The Role of L-Carnitine in Kidney Disease and Related Metabolic Dysfunctions
Abstract
:1. Pathophysiology of Kidney Disease and Relationship between Carnitine Metabolism and Kidney Function
1.1. Metabolic Alterations in Kidney Disease and Potential Protective Role of L-Carnitine
1.2. Role of the Mitochondria in Kidney Disease
2. Diet in Chronic Kidney Disease
- Hyperkalemia with a risk of arrhythmia;
- An increase in plasma urea leading to neurotoxicity and cardiac toxicity;
- An increase in phosphate, which can damage the arterial structure and thereby lead to an increase of the left ventricular volume due to the increased afterload;
- Hypervolemia with a risk of arterial hypertension and pulmonary edema.
3. L-Carnitine in Acute Kidney Injury
4. Acute Kidney Injury from Infection and Drugs
5. Dialysis Related Complications
5.1. L-Carnitine in Anemia and Response to Erythropoietin
- Increased plasma L-carnitine concentrations (p < 0.00001);
- Improved the response to erythropoiesis-stimulating agents (ESA) (p < 0.00001);
- Decreased the required ESA doses in patients receiving hemodialysis (p < 0.00001);
- Maintained hemoglobin and hematocrit levels.
- Adults: 20 mg/kg or 1–2 g L-carnitine IV after each dialysis session
- Children: 20 mg/kg after each dialysis session or
- o
- Children >40 kg: 1 g L-carnitine IV
- o
- Children 20–40 kg: 500 mg L-carnitine IV
- o
- Children 10–20 kg: 200 mg L-carnitine IV
5.2. L-Carnitine and Intradialytic Hypotension
- Adults: 20 mg/kg or 1–2 g L-carnitine IV after each dialysis session
- Children: 20 mg/kg or
- o
- Children >40 kg: 1 g L-carnitine IV
- o
- Children 20–40 kg: 500 mg L-carnitine IV
- o
- Children 10–20 kg: 200 mg L-carnitine IV
5.3. Role of Carnitine in Reducing Cardiovascular Complications
6. Future Perspectives in the Management of Kidney Disease: The Role of Genomics, Proteomics, Metabolomics, and the Microbiome
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Longo, N.; Frigeni, M.; Pasquali, M. Carnitine Transport and Fatty Acid Oxidation. Biochim. Biophys. Acta 2016, 1863, 2422–2435. [Google Scholar] [CrossRef]
- Virmani, M.A.; Cirulli, M. The Role of l-Carnitine in Mitochondria, Prevention of Metabolic Inflexibility and Disease Initiation. Int. J. Mol. Sci. 2022, 23, 2717. [Google Scholar] [CrossRef] [PubMed]
- Evans, A. Dialysis-Related Carnitine Disorder and Levocarnitine Pharmacology. Am. J. Kidney Dis. 2003, 41, S13–S26. [Google Scholar] [CrossRef] [PubMed]
- Rebouche, C.J. Kinetics, Pharmacokinetics, and Regulation of l-Carnitine and Acetyl-l-Carnitine Metabolism. Ann. N. Y. Acad. Sci. 2004, 1033, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.E.; Faull, R.J.; Evans, A.M. l-carnitine Supplementation in the Dialysis Population: Are Australian Patients Missing Out? Nephrology 2008, 13, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Wasserstein, A.G. l-carnitine Supplementation in Dialysis: Treatment in Quest of Disease. Semin. Dial. 2013, 26, 11–15. [Google Scholar] [CrossRef]
- Wanner, C.; Hörl, W.H. Carnitine Abnormalities in Patients with Renal Insufficiency. Pathophysiological and Therapeutical Aspects. Nephron 1988, 50, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Virmani, A.; Binienda, Z. Role of Carnitine Esters in Brain Neuropathology. Mol. Asp. Med. 2004, 25, 533–549. [Google Scholar] [CrossRef]
- Fouque, D.; Holt, S.; Guebre-Egziabher, F.; Nakamura, K.; Vianey-Saban, C.; Hadj-Aïssa, A.; Hoppel, C.L.; Kopple, J.D. Relationship Between Serum Carnitine, Acylcarnitines, and Renal Function in Patients with Chronic Renal Disease. J. Ren. Nutr. 2006, 16, 125–131. [Google Scholar] [CrossRef]
- Hatanaka, Y.; Higuchi, T.; Akiya, Y.; Horikami, T.; Tei, R.; Furukawa, T.; Takashima, H.; Tomita, H.; Abe, M. Prevalence of Carnitine Deficiency and Decreased Carnitine Levels in Patients on Hemodialysis. Blood Purif. 2019, 47, 38–44. [Google Scholar] [CrossRef]
- Almannai, M.; Alfadhel, M.; El-Hattab, A.W. Carnitine Inborn Errors of Metabolism. Molecules 2019, 24, 3251. [Google Scholar] [CrossRef] [Green Version]
- Che, R.; Yuan, Y.; Huang, S.; Zhang, A. Mitochondrial Dysfunction in the Pathophysiology of Renal Diseases. Am. J. Physiol. Renal. Physiol. 2014, 306, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Virmani, A.; Pinto, L.; Binienda, Z.; Ali, S. Food, Nutrigenomics, and Neurodegeneration—Neuroprotection by What You Eat! Mol. Neurobiol. 2013, 48, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Dan Dunn, J.; Alvarez, L.A.; Zhang, X.; Soldati, T. Reactive Oxygen Species and Mitochondria: A Nexus of Cellular Homeostasis. Redox Biol. 2015, 6, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Duann, P.; Lin, P.H. Mitochondria Damage and Kidney Disease. Adv. Exp. Med. Biol. 2017, 982, 529–551. [Google Scholar] [CrossRef]
- Bhatia, D.; Capili, A.; Choi, M.E. Mitochondrial Dysfunction in Kidney Injury, Inflammation, and Disease: Potential Therapeutic Approaches. Kidney Res. Clin. Pract. 2020, 39, 244–258. [Google Scholar] [CrossRef]
- Berezhnov, A.V.; Fedotova, E.I.; Nenov, M.N.; Kasymov, V.A.; Pimenov, O.Y.; Dynnik, V.V. Dissecting Cellular Mechanisms of Long-Chain Acylcarnitines—Driven Cardiotoxicity: Disturbance of Calcium Homeostasis, Activation of Ca2+-dependent Phospholipases, and Mitochondrial Energetics Collapse. Int. J. Mol. Sci. 2020, 21, 7461. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, M.J.; Krebs, H.A. The Fuel of Respiration of Rat Kidney Cortex. Biochem. J. 1969, 112, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, G.L.; Baughman, V. Carnitine Deficiency, Mitochondrial Metabolism, and Abnormal Response to Anesthetics. Anesthesiology 2006, 104, 1343. [Google Scholar] [CrossRef]
- Ertunc, M.E.; Hotamisligil, G.S. Lipid Signalling and Lipotoxicity in Metaflammation: Indications for Metabolic Disease Pathogenesis and Treatment. J. Lipid Res. 2016, 57, 2099–2114. [Google Scholar] [CrossRef] [Green Version]
- Nishi, H.; Higashihara, T.; Inagi, R. Lipotoxicity in Kidney, Heart, and Skeletal Muscle Dysfunction. Nutrients 2019, 11, 1664. [Google Scholar] [CrossRef] [Green Version]
- Schrauwen, P.; Hesselink, M.K. Oxidative Capacity, Lipotoxicity, and Mitochondrial Damage in Type 2 Diabetes. Diabetes 2004, 53, 1412–1417. [Google Scholar] [CrossRef] [Green Version]
- Schrauwen, P.; Schrauwen-Hinderling, V.; Hoeks, J.; Hesselink, M.K. Mitochondrial Dysfunction and Lipotoxicity. Biochim. Biophys. Acta 2010, 1801, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Sergi, D.; Naumovski, N.; Heilbronn, L.K.; Abeywardena, M.; O’Callaghan, N.; Lionetti, L.; Luscombe-Marsh, N. Mitochondrial (Dys)Function and Insulin Resistance: From Pathophysiological Molecular Mechanisms to the Impact of Diet. Front. Physiol. 2019, 10, 532. [Google Scholar] [CrossRef]
- Wajner, M.; Amaral, A.U. Mitochondrial Dysfunction in Fatty Acid Oxidation Disorders: Insights from Human and Animal Studies. Biosci. Rep. 2015, 36, e00281. [Google Scholar] [CrossRef] [Green Version]
- Katsoulieris, E.; Mabley, J.G.; Samai, M.; Sharpe, M.A.; Green, I.C.; Chatterjee, P.K. Lipotoxicity in Renal Proximal Tubular Cells: Relationship Between Endoplasmic Reticulum Stress and Oxidative Stress Pathways. Free. Radic. Biol. Med. 2010, 48, 1654–1662. [Google Scholar] [CrossRef] [PubMed]
- Simon, N.; Hertig, A. Alteration of Fatty Acid Oxidation in Tubular Epithelial Cells: From Acute Kidney Injury to Renal Fibrogenesis. Front. Med. 2015, 2, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, T.; Takabatake, Y.; Takahashi, A.; Kimura, T.; Namba, T.; Matsuda, J.; Minami, S.; Kaimori, J.Y.; Matsui, I.; Matsusaka, T.; et al. High-Fat Diet-Induced Lysosomal Dysfunction and Impaired Autophagic Flux Contribute to Lipotoxicity in the Kidney. J. Am. Soc. Nephrol. 2017, 28, 1534–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takemura, K.; Nishi, H.; Inagi, R. Mitochondrial Dysfunction in Kidney Disease and Uremic Sarcopenia. Front. Physiol. 2020, 11, 565023. [Google Scholar] [CrossRef]
- Melov, S.; Coskun, P.; Patel, M.; Tuinstra, R.; Cottrell, B.; Jun, A.S.; Zastawny, T.H.; Dizdaroglu, M.; Goodman, S.I.; Huang, T.-T.; et al. Mitochondrial Disease in Superoxide Dismutase 2 Mutant Mice. Proc. Natl. Acad. Sci. USA 1999, 96, 846–851. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Kim, H.; Park, L.; Min, D.; Park, J.; Choi, S.; Park, M.H. Effective Delivery of Endogenous Antioxidants Ameliorates Diabetic Nephropathy. PLoS ONE 2015, 10, e0130815. [Google Scholar] [CrossRef] [Green Version]
- Alicic, R.Z.; Rooney, M.T.; Tuttle, K.R. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin. J. Am. Soc. Nephrol. 2017, 12, 2032–2045. [Google Scholar] [CrossRef] [Green Version]
- Forbes, J.M.; Thorburn, D.R. Mitochondrial Dysfunction in Diabetic Kidney Disease. Nat. Rev. Nephrol. 2018, 14, 291–312. [Google Scholar] [CrossRef]
- Konari, N.; Nagaishi, K.; Kikuchi, S.; Fujimiya, M. Mitochondria Transfer from Mesenchymal Stem Cells Structurally and Functionally Repairs Renal Proximal Tubular Epithelial Cells in Diabetic Nephropathy In Vivo. Sci. Rep. 2019, 9, 5184. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Nakashima, M.; Ishikiriyama, T.; Nakashima, H.; Yamagata, A.; Imakiire, T.; Kinoshita, M.; Seki, S.; Kumagai, H.; Oshima, N. Effects of l-Carnitine Treatment on Kidney Mitochondria and Macrophages in Mice with Diabetic Nephropathy. Kidney Blood Press. Res. 2022, 47, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Rees, L.; Shaw, V. Nutrition in Children with CRF and on Dialysis. Pediatr. Nephrol. 2007, 22, 1689–1702. [Google Scholar] [CrossRef] [Green Version]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Martin, W.F.; Armstrong, L.E.; Rodriguez, N.R. Dietary Protein Intake and Renal Function. Nutr. Metab. 2005, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Ko, G.J.; Rhee, C.M.; Kalantar-Zadeh, K.; Joshi, S. The Effects of High-Protein Diets on Kidney Health and Longevity. J. Am. Soc. Nephrol. 2020, 31, 1667–1679. [Google Scholar] [CrossRef] [PubMed]
- Molina, P.; Gavela, E.; Vizcaíno, B.; Huarte, E.; Carrero, J.J. Optimizing Diet to Slow CKD Progression. Front. Med. 2021, 8, 654250. [Google Scholar] [CrossRef] [PubMed]
- Sherman, R.A. Modifying the Dialysis Prescription to Reduce Intradialytic Hypotension. Am. J. Kidney Dis. 2001, 38, S18–S25. [Google Scholar] [CrossRef]
- Rostoker, G.; Griuncelli, M.; Loridon, C.; Benmaadi, A.; Illouz, E. Left-Ventricular Diastolic Dysfunction as A Risk Factor for Dialytic Hypotension. Cardiology 2009, 114, 142–149. [Google Scholar] [CrossRef]
- Chewcharat, A.; Chewcharat, P.; Liu, W.; Cellini, J.; Phipps, E.A.; Melendez Young, J.A.; Nigwekar, S.U. The Effect of Levocarnitine Supplementation on Dialysis-Related Hypotension: A Systematic Review, Meta-Analysis, and Trial Sequential Analysis. PLoS ONE 2022, 17, e0271307. [Google Scholar] [CrossRef]
- Bazargani, B.; Mojtahedi, S.Y.; Fahimi, D.; Askarian, F.; Moghtaderi, M.; Abbasi, A.; Samimi, M.; Bakhtiari Koohsorkhi, M. Evaluation of the Relationship Between Serum Carnitine Levels and Intradialytic Complications in Children with Kidney Failure. Pediatr. Nephrol. 2022, 37, 2179–2183. [Google Scholar] [CrossRef] [PubMed]
- Sgambat, K.; Clauss, S.; Moudgil, A. Effect of Levocarnitine Supplementation on Myocardial Strain in Children With Acute Kidney Injury Receiving Continuous Kidney Replacement Therapy: A Pilot Study. Pediatr. Nephrol. 2021, 36, 1607–1616. [Google Scholar] [CrossRef]
- Gheissari, A.; Aslani, N.; Eshraghi, A.; Moslehi, M.; Merikhi, A.; Keikhah, M.; Haghjoo Javanmard, S.; Vaseghi, G. Preventive Effect of l-Carnitine on Scar Formation During Acute Pyelonephritis: A Randomized Placebo-Controlled Trial. Am. J. Ther. 2020, 27, e229–e234. [Google Scholar] [CrossRef] [PubMed]
- Van de Wyngaert, C.; Dewulf, J.P.; Collienne, C.; Laterre, P.F.; Hantson, P. Carnitine Deficiency after Long-Term Continuous Renal Replacement Therapy. Case Rep. Crit. Care 2022, 2022, 4142539. [Google Scholar] [CrossRef]
- Mohammadi, M.; Hajhossein Talasaz, A.; Alidoosti, M.; Pour Hosseini, H.R.; Gholami, K.; Jalali, A.; Aryannejad, H. Nephro-protective Effects of l-Carnitine Against Contrast-Induced Nephropathy in Patients Undergoing Percutaneous Coronary Intervention: A Randomized Open-Labelled Clinical Trial. J. Tehran Heart Cent. 2017, 12, 57–64. [Google Scholar]
- Vandijck, D.M.; Reynvoet, E.; Blot, S.I.; Vandecasteele, E.; Hoste, E.A. Severe Infection, Sepsis and Acute Kidney Injury. Acta Clin. Belg. 2007, 62, 332–336. [Google Scholar] [CrossRef]
- Sayed-Ahmed, M.M.; Eissa, M.A.; Kenawy, S.A.; Mostafa, N.; Calvani, M.; Osman, A.M. Progression of Cisplatin-Induced Nephrotoxicity in a Carnitine-Depleted Rat Model. Chemotherapy 2004, 50, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Heuberger, W.; Berardi, S.; Jacky, E.; Pey, P.; Krähenbühl, S. Increased Urinary Excretion of Carnitine in Patients Treated with Cisplatin. Eur. J. Clin. Pharmacol. 1998, 54, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Cayir, K.; Karadeniz, A.; Yildirim, A.; Kalkan, Y.; Karakoc, A.; Keles, M.; Tekin, S. Protective Effect Of L-Carnitine Against Cisplatin-Induced Liver and Kidney Oxidant Injury in Rats. Cent. Eur. J. Med. 2009, 4, 184–191. [Google Scholar] [CrossRef]
- Yürekli, Y.; Unak, P.; Yenisey, C.; Ertay, T.; Biber Müftüler, F.Z.; Medine, E.İ. l-Carnitine Protection Against Cisplatin Nephrotoxicity in Rats: Comparison with Amifostin Using Quantitative Renal Tc 99m DMSA Uptake. Mol. Imaging Radionucl. Ther. 2011, 20, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Elkomy, A.; Abdelhiee, E.Y.; Fadl, S.E.; Emam, M.A.; Gad, F.A.; Sallam, A.; Alarifi, S.; Abdel-Daim, M.M.; Aboubakr, M. l-Carnitine Mitigates Oxidative Stress and Disorganization of Cytoskeleton Intermediate Filaments in Cisplatin-Induced Hepato-Renal Toxicity in Rats. Front. Pharmacol. 2020, 11, 574441. [Google Scholar] [CrossRef]
- Haghighatdoost, F.; Jabbari, M.; Hariri, M. The Effect Of L-Carnitine on Inflammatory Mediators: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Eur. J. Clin. Pharmacol. 2019, 75, 1037–1046. [Google Scholar] [CrossRef]
- Bárány, P.; Müller, H.J. Maintaining Control over Haemoglobin Levels: Optimizing the Management of Anaemia in Chronic Kidney Disease. Nephrol. Dial. Transplant. 2007, 22, iv10–iv18. [Google Scholar] [CrossRef] [Green Version]
- Ritz, E.; Bommer, J. Cardiovascular Problems on Hemodialysis: Current Deficits and Potential Improvement. Clin. J. Am. Soc. Nephrol. 2009, 4, S71–S78. [Google Scholar] [CrossRef] [Green Version]
- Kuwasawa-Iwasaki, M.; Io, H.; Muto, M.; Ichikawa, S.; Wakabayashi, K.; Kanda, R.; Nakata, J.; Nohara, N.; Tomino, Y.; Suzuki, Y. Effects Of L-Carnitine Supplementation in Patients Receiving Hemodialysis or Peritoneal Dialysis. Nutrients 2020, 12, 3371. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xue, C.; Ou, J.; Xie, Z.; Deng, J. Effect of l-Carnitine Supplementation on Renal Anemia in Patients on Hemodialysis: A Meta-Analysis. Int. Urol. Nephrol. 2021, 53, 2149–2158. [Google Scholar] [CrossRef]
- Lankhorst, C.E.; Wish, J.B. Anemia in Renal Disease: Diagnosis and Management. Blood Rev. 2010, 24, 39–47. [Google Scholar] [CrossRef]
- Bonomini, M.; Zammit, V.; Pusey, C.D.; De Vecchi, A.; Arduini, A. Pharmacological Use of l-Carnitine in Uremic Anemia: Has Its Full Potential Been Exploited? Pharmacol. Res. 2011, 63, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Labonia, W.D. l-Carnitine Effects on Anemia in Hemodialyzed Patients Treated with Erythropoietin. Am. J. Kidney Dis. 1995, 26, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Bérard, E.; Barrillon, D.; Iordache, A.; Bayle, J.; Cassuto-Viguier, E. Low Dose of l-Carnitine Impairs Membrane Fragility of Erythrocytes in Hemodialysis Patients. Nephron 1994, 68, 145. [Google Scholar] [CrossRef]
- Matsumura, M.; Hatakeyama, S.; Koni, I.; Mabuchi, H.; Muramoto, H. Correlation Between Serum Carnitine Levels and Erythrocyte Osmotic Fragility in Hemodialysis Patients. Nephron 1996, 72, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Nikolaos, S.; George, A.; Telemachos, T.; Maria, S.; Yannis, M.; Konstantinos, M. Effect of l-Carnitine Supplementation on Red Blood Cells Deformability in Hemodialysis Patients. Ren. Fail. 2000, 22, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Vlassopoulos, D.A.; Hadjiyannakos, D.K.; Anogiatis, A.G.; Evageliou, A.E.; Santikou, A.V.; Noussias, C.V.; Papandreou, P.T.; Hadjiconstantinou, V.E. Carnitine Action on Red Blood Cell Osmotic Resistance in Hemodialysis Patients. J. Nephrol. 2002, 15, 68–73. [Google Scholar]
- Savica, V.; Santoro, D.; Mazzaglia, G.; Ciolino, F.; Monardo, P.; Calvani, M.; Bellinghieri, G.; Kopple, J.D. l-Carnitine Infusions May Suppress Serum C-Reactive Protein and Improve Nutritional Status in Maintenance Hemodialysis Patients. J. Ren. Nutr. 2005, 15, 225–230. [Google Scholar] [CrossRef]
- Steiber, A.L.; Davis, A.T.; Spry, L.; Strong, J.; Buss, M.L.; Ratkiewicz, M.M.; Weatherspoon, L.J. Carnitine Treatment Improved Quality-of-Life Measure in A Sample of Midwestern Hemodialysis Patients. J. Parenter. Enter. Nutr. 2006, 30, 10–15. [Google Scholar] [CrossRef]
- Di Iorio, B.R.; Guastaferro, P.; Cillo, N.; Cucciniello, E.; Bellizzi, V. Long-Term l-Carnitine Administration Reduces Erythropoietin Resistance in Chronic Hemodialysis Patients with Thalassemia Minor. Drug Target Insights 2007, 2, 117739280700200001. [Google Scholar] [CrossRef]
- Naini, A.E.; Moradi, M.; Mortazavi, M.; Harandi, A.A.; Hadizadeh, M.; Shirani, F.; Ghafoori, H.B.; Naini, P.E. Effects of Oral l-Carnitine Supplementation on Lipid Profile, Anemia, and Quality of Life in Chronic Renal Disease Patients Under Hemodialysis: A Randomized, Double-Blinded, Placebo-Controlled Trial. J. Nutr. Metab. 2012, 2012, 510483. [Google Scholar] [CrossRef] [Green Version]
- El-Mashad, G.M.; El-Hawy, M.A.; NaserBahbah, H.M.; Bedair, H.M.; Habib, M.I. The Effect of l-Carnitine Therapy on Anaemia Therapy in Paediatric Patients on Regular Haemodialysis. Pediatria. Polska 2021, 96, 238–244. [Google Scholar] [CrossRef]
- Lynch, K.E.; Feldman, H.I.; Berlin, J.A.; Flory, J.; Rowan, C.G.; Brunelli, S.M. Effects of l-Carnitine on Dialysis-Related Hypotension and Muscle Cramps: A Meta-Analysis. Am. J. Kidney Dis. 2008, 52, 962–971. [Google Scholar] [CrossRef] [PubMed]
- Aoun, B.; Bérard, E.; Vitkevic, R.; Dehée, A.; Bensman, A.; Ulinski, T. l-Carnitine Supplementation and EPO Requirement in Children on Chronic Hemodialysis. Pediatr. Nephrol. 2010, 25, 557–560. [Google Scholar] [CrossRef]
- Sgambat, K.; Frank, L.; Ellini, A.; Sable, C.; Moudgil, A. Carnitine Supplementation Improves Cardiac Strain Rate in Children on Chronic Hemodialysis. Pediatr. Nephrol. 2012, 27, 1381–1387. [Google Scholar] [CrossRef]
- Ibarra-Sifuentes, H.R.; Del Cueto-Aguilera, Á.; Gallegos-Arguijo, D.A.; Castillo-Torres, S.A.; Vera-Pineda, R.; Martínez-Granados, R.J.; Atilano-Díaz, A.; Cuellar-Monterrubio, J.E.; Pezina-Cantú, C.O.; Martínez-Guevara, E.D.J.; et al. Levocarnitine Decreases Intradialytic Hypotension Episodes: A Randomized Controlled Trial. Ther. Apher. Dial. 2017, 21, 459–464. [Google Scholar] [CrossRef]
- Fischbach, M.; Terzic, J.; Menouer, S.; Dheu, C.; Seuge, L.; Zalosczic, A. Daily Online Haemodiafiltration Promotes Catch-Up Growth in Children on Chronic Dialysis. Nephrol. Dial. Transplant. 2010, 25, 867–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntyre, C.W. Calcium Balance During Hemodialysis. Semin. Dial. 2008, 21, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, B.D. Debate Forum: Levocarnitine Therapy Is Rational and Justified in Selected Dialysis Patients. Blood Purif. 2006, 24, 128–139. [Google Scholar] [CrossRef]
- Tislér, A.; Akócsi, K.; Borbás, B.; Fazakas, L.; Ferenczi, S.; Görögh, S.; Kulcsár, I.; Nagy, L.; Sámik, J.; Szegedi, J.; et al. The Effect of Frequent or Occasional Dialysis-Associated Hypotension on Survival of Patients on Maintenance Haemodialysis. Nephrol. Dial. Transplant. 2003, 18, 2601–2605. [Google Scholar] [CrossRef] [Green Version]
- Shoji, T.; Tsubakihara, Y.; Fujii, M.; Imai, E. Hemodialysis-Associated Hypotension as An Independent Risk Factor for Two-Year Mortality in Hemodialysis Patients. Kidney Int. 2004, 66, 1212–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Rhee, C.M.; Sim, J.J.; Kim, Y.L.; Ricks, J.; Streja, E.; Vashistha, T.; Tolouian, R.; Kovesdy, C.P.; Kalantar-Zadeh, K. A Comparative Effectiveness Research Study of The Change in Blood Pressure During Hemo-Dialysis Treatment and Survival. Kidney Int. 2013, 84, 795–802. [Google Scholar] [CrossRef] [Green Version]
- Hayes, W.; Hothi, D.K. Intradialytic Hypotension. Pediatr. Nephrol. 2011, 26, 867–879. [Google Scholar] [CrossRef]
- Herrera, M.D.; Bueno, R.; De Sotomayor, M.A.; Pérez-Guerrero, C.; Vázquez, C.M.; Marhuenda, E. Endothelium-Dependent Vasorelaxation Induced by l-Carnitine in Isolated Aorta from Normotensive and Hypertensive Rats. J. Pharm. Pharmacol. 2002, 54, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Raina, R.; Lam, S.; Raheja, H.; Krishnappa, V.; Hothi, D.; Davenport, A.; Chand, D.; Kapur, G.; Schaefer, F.; Sethi, S.K.; et al. Pediatric Intradialytic Hypotension: Recommendations from the Pediatric Continuous Renal Replacement Therapy (PCRRT) Workgroup. Pediatr. Nephrol. 2019, 34, 925–941. [Google Scholar] [CrossRef] [PubMed]
- Chanchlani, R.; Young, C.; Farooq, A.; Sanger, S.; Sethi, S.; Chakraborty, R.; Tibrewal, A.; Raina, R. Evolution and Change in Paradigm of Hemodialysis in Children: A Systematic Review. Pediatr. Nephrol. 2021, 36, 1255–1271. [Google Scholar] [CrossRef]
- Valgas da Silva, C.P.; Rojas-Moscoso, J.A.; Antunes, E.; Zanesco, A.; Priviero, F.B. l-Carnitine Supplementation Impairs Endothelium-Dependent Relaxation in Mesenteric Arteries from Rats. Arch. Physiol. Biochem. 2014, 120, 112–118. [Google Scholar] [CrossRef]
- Atalay Guzel, N.; Erikoglu Orer, G.; Sezen Bircan, F.; Coskun Cevher, S. Effects of Acute l-Carnitine Supplementation on Nitric Oxide Production and Oxidative Stress After Exhaustive Exercise in Young Soccer Players. J. Sports Med. Phys. Fit. 2015, 55, 9–15. [Google Scholar]
- Signorelli, S.S.; Fatuzzo, P.; Rapisarda, F.; Neri, S.; Ferrante, M.; Conti, G.O.; Fallico, R.; Di Pino, L.; Pennisi, G.; Celotta, G.; et al. Propionyl-l-Carnitine Therapy: Effects on Endothelin-1 and Homocysteine Levels in Patients with Peripheral Arterial Disease and End-Stage Renal Disease. Kidney Blood Press. Res. 2006, 29, 100–107. [Google Scholar] [CrossRef]
- Riley, S.; Rutherford, S.; Rutherford, P.A. Low Carnitine Levels in Hemodialysis Patients: Relationship with Functional Activity Status and Intra-Dialytic Hypotension. Clin. Nephrol. 1997, 48, 392–393. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S. l-Carnitine in Dialysis Patients. Semin. Dial. 2001, 14, 209–217. [Google Scholar] [CrossRef]
- Kudoh, Y.; Aoyama, S.; Torii, T.; Chen, Q.; Nagahara, D.; Sakata, H.; Nozawa, A. Hemodynamic Stabilizing Effects of l-Carnitine in Chronic Hemodialysis Patients. Cardiorenal Med. 2013, 3, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Remppis, A.; Ritz, E. Cardiac Problems in The Dialysis Patient: Beyond Coronary Disease. Semin. Dial. 2008, 21, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Herzog, C.A.; Asinger, R.W.; Berger, A.K.; Charytan, D.M.; Díez, J.; Hart, R.G.; Eckardt, K.-U.; Kasiske, B.L.; McCullough, P.A.; Passman, R.S.; et al. Cardiovascular Disease in Chronic Kidney Disease. A Clinical Update from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2011, 80, 572–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jablonski, K.L.; Chonchol, M. Recent Advances in The Management of Hemodialysis Patients: A Focus on Cardiovascular Disease. F1000 Prime Rep. 2014, 6, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romagnoli, G.F.; Naso, A.; Carraro, G.; Lidestri, V. Beneficial Effects of l-Carnitine in Dialysis Patients with Impaired Left Ventricular Function: An Observational Study. Curr. Med. Res. Opin. 2002, 18, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Sakurabayashi, T.; Miyazaki, S.; Yuasa, Y.; Sakai, S.; Suzuki, M.; Takahashi, S.; Hirasawa, Y. l-Carnitine Supplementation De-Creases the Left Ventricular Mass in Patients Undergoing Hemodialysis. Circ. J. 2008, 72, 926–931. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, M.; Tokoro, T.; Takatani, T.; Sato, N.; Nishida, M.; Hashimoto, T.; Yamazaki, S.; Kobayashi, H.; Ono, T. Effects of Intravenous l-Carnitine on Myocardial Fatty Acid Imaging in Hemodialysis Patients: Responders or Non-Responders to l-Carnitine. Springerplus 2015, 4, 353. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, T.; Abe, M.; Yamazaki, T.; Okawa, E.; Ando, H.; Hotta, S.; Oikawa, O.; Kikuchi, F.; Okada, K.; Soma, M. Levocarnitine Improves Cardiac Function in Hemodialysis Patients with Left Ventricular Hypertrophy: A Randomized Controlled Trial. Am. J. Kidney Dis. 2016, 67, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Huda, M.N.; Kim, M.; Bennett, B.J. Modulating the Microbiota as A Therapeutic Intervention for Type 2 Diabetes. Front. Endo-crinol. 2021, 12, 632335. [Google Scholar] [CrossRef]
- Sikalidis, A.K.; Maykish, A. The Gut Microbiome and Type 2 Diabetes Mellitus: Discussing a Complex Relationship. Biomedicines 2020, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Sumida, K.; Lau, W.L.; Kalantar-Zadeh, K.; Kovesdy, C.P. Novel Intestinal Dialysis Interventions and Microbiome Modulation to Control Uremia. Curr. Opin. Nephrol. Hypertens. 2022, 31, 82–91. [Google Scholar] [CrossRef]
- Rhee, E.P. How Omics Data Can Be Used in Nephrology. Am. J. Kidney Dis. 2018, 72, 129–135. [Google Scholar] [CrossRef]
- Dubin, R.F.; Rhee, E.P. Proteomics and Metabolomics in Kidney Disease, Including Insights into Etiology, Treatment, and Prevention. Clin. J. Am. Soc. Nephrol. 2020, 5, 404–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trionfini, P.; Benigni, A. MicroRNAs as Master Regulators of Glomerular Function in Health and Disease. J. Am. Soc. Nephrol. 2017, 28, 1686–1696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Agborbesong, E.; Li, X. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential. Int. J. Mol. Sci. 2021, 22, 11253. [Google Scholar] [CrossRef] [PubMed]
- Fontecha-Barriuso, M.; Lopez-Diaz, A.M.; Guerrero-Mauvecin, J.; Miguel, V.; Ramos, A.M.; Sanchez-Niño, M.D.; Ruiz-Ortega, M.; Ortiz, A.; Sanz, A.B. Tubular Mitochondrial Dysfunction, Oxidative Stress, And Progression of Chronic Kidney Disease. Antioxidants 2022, 11, 1356. [Google Scholar] [CrossRef] [PubMed]
- Idrovo, J.P.; Yang, W.L.; Nicastro, J.; Coppa, G.F.; Wang, P. Stimulation of Carnitine Palmitoyltransferase 1 Improves Renal Function and Attenuates Tissue Damage after Ischemia/Reperfusion. J. Surg. Res. 2012, 177, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguel, V.; Tituaña, J.; Herrero, J.I.; Herrero, L.; Serra, D.; Cuevas, P.; Barbas, C.; Puyol, D.R.; Márquez-Expósito, L.; Ruiz-Ortega, M.; et al. Renal Tubule Cpt1a Overexpression Protects from Kidney Fibrosis by Restoring Mitochondrial Homeostasis. J. Clin. Investig. 2021, 131, e140695. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, C.; Peng, F.; Chen, Q.; Zhao, Y.; Chen, L.; Wang, X.; Chen, X. Hypoxic Mesenchymal Stem Cell-Derived Extra-Cellular Vesicles Ameliorate Renal Fibrosis after Ischemia-Reperfusion Injury by Restoring CPT1A Mediated Fatty Acid Oxidation. Stem Cell Res. Ther. 2022, 13, 191. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulinski, T.; Cirulli, M.; Virmani, M.A. The Role of L-Carnitine in Kidney Disease and Related Metabolic Dysfunctions. Kidney Dial. 2023, 3, 178-191. https://doi.org/10.3390/kidneydial3020016
Ulinski T, Cirulli M, Virmani MA. The Role of L-Carnitine in Kidney Disease and Related Metabolic Dysfunctions. Kidney and Dialysis. 2023; 3(2):178-191. https://doi.org/10.3390/kidneydial3020016
Chicago/Turabian StyleUlinski, Tim, Maria Cirulli, and Mohamed Ashraf Virmani. 2023. "The Role of L-Carnitine in Kidney Disease and Related Metabolic Dysfunctions" Kidney and Dialysis 3, no. 2: 178-191. https://doi.org/10.3390/kidneydial3020016
APA StyleUlinski, T., Cirulli, M., & Virmani, M. A. (2023). The Role of L-Carnitine in Kidney Disease and Related Metabolic Dysfunctions. Kidney and Dialysis, 3(2), 178-191. https://doi.org/10.3390/kidneydial3020016