How Much Is the Removed Amount of Potassium with On-Line Hemodiafiltration Affected by the Filter Surface?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leypoldt, J.K. Solute fluxes in different treatment modalities. Nephrol. Dial. Transplant. 2000, 15 (Suppl. 1), 3–9. [Google Scholar] [CrossRef]
- Ahrenholz, P.; Winkler, R.E.; Ramlow, W.; Tiess, M.; Müller, W. On-line hemodiafiltration with pre- and postdilution: A comparison of efficacy. Int. J. Artif. Organs 1997, 20, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Guedes, M.; Dambiski, A.C.; Canhada, S.; Barra, A.B.L.; Poli-de-Figueiredo, C.E.; Neto, A.L.C.; Canziani, M.E.F.; Strogoff-de-Matos, J.P.; Raimann, J.G.; Larkin, J.; et al. Achieving high convective volume in hemodiafiltration: Lessons learned after successful implementation in the HDFit trial. Hemodial. Int. 2021, 25, 50–59. [Google Scholar] [CrossRef]
- Blumberg, A.; Roser, H.W.; Zehnder, C.; Müller-Brand, J. Plasma potassium in patients with terminal renal failure during and after haemodialysis; relationship with dialytic potassium removal and total body potassium. Nephrol. Dial. Transplant. 1997, 12, 1629–1634. [Google Scholar] [CrossRef] [PubMed]
- Palmer, B.F.; Clegg, D.J. Hyperkalemia across the continuum of kidney function. Clin. J. Am. Soc. Nephrol. 2018, 13, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Cupisti, A.; Brunori, G.; Raffaele Di Iorio, B.; D’Alessandro, C.; Pasticci, F.; Cosola, C.; Bellizzi, V.; Bolasco, P.; Capitanini, A.; Fantuzzi, A.L.; et al. Nutritional treatment of advanced CKD: Twenty consensus statements. J. Nephrol. 2018, 31, 457–473. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Mendelssohn, D.C. Optimizing dialysate potassium. Hemodial. Int. 2016, 20, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Karaboyas, A.; Zee, J.; Brunelli, S.M.; Usvyat, L.A.; Weiner, D.E.; Maddux, F.W.; Nissenson, A.R.; Jadoul, M.; Locatelli, F.; Winkelmayer, W.C.; et al. Dialysate potassium, serum potassium, mortality, and arrhythmia events in hemodialysis: Results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2017, 69, 266–277. [Google Scholar] [CrossRef]
- Hou, S.; McElroy, P.A.; Nootens, J.; Beach, M. Safety and efficacy of low potassium dialysate. Am. J. Kidney Dis. 1989, 12, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Feig, P.U.; Shook, A.; Sterns, R.H. Effect of potassium removal during hemodialysis on the plasma potassium concentration. Nephron 1981, 27, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, C.; Gutzwiller, J.-P.; Huber, A.; Schindler, C.; Schneditz, D. Low-potassium and glucose-free dialysis maintains urea but enhances potassium removal. Nephrol. Dial. Transplant. 2001, 16, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Ciandrini, A.; Severi, S.; Cavalcanti, S.; Fontanazzi, F.; Grandi, F.; Buemi, M.; Mura, C.; Bajardi, P.; Badiali, F.; Santoro, A. Model-Based Analysis of Potassium Removal During Hemodialysis. Artif. Organs 2009, 33, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Stern, R.M.; Cox, M.; Feig, P.V.; Singer, I. Internal potassium balance and the control of the plasma potassium concentration. Medicine 1981, 60, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Capdevila, M.; Martinez Ruiz, I.; Ferrer, C.; Monllor, F.; Ludjvick, C.; García, N.H.; Juncos, L.I. The efficiency of potassium removal during bicarbonate hemodialysis. Hemodial. Int. 2005, 9, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Heguilén, R.M.; Sciurano, C.; Bellusci, A.D.; Fried, P.; Mittelman, G.; Diez, G.R.; Bernasconi, A.R. The faster potassium-lowering effect of high dialysate bicarbonate concentrations in chronic haemodialysis patients. Nephrol. Dial. Transplant. 2005, 20, 591–597. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, L.; Bellizzi, V.; Minutolo, R.; Cioffi, M.; Giannattasio, P.; Terracciano, V.; Iodice, C.; Uccello, F.; Memoli, B.; DI Iorio, B.R.; et al. Effect of dialysate sodium concentration on interdialytic increase of potassium. J. Am. Soc. Nephrol. 2000, 11, 2337–2343. [Google Scholar] [CrossRef]
- Locatelli, F.; La Milia, V.; Violo, L.; Del Vecchio, L.; Di Filippo, S. Optimizing haemodialysate composition. Clin. Kidney J. 2015, 8, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Redaelli, B.; Bonoldi, G.; Di Filippo, G.; Viganò, M.R.; Malnati, A. Behaviour of potassium removal in different dialytic schedules. Nephrol. Dial. Transplant. 1998, 13, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Basile, C.; Libutti, P.; Lisi, P.; Teutonico, A.; Vernaglione, L.; Casucci, F.; Lomonte, C. Ranking of factors determining potassium mass balance in bicarbonate haemodialysis. Nephrol. Dial. Transplant. 2015, 30, 505–513. [Google Scholar] [CrossRef]
- Santoro, A.; Mancini, E.; Fontanazzi, F.; Paolini, F. Potassium profiling in acetate-free biofiltration. Contrib. Nephrol. 2002, 137, 260–267. [Google Scholar]
- Ward, R.A.; Wathen, R.L.; Williams, T.E.; Harding, G.B. Hemodialysate composition and intradialytic metabolic, acid-base and potassium changes. Kidney Int. 1987, 32, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.; Ninomiya, T.; Al-Kahwa, A.; Perkovic, V.; Gallagher, M.P.; Hawley, C.; Jardine, M.J. Effect of hemodiafiltration or hemofiltration compared with hemodialysis on mortality and cardiovascular disease in chronic kidney failure: A systematic review and meta-analysis of randomized trials. Am. J. Kidney Dis. 2014, 63, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, T.; Sato, K.; Kawakami, S.; Kiyomoto, M.; Enomoto, M.; Suzuki, T.; Genei, H.; Nakada, H.; Iino, Y.; Katayama, Y. Effects of reduced dialysis fluid flow in hemodialysis. J. Nippon Med. Sch. 2013, 80, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Singer, R.B.; Clark, J.K.; Barker, E.S.; Crosley, A.P., Jr.; Elkinton, J.R. The acute effects in man of rapid intravenous infusion of hypertonic sodium bicarbonate solution. I. Changes in acid base balance and distribution of the excess buffer base. Medicine 1955, 34, 51–95. [Google Scholar] [CrossRef] [PubMed]
- Swan, R.C.; Axelrod, D.R.; Seip, M.; Pitts, R.F.; Madisso, H. Distribution of sodium bicarbonate infused into nephrectomized dogs. J. Clin. Investig. 1955, 34, 1795–1801. [Google Scholar] [CrossRef]
- Meert, N.; Eloot, S.; Waterloos, M.A.; Van Landschoot, M.; Dhondt, A.; Glorieux, G.; Ledebo, I.; Vanholder, R. Effective removal of protein-bound uraemic solutes by different convective strategies: A prospective trial. Nephrol. Dial. Transplant. 2009, 24, 562–570. [Google Scholar] [CrossRef] [PubMed]
P/s | Sex (M/F) | Age (Years) | Body Weight (kg) | Session Duration (h) | Residual Renal Function (mL/24 h) | Months in Haemodialysis | Months in Hemodiafiltration | Dialysate Sodium (mmol/L) | Dialysate Bicarbonate (mmol/L) | Serum Bicarbonate (On-Line HDF Post-Dilution with 2.5 m2 Filter Surface Area) (mmol/L) |
---|---|---|---|---|---|---|---|---|---|---|
1 | M | 48 | 74 | 4.0 | 500 | 71 | 24 | 138 | 33 | 22.8 |
2 | M | 69 | 67.5 | 4.25 | 0 | 258 | 19 | 138 | 31 | 22.5 |
3 | F | 56 | 73 | 4.0 | 100 | 54 | 10 | 138 | 33 | 23.8 |
4 | F | 57 | 65 | 4.25 | 250 | 89 | 24 | 140 | 31 | 22.1 |
5 | M | 68 | 59.5 | 4.0 | 0 | 450 | 10 | 140 | 33 | 26.8 |
6 | M | 70 | 70 | 4.0 | 150 | 61 | 10 | 138 | 33 | 22.5 |
7 | M | 85 | 84 | 4.0 | 100 | 19 | 9 | 140 | 31 | 22.5 |
8 | M | 77 | 85 | 4.0 | 750 | 10 | 4 | 138 | 33 | 21.6 |
9 | F | 72 | 69 | 4.0 | 500 | 29 | 8 | 140 | 33 | 22.2 |
10 | M | 53 | 79 | 4.75 | 0 | 417 | 4 | 138 | 31 | 21.8 |
Mean ± SD | 65.5 ± 11 | 72.6 ± 7.76 | 4.12 ± 0.23 | 3 ≥ 500 | 145.8 ± 158.5 | 12.2 ± 7.08 | 138 = 6 140 = 4 | 33 = 6 31 = 4 | 22.9 ± 1.5 |
P/s | Dialysate Potassium (mmol/L) | Serum Potassium (mmol/L) | Dialysate Potassium (mmol) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group A | Group B | Group C | Group D | Group A | Group B | Group C | Group D | ||||||
Before | End | Before | End | Before | End | Before | End | ||||||
1 | 3 | 4.8 | 4.3 | 4.9 | 4.2 | 5.0 | 4.5 | 5.3 | 4.5 | 123 | 108 | 41 | 177.6 |
2 | 2 | 4.3 | 3.5 | 4.5 | 4.0 | 4.2 | 3.6 | 5.0 | 4.5 | 114.6 | 128.5 | 65 | 336 |
3 | 3 | 4.7 | 3.7 | 6.8 | 4.0 | 4.5 | 3.8 | 5.2 | 3.8 | 92.6 | 104 | 137 | 197 |
4 | 3 | 5.1 | 4.4 | 5.2 | 4.3 | 5.5 | 4.3 | 5.6 | 4.0 | 136 | 131 | 83 | 56 |
5 | 2 | 4.3 | 3.3 | 4.6 | 3.6 | 4.5 | 3.3 | 5.5 | 4.0 | 93.5 | 137 | 67 | 305 |
6 | 3 | 5.8 | 4.7 | 5.2 | 4.2 | 5.5 | 3.7 | 5.7 | 4.1 | 63 | 64 | 34.9 | 163.5 |
7 | 3 | 5.1 | 4.1 | 5.2 | 3.9 | 5.2 | 4.2 | 5.6 | 4.3 | 116 | 83 | 41 | 211 |
8 | 3 | 4.8 | 4.5 | 4.5 | 4.4 | 4.7 | 4.3 | 4.8 | 4.3 | 57.9 | 107 | 53 | 184 |
9 | 3 | 4.8 | 4.4 | 5.8 | 4.0 | 6.2 | 4.0 | 4.8 | 3.2 | 78 | 137 | 92 | 139.5 |
10 | 2 | 5.5 | 4.4 | 5.6 | 4.4 | 5.8 | 4.1 | 5.5 | 4.0 | 180 | 177.6 | 120 | 255 |
2.7 ± 0.46 Potassium 2 = 3 mmol/L Potassium 3 = 7 mmol/L | 4.92 ± 0.47 | 4.13 ± 0.44 | 5.23 ± 0.67 | 4.10 ± 0.23 | 5.11 ± 0.61 | 3.98 ± 0.35 | 5.30 ± 0.31 | 4.07 ± 0.36 | 105.5 ± 34.8 | 117.7 ± 30.2 | 73.4 ± 32.8 | 202.5 ± 76.8 | |
p < 0.001 | p < 0.0001 | p < 0.0001 | p < 0.00002 | p(A-B) = NS p(A-C) < 0.03 p(A-D) < 0.02 p(B-C) < 0.004 p(B-D) < 0.004 p(C-D) < 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavromatidis, K.S.; Kalogiannidou, I.M.; Katzel Achmet, G.S. How Much Is the Removed Amount of Potassium with On-Line Hemodiafiltration Affected by the Filter Surface? Kidney Dial. 2025, 5, 6. https://doi.org/10.3390/kidneydial5010006
Mavromatidis KS, Kalogiannidou IM, Katzel Achmet GS. How Much Is the Removed Amount of Potassium with On-Line Hemodiafiltration Affected by the Filter Surface? Kidney and Dialysis. 2025; 5(1):6. https://doi.org/10.3390/kidneydial5010006
Chicago/Turabian StyleMavromatidis, Konstantinos S., Irini M. Kalogiannidou, and Gkiounai S. Katzel Achmet. 2025. "How Much Is the Removed Amount of Potassium with On-Line Hemodiafiltration Affected by the Filter Surface?" Kidney and Dialysis 5, no. 1: 6. https://doi.org/10.3390/kidneydial5010006
APA StyleMavromatidis, K. S., Kalogiannidou, I. M., & Katzel Achmet, G. S. (2025). How Much Is the Removed Amount of Potassium with On-Line Hemodiafiltration Affected by the Filter Surface? Kidney and Dialysis, 5(1), 6. https://doi.org/10.3390/kidneydial5010006