A3—9.75% *** | |
Q10 If you could imagine using such a service, which payment model would you prefer? (Single-selection) | A1—A monthly subscription where I can use the service unlimitedly | A1—27.54% |
A2—A monthly subscription where I can choose different mileage packages | A2—20.29% | |
A3—A monthly subscription where I can choose different minute packages | A3—2.90% | |
A4—Payment based on the minute | A4—4.35% | |
A5—Payment based on kilometers | A5—40.22% | |
A6—I would only use the service for free | A6—3.99% | |
A7—Other (Please specify) | A7—0.72% **** | |
Q11 How much would you be willing to pay per month in euros if you had unlimited use of a vehicle? (Single-selection) | A1—Less than 50 euros | A1—25.36% |
A2—More than 50 to 100 euros | A2—45.65% | |
A3—More than 100 to 200 euros | A3—18.84% | |
A4—More than 200 to 300 euros | A4—6.16% | |
A5—More than 300 to 400 euros | A5—2.90% | |
A6—More than 400 to 500 euros | A6—1.09% | |
A7—More than 500 euros (Please specify) | A7—0.00% | |
Q12 What qualities would be important to you in such a service? (Multiple-selection) | A1—High-quality, upper-class vehicles | A1—17.75% |
A2—Selection of different vehicles (e.g., small car, middle class, upper class, van, etc.) | A2—57.25% | |
A3—Purely electrically powered vehicles | A3—21.74% | |
A4—Can be used throughout Germany (e.g., to drive to another city) | A4—61.59% | |
A5—International usability (e.g., to go on vacation with the vehicle) | A5—20.29% | |
A6—Option to have the vehicle drive you | A6—25.36% | |
A7—An all-inclusive price where you do not have to pay based on usage | A7—26.09% | |
A8—Other features (Please specify) | A8—0.72% ***** | |
Q13 Would you be willing to give up your own car if such a service with the aforementioned characteristics were available to you? (Single-selection) | A1—Yes | A1—60.87% |
A2—No | A2—23.55% | |
A3—I do not have my own car | A3—12.68% | |
A4—Only under the following conditions (Please specify) | A4—2.90% ****** | |
Q14 What is the maximum number of minutes you would wait for an autonomous vehicle? (Single-selection) | A1—Less than 5 min | A1—4.35% |
A2—More than 5 to 10 min | A2—39.49% | |
A3—More than 10 to 15 min | A3—35.51% | |
A4—More than 15 to 20 min | A4—10.14% | |
A5—More than 20 to 30 min | A5—7.97% | |
A6—More than 30 min (Please specify) | A6—2.54% ******* | |
Q15 Why would you not be willing to use such a service? (Multiple-selection; only if Q9 is “No”) | A1—I do not need a car | A1—15.75% |
A2—I drive my own car | A2—61.00% | |
A3—I do not want to share a car | A3—23.00% | |
A4—Different reasons (Please specify) | A4—10.50% ******** |
Appendix B
References
- Tengilimoglu, O.; Carsten, O.; Wadud, Z. Implications of Automated Vehicles for Physical Road Environment: A Comprehensive Review. Transp. Res. Part. E Logist. Transp. Rev. 2023, 169, 102989. [Google Scholar] [CrossRef]
- Andraško, J.; Mesarčík, M. Automated Vehicles and New Transportation Services: Exploring Selected Legal Issues. In Digital Development of the European Union; Ramiro Troitiño, D., Kerikmäe, T., Hamuľák, O., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 277–299. ISBN 978-3-031-27311-7. [Google Scholar]
- Cascetta, E.; Henke, I. The Seventh Transport Revolution and the New Challenges for Sustainable Mobility. J. Urban Mobil. 2023, 4, 100059. [Google Scholar] [CrossRef]
- European Commission. Directorate General for Mobility and Transport. EU Transport in Figures: Statistical Pocketbook 2023; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Mobilität in Deutschland–MiD–Ergebnisbericht; Federal Ministry of Transport and Digital Infrastructure: Bonn, Germany, 2019; pp. 1–136.
- Shoup, D.C. The High Cost of Free Parking. J. Plan. Educ. Res. 1997, 17, 3–20. [Google Scholar] [CrossRef]
- Cao, J.; Menendez, M.; Waraich, R. Impacts of the Urban Parking System on Cruising Traffic and Policy Development: The Case of Zurich Downtown Area, Switzerland. Transportation 2019, 46, 883–908. [Google Scholar] [CrossRef]
- Alotaibi, E.T.; Herrmann, M. A Simulation Assessment of Autonomous Mobility on Demand in the City of Edinburgh. Procedia Comput. Sci. 2022, 201, 273–280. [Google Scholar] [CrossRef]
- Kristoffersen, S.; Ljungberg, F. Mobile Use of IT. In Proceedings of the IRIS22, Jyväskylä, Finland, 7–10 August 1999. [Google Scholar]
- Sprenger, F. Autonome Automobilität: Eine Medien-Und Kulturwissenschaftliche Einführung. In Autonome Autos; Sprenger, F., Ed.; Transcript Verlag: Bielefeld, Germany, 2021; pp. 9–82. ISBN 978-3-8394-5024-6. [Google Scholar]
- Hörold, S. Instrumentarium zur Qualitätsevaluation von Mobilitätsinformation; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2016; ISBN 978-3-658-15457-8. [Google Scholar]
- Krannich, D. Mobile System Design: Herausforderungen, Anforderungen und Lösungsansätze für Design, Implementierung und Usability-Testing Mobiler Systeme; 1. Aufl.; Books on Demand: Norderstedt, Germany, 2010; ISBN 978-3-8423-0724-7. [Google Scholar]
- Peng, B.; Sun, Q.; Li, S.E.; Kum, D.; Yin, Y.; Wei, J.; Gu, T. End-to-End Autonomous Driving through Dueling Double Deep Q-Network. Automot. Innov. 2021, 4, 328–337. [Google Scholar] [CrossRef]
- Herrmann, A.; Brenner, W.; Stadler, R. Autonomous Driving: How the Driverless Revolution Will Change the World; Emerald Publishing Limited: Bentley, UK, 2018; ISBN 978-1-78714-834-5. [Google Scholar]
- Edwards, C. Moore’s Law: What Comes Next? Commun. ACM 2021, 64, 12–14. [Google Scholar] [CrossRef]
- Gupta, M.; Upadhyay, V.; Kumar, P.; Al-Turjman, F. Implementation of Autonomous Driving Using Ensemble-M in Simulated Environment. Soft Comput. 2021, 25, 12429–12438. [Google Scholar] [CrossRef]
- Abbas, W.; Khan, M.F.; Taj, M.; Mahmood, A. Statistically Correlated Multi-Task Learning for Autonomous Driving. Neural Comput. Appl. 2021, 33, 12921–12938. [Google Scholar] [CrossRef]
- Hensher, D.A. Understanding Mobility as a Service (MaaS): Past, Present and Future; Elsevier: Amsterdam, The Netherlands; Cambridge, MA, USA, 2020; ISBN 978-0-12-820044-5. [Google Scholar]
- Wong, Y.Z.; Hensher, D.A. Delivering Mobility as a Service (MaaS) through a Broker/Aggregator Business Model. Transportation 2021, 48, 1837–1863. [Google Scholar] [CrossRef]
- Kuhnimhof, T.; Eisenmann, C. Mobility-on-Demand Pricing versus Private Vehicle TCO: How Cost Structures Hinder the Dethroning of the Car. Transportation 2023, 50, 707–731. [Google Scholar] [CrossRef]
- Datenbanken|EBSCO. Available online: https://www.ebsco.com/de-de/produkte/datenbanken?f%5B0%5D=glossary_az_content_title%3As (accessed on 8 May 2024).
- Journals Beginning with A|SpringerLink. Available online: https://link.springer.com/journals/a/1 (accessed on 8 May 2024).
- Web of Science Master Journal List–Search. Available online: https://mjl.clarivate.com/search-results (accessed on 8 May 2024).
- Scopus-Sources. Available online: https://www.scopus.com/sources.uri (accessed on 8 May 2024).
- Liljamo, T.; Liimatainen, H.; Pöllänen, M.; Viri, R. The Effects of Mobility as a Service and Autonomous Vehicles on People’s Willingness to Own a Car in the Future. Sustainability 2021, 13, 1962. [Google Scholar] [CrossRef]
- Bischoff, J.; Maciejewski, M. Simulation of City-Wide Replacement of Private Cars with Autonomous Taxis in Berlin. Procedia Comput. Sci. 2016, 83, 237–244. [Google Scholar] [CrossRef]
- Fagnant, D.J.; Kockelman, K.M.; Bansal, P. Operations of Shared Autonomous Vehicle Fleet for Austin, Texas, Market. Transp. Res. Rec. 2016, 2563, 98–106. [Google Scholar] [CrossRef]
- Wilson, S. Urban Mobility System Upgrade–How Shared Self-Driving Cars Could Change City Traffic. In Proceedings of the ITF, Paris, France, 25 September 2015. [Google Scholar]
- Kamargianni, M.; Matyas, M.; Li, W.; Muscat, J. Londoners’ Attitudes towards Car-Ownership and Mobility-as-a-Service: Impact Assessment and Opportunities That Lie Ahead; MaaSLab: London, UK, 2018. [Google Scholar]
- Barbour, N.; Menon, N.; Zhang, Y.; Mannering, F. Shared Automated Vehicles: A Statistical Analysis of Consumer Use Likelihoods and Concerns. Transp. Policy 2019, 80, 86–93. [Google Scholar] [CrossRef]
- Shamshiripour, A.; Rahimi, E.; Shabanpour, R.; Mohammadian, A. Dynamics of Travelers’ Modality Style in the Presence of Mobility-on-Demand Services. Transp. Res. Part. C Emerg. Technol. 2020, 117, 102668. [Google Scholar] [CrossRef]
- Buy Survey Responses Straight from the Source. Available online: https://www.pollfish.com/audience (accessed on 9 March 2024).
- Rothschild, D.; Konitzer, T. Random Device Engagement (RDE) with Organic Sample; Pollfish: New York, NY, USA, 2018. [Google Scholar]
- Data Quality Is Everything. Available online: https://www.pollfish.com/methodology (accessed on 9 March 2024).
- Gundersen, D.A.; Wivagg, J.; Young, W.J.; Yan, T.; Delnevo, C.D. The Use of Multimode Data Collection in Random Digit Dialing Cell Phone Surveys for Young Adults: Feasibility Study. J. Med. Internet Res. 2021, 23, e31545. [Google Scholar] [CrossRef] [PubMed]
- El-Masri, M.M. Non-Probability Sampling. Can. Nurse 2017, 113, 17. [Google Scholar] [PubMed]
- Akram, N.A.; Jameel, N.; Faiz, S.; Hussain, M.; Qadir, A.; Raza, A. An Analytical Approach to Estimate Prevalence of Depression from a Non-Probability Sample of College Students in Karachi Using Beck Depression Inventory. Ann. Abbasi Shaheed Hosp. Karachi Med. Dent. Coll. 2020, 25, 130–136. [Google Scholar] [CrossRef]
- Denney, V. Exploring the upside of risk in project management: A phenomenological inquiry. J. Mod. Proj. Manag. 2020, 8, 278–299. [Google Scholar] [CrossRef]
- Huberman, G.; Konitzer, T.; Krupenkin, M.; Rothschild, D.; Hill, S. Economic Expectations, Voting, and Economic Decisions around Elections. AEA Pap. Proc. 2018, 108, 597–602. [Google Scholar] [CrossRef]
- Lee, J.; Solomon, M.; Stead, T.; Kwon, B.; Ganti, L. Impact of COVID-19 on the Mental Health of US College Students. BMC Psychol. 2021, 9, 95. [Google Scholar] [CrossRef]
- Piltch-Loeb, R.; Savoia, E.; Goldberg, B.; Hughes, B.; Verhey, T.; Kayyem, J.; Miller-Idriss, C.; Testa, M. Examining the Effect of Information Channel on COVID-19 Vaccine Acceptance. PLoS ONE 2021, 16, e0251095. [Google Scholar] [CrossRef]
- Baranauskas, G.; Raišienė, A.G. Reflections on the Customer Decision-Making Process in the Digital Insurance Platforms: An Empirical Study of the Baltic Market. Appl. Sci. 2021, 11, 8524. [Google Scholar] [CrossRef]
- Cheang, B. Economic Liberalism and the Developmental State: Hong Kong and Singapore’s Post-War Development; Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-031-08099-9. [Google Scholar]
- Gabler, S. Anpassungsgewichtung. In Methoden-Lexikon für Die Sozialwissenschaften; Diaz-Bone, R., Weischer, C., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2015; p. 21. ISBN 978-3-531-16629-2. [Google Scholar]
- Puzas, A. How to Weight Your Survey Results in Pollfish. Pollfish Resour. 2019. Available online: https://resources.pollfish.com/pollfish-school/how-to-weight-your-survey-results-in-pollfish/ (accessed on 9 March 2024).
- Sample Size Calculator-Confidence Level, Confidence Interval, Sample Size, Population Size, Relevant Population-Creative Research Systems. Available online: https://surveysystem.com/sscalc.htm (accessed on 9 March 2024).
- Bevölkerung Nach Altersgruppen (ab 2011). Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Bevoelkerungsstand/Tabellen/liste-altersgruppen.html (accessed on 9 March 2024).
- Dandona, R.; George, S.; Majumder, M.; Akbar, M.; Kumar, G.A. Stillbirth Undercount in the Sample Registration System and National Family Health Survey, India. Bull. World Health Organ. 2023, 101, 191–201. [Google Scholar] [CrossRef]
- Young, S.; Bethancourt, H.; Frongillo, E.; Viviani, S.; Cafiero, C. Concurrence of Water and Food Insecurities, 25 Low- and Middle-Income Countries. Bull. World Health Organ. 2023, 101, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Pardo, S.A. Statistical Methods and Analyses for Medical Devices; Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-031-26138-1. [Google Scholar]
- Au, C.-D. Faktoren der Investment-Entscheidungsfindung Hinsichtlich Krypto-Robo-Advisory: Eine Analyse von Privatbankkunden; Business, Economics, and Law; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2023; ISBN 978-3-658-43297-3. [Google Scholar]
- Morales-Espín, B.; Ortiz, F.; Sánchez-Lara, E.; Páez-Vacas, M.; Muñoz-Lara, K.; Bravo-Vera, E.; Franco-Mena, D.; Baer, N.; Oleas, N.H.; Tobes, I. Understanding the Relation with Nature in the City: Biodiversity Knowledge and Environmental Awareness in a Periurban Area of Quito, Ecuador. In Sustainability, Energy and City; Chauvin, M.I.A., Botto-Tobar, M., Díaz Cadena, A., Montes León, S., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2022; Volume 379, pp. 70–80. ISBN 978-3-030-94261-8. [Google Scholar]
- Saini, M.; Soni, S.; Yadav, N.; Agrawal, R.; Mathur, S.; Sachdeva, K. Study the Impact of Covid-19 Pandemic Confinement on Body Weight in Young Adults of 17–18 Yrs in Jaipur. J. Pharm. Negat. Results 2023, 14, 807–810. [Google Scholar] [CrossRef]
- Smith, E.; Nischal, N.; Murphy, J.; Azzopardi, C.; Iyengar, K.P.; Haleem, S.; Botchu, R. Does Chemical Shift Magnetic Resonance Imaging Improve Visualization of Pars Interarticularis Defect? Indian J. Radiol. Imaging 2023, 33, 327–331. [Google Scholar] [CrossRef]
- Backhaus, K.; Erichson, B.; Gensler, S.; Weiber, R.; Weiber, T. Multivariate Analysis: An Application-Oriented Introduction; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2021; ISBN 978-3-658-32588-6. [Google Scholar]
- Papadopoulos, A.; Stark, R.B. Does Home Health Care Increase the Probability of 30-Day Hospital Readmissions? Interpreting Coefficient Sign Reversals, or Their Absence, in Binary Logistic Regression Analysis. Am. Stat. 2021, 75, 173–184. [Google Scholar] [CrossRef]
- Szántó, T.K. Handling Outliers in Bankruptcy Prediction Models Based on Logistic Regression. Public Financ. Q.-Hung. 2023, 69. [Google Scholar] [CrossRef]
- Weisburd, D.; Wilson, D.B.; Wooditch, A.; Britt, C. Advanced Statistics in Criminology and Criminal Justice; Springer International Publishing: Cham, Switzerland, 2022; ISBN 978-3-030-67737-4. [Google Scholar]
- Jaskowiak, P.A.; Costa, I.G.; Campello, R.J.G.B. The Area under the ROC Curve as a Measure of Clustering Quality. Data Min. Knowl. Discov. 2022, 36, 1219–1245. [Google Scholar] [CrossRef]
- Hodeghatta, U.R.; Nayak, U. Practical Business Analytics Using R and Python: Solve Business Problems Using a Data-Driven Approach; Apress: Berkeley, CA, USA, 2023; ISBN 978-1-4842-8753-8. [Google Scholar]
- Hassouna, A. Statistics for Clinicians: How Much Should a Doctor Know? Springer International Publishing: Cham, Switzerland, 2023; ISBN 978-3-031-20757-0. [Google Scholar]
- Ergebnis 12411-0006-Bevölkerung: Deutschland, Stichtag, Altersjahre, Nationalität/Geschlecht/Familienstand. Available online: https://www-genesis.destatis.de/genesis/online?operation=abruftabelleBearbeiten&levelindex=1&levelid=1709991417957&auswahloperation=abruftabelleAuspraegungAuswaehlen&auswahlverzeichnis=ordnungsstruktur&auswahlziel=werteabruf&code=12411-0006&auswahltext=&nummer=5&variable=5&name=NAT&werteabruf=Werteabruf#abreadcrumb (accessed on 9 March 2024).
- Sheskin, D.J. Parametric Versus Nonparametric Tests. In International Encyclopedia of Statistical Science; Lovric, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1051–1052. ISBN 978-3-642-04897-5. [Google Scholar]
- Ergebnis 12411-07-01-5-B-Durchschnittsalter der Bevölkerung-Stichtag 31.12.-Regionale Ebenen. Available online: https://www.regionalstatistik.de/genesis/online?operation=abruftabelleBearbeiten&levelindex=1&levelid=1709992112790&auswahloperation=abruftabelleAuspraegungAuswaehlen&auswahlverzeichnis=ordnungsstruktur&auswahlziel=werteabruf&code=12411-07-01-5-B&auswahltext=&nummer=6&variable=6&name=GEMEIN&werteabruf=Werteabruf#abreadcrumb (accessed on 9 March 2024).
- Wingerter, C. 5.1 Arbeitsmarkt. In Datenreport 2021. Ein Sozialbericht für die Bundesrepublik Deutschland; bpb: Bonn, Germany, 2021; p. 152. ISBN 978-3-8389-7209-1. [Google Scholar]
- Springer Nature Limited. The Statesman’s Yearbook 2024: The Politics, Cultures and Economies of the World; Palgrave Macmillan UK: London, UK, 2023; ISBN 978-1-349-96075-0. [Google Scholar]
- Bundesinstitut für Bevölkerungsforschung Erwerbstätigenquote Nach Alter und Geschlecht, 2000 Und 2020. Available online: https://www.demografie-portal.de/DE/Fakten/Daten/erwerbstaetigenquote-alter.csv?__blob=publicationFile&v=3 (accessed on 4 April 2024).
- VGR des Bundes-Inlandsproduktberechnung-Vierteljahresergebnisse; Volume 18 Issue 1.2 4th Quarter. 2023; 18; Statistisches Bundesamt: Wiesbaden, Germany, 2024.
- Mazari, S. Care, Intersektionalität und Entgeltungleichheiten. In Soziale Arbeit und Gesellschaftliche Transformation Zwischen Exklusion und Inklusion; Friele, B., Kart, M., Kergel, D., Rieger, J., Schomers, B., Sen, K., Staats, M., Trotzke, P., Eds.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2023; pp. 251–261. ISBN 978-3-658-41470-2. [Google Scholar]
Attribute | Test | Result | Test Suggestions |
---|---|---|---|
Gender | Chi2 Test | χ2(1) = 0.75, p = 0.385 | No significant deviation from the population |
Age | Kolmogorov–Smirnov | Statistics = 0.07, p = 0.021 | Significant deviation from a normal distribution |
Kolmogorov–Smirnov (Lilliefors Corr.) | Statistics = 0.07, p = <0.001 | Significant deviation from a normal distribution | |
Shapiro–Wilk | Statistics = 0.96, p = <0.001 | Significant deviation from a normal distribution | |
Anderson–Darling | Statistics = 3.84, p = <0.001 | Significant deviation from a normal distribution | |
One-Sample Wilcoxon Test | W = 38645, z = −0.063, p = 0.529 | No significant deviation from the population | |
Employment_ status | Chi2 Test | χ2(1) = 0.1, p = 0.752 | No significant deviation from the population |
Married | Chi2 Test | χ2(1) = 14.75, p = <0.001 | Significant deviation from the population |
Area | Chi2 Test | χ2(15) = 13.25, p = 0.583 | No significant deviation from the population |
Coefficient | Standard Error | z | p | Odds Ratio | 95% Conf. Interval | |
---|---|---|---|---|---|---|
Constant | 23.66 | 38,156.83 | 0 | 1 | 18,839,415,659.06 | 0–Infinity |
Gender female | −0.25 | 0.29 | 0.87 | 0.385 | 0.78 | 0.44–1.38 |
Age | −0.02 | 0.01 | 2.37 | 0.018 | 0.98 | 0.96–1 |
Driving_license yes | 1.15 | 0.51 | 2.27 | 0.023 | 3.17 | 1.17–8.58 |
Car_available yes | 0.52 | 0.49 | 1.06 | 0.291 | 1.68 | 0.64–4.37 |
Place_of_residence small_town | −0.31 | 0.41 | 0.76 | 0.445 | 0.73 | 0.33–1.63 |
Place_of_residence large_city | 0.57 | 0.5 | 1.13 | 0.259 | 1.76 | 0.66–4.73 |
Place_of_residence medium-sized_city | −0.29 | 0.43 | 0.68 | 0.498 | 0.75 | 0.32–1.73 |
Public_transport_quality | −0.31 | 0.11 | 2.81 | 0.005 | 0.73 | 0.59–0.91 |
Number_of_children | −0.22 | 0.13 | 1.71 | 0.087 | 0.8 | 0.62–1.03 |
Mostly_car_usage? yes | 0.35 | 0.34 | 1.04 | 0.301 | 1.42 | 0.73–2.74 |
Employment_status employed | 0.44 | 0.32 | 1.4 | 0.161 | 1.56 | 0.84–2.9 |
Area Rheinland-Pfalz | −21.48 | 38,156.83 | 0 | 1 | 0 | 0–Infinity |
Area Baden-Wurttemberg | −22.39 | 38,156.83 | 0 | 1 | 0 | 0–Infinity |
Area Land Berlin | −23.57 | 38,156.83 | 0 | 1 | 0 | 0–Infinity |
Area Saxony | −21.02 | 38,156.83 | 0 | 1 | 0 | 0–Infinity |
Area North Rhine-Westphalia | −22.37 | 38,156.83 | 0 | 1 | 0 | 0–Infinity |
Area Hesse | −21.56 | 38,156.83 | 0 | 1 | 0 | 0–Infinity |
Area Bavaria | −22.28 | 38,156.83 | 0 | 1 | 0 | 0–Infinity |
Area Lower Saxony | −21.85 | 38,156.83 | 0 | 1 | 0 | 0–Infinity |
Area Saarland | −22.13 | 38,156.83 | 0 | 1 | 0 | 0–Infinity |
Area Saxony-Anhalt | −21.79 | 38,156.83 | 0 | 1 | 0 | 0–Infinity |
Area Thuringia | −21.68 | 38,156.83 | 0 | 1 | 0 | 0–Infinity |
Area Schleswig-Holstein | −20.91 | 38,156.83 | 0 | 1 | 0 | 0–Infinity |
Area Mecklenburg-Vorpommern | −0.9 | 40,697.91 | 0 | 1 | 0.41 | 0–Infinity |
Area Free and Hanseatic City of Hamburg | −1.18 | 40,367.15 | 0 | 1 | 0.31 | 0–Infinity |
Area Brandenburg | −0.57 | 40,734.95 | 0 | 1 | 0.56 | 0–Infinity |
Area Bremen | −45.09 | 41,107.66 | 0 | 0.999 | 0 | 0–Infinity |
Usage_time_public_transport | 0.01 | 0 | 1.62 | 0.106 | 1.01 | 1–1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glimm, F.; Fabus, M. Determinants of the Willingness to Use Autonomous Mobility as a Service in Germany. Future Transp. 2024, 4, 746-764. https://doi.org/10.3390/futuretransp4030035
Glimm F, Fabus M. Determinants of the Willingness to Use Autonomous Mobility as a Service in Germany. Future Transportation. 2024; 4(3):746-764. https://doi.org/10.3390/futuretransp4030035
Chicago/Turabian StyleGlimm, Frieder, and Michal Fabus. 2024. "Determinants of the Willingness to Use Autonomous Mobility as a Service in Germany" Future Transportation 4, no. 3: 746-764. https://doi.org/10.3390/futuretransp4030035
APA StyleGlimm, F., & Fabus, M. (2024). Determinants of the Willingness to Use Autonomous Mobility as a Service in Germany. Future Transportation, 4(3), 746-764. https://doi.org/10.3390/futuretransp4030035