DNA-Based Technology for Herpesvirus Detection
Abstract
:1. Introduction
2. Diagnostic Method for Virus Detection
2.1. Viral Molecular Detection Techniques
2.1.1. PCR-Based Methods
Polymerase Chain Reaction (PCR)
Real-Time PCR (qPCR)
Multiplex PCR
Droplet Digital PCR (ddPCR)
2.1.2. Isothermal Amplification (LAMP)
2.1.3. Hybridization Techniques: Microarrays and Biosensors
Microarrays
Biosensors
2.1.4. CRISPR-Based Detection
2.1.5. Next-Generation Sequencing (NGS)
3. Herpesviruses
Subfamily | Virus | Primary Sites of Replication | Site of Latency | References |
---|---|---|---|---|
Alphaherpesvirus | HSV-1 | Epithelial cells in and around mouth, ocular, genital area | Sensory nerve cells | [44] |
HSV-2 | Epithelial cells in and around genital area | Sensory nerve cells | [45] | |
VZV | Epithelial cells in skin | Neurons of trigeminal ganglia and dorsal root ganglia | [46,47] | |
Betaherpesvirus | CMV | Epithelial cells of salivary glands, kidneys, genital tract | CD34+ myeloid progenitor, CD14+ monocytes | [48,49,50] |
HHV-6A/B | Epithelial cells of salivary glands, CD4+ T lymphocytes | CD34+ stem cells, monocytes | [51,52,53,54] | |
HHV-7 | Epithelial cells of salivary glands, CD4+ T lymphocytes | CD4+ T lymphocytes | [55] | |
Gammaherpesvirus | HHV-8 | Epithelial cells in oropharynx | B cells | [27,56,57] |
EBV | Epithelial cells in oropharynx, genital tract | B cells | [58,59] |
Latency and Reactivation
4. DNA-Based Technology for Herpesviruses Detection
4.1. Herpes Simplex Virus (HSV)
4.1.1. Detection of HSVs in Oral and Vaginal Samples
4.1.2. Detection of HSV from CSF Samples
4.1.3. Detection of HSV in Intraocular Samples
4.2. Varicella-Zoster Virus (VZV)
4.2.1. Detection of VZV in Vesicle Fluids Swabs, Crusts, or Fixed Tissue Samples
4.2.2. Detection of VZV in CSF Samples
4.2.3. Detection of VZV in Amniotic Fluid Samples
4.3. Epstein–Barr Virus (EBV)
4.3.1. Detection of EBV from Gingival Swabs and Salivary Swabs
4.3.2. Detection of EBV from CSF and Peripheral Blood
4.4. Human Cytomegalovirus (CMV)
4.4.1. Detection of CMV in Oral, Urine, and Amniotic Fluid Samples
4.4.2. Detection of CMV in Blood Samples and Aqueous Humor
4.5. Human Herpesvirus 6 (HHV-6)
4.5.1. HHV-6A and HHV-6B
4.5.2. Chromosomally Integrated HHV-6
4.5.3. Detection of HHV-6 in Oral and Ocular Samples
4.5.4. Detection of HHV-6 in CSF Samples
4.5.5. Detection of HHV-6 in Blood and Tissue Samples
4.6. Human Herpesvirus 7 (HHV-7)
4.6.1. Detection of HHV-7 from Saliva
4.6.2. Detection of HHV-7 from CSF
4.6.3. Detection of HHV-7 from Blood Samples
4.7. Human Herpesvirus 8 (HHV-8)
4.7.1. Detection of HHV-8 from Oral Swabs and Saliva
4.7.2. Detection of HHV-8 from Semen and Blood Samples
5. Emerging Molecular Approaches and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, T.J.; Brockman, M.A.; McNamee, E.E.; Knipe, D.M. Herpes simplex virus. Front. Biosci. 2002, 7, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Cassedy, A.; Parle-McDermott, A.; O’Kennedy, R. Virus detection: A review of the current and emerging molecular and immunological methods. Front. Mol. Biosci. 2001, 8, 637559. [Google Scholar] [CrossRef]
- Whitley, R.J.; Roizman, B.J.T.L. Herpes simplex virus infections. Lancet 2001, 357, 1513–1518. [Google Scholar] [CrossRef] [PubMed]
- De Francesco, M.A.J.V. Herpesviridae, Neurodegenerative Disorders and Autoimmune Diseases: What Is the Relationship between Them? Viruses 2024, 16, 133. [Google Scholar] [CrossRef]
- Nath, P.; Kabir, A.; Doust, S.K.; Ray, A. Diagnosis of herpes simplex virus: Laboratory and point-of-care techniques. Infect. Dis. Rep. 2021, 13, 518–539. [Google Scholar] [CrossRef] [PubMed]
- LeGoff, J.; Péré, H.; Bélec, L. Diagnosis of genital herpes simplex virus infection in the clinical laboratory. Virol. J. 2014, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Morshed, M.G.; Lee, M.K.; Jorgensen, D.; Isaac-Renton, J.L. Molecular methods used in clinical laboratory: Prospects and pitfalls. FEMS Immunol. Med. Microbiol. 2007, 49, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E.; Serrano-Heras, G.; Castaño, M.J.; Solera, J.J.C.C.A. Real-time PCR detection chemistry. Clin. Chim. Acta 2015, 439, 231–250. [Google Scholar] [CrossRef] [PubMed]
- Broude, N.E.; Zhang, L.; Woodward, K.; Englert, D.; Cantor, C.R. Multiplex allele-specific target amplification based on PCR suppression. Proc. Natl. Acad. Sci. USA 2001, 98, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Elnifro, E.M.; Ashshi, A.M.; Cooper, R.J.; Klapper, P.E. Multiplex PCR: Optimization and application in diagnostic virology. Clin. Microbiol. Rev. 2000, 13, 559–570. [Google Scholar] [CrossRef]
- Poritz, M.A.; Blaschke, A.J.; Byington, C.L.; Allen, L.; Nilsson, K.; Jones, D.E.; Thatcher, S.A.; Robbins, T.; Lingenfelter, B.; Amiott, E.; et al. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: Development and application to respiratory tract infection. PLoS ONE 2011, 6, e26047. [Google Scholar] [CrossRef]
- Li, H.; Bai, R.; Zhao, Z.; Tao, L.; Ma, M.; Ji, Z.; Jian, M.; Ding, Z.; Dai, X.; Bao, F.; et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci. Rep. 2018, 38, BSR20181170. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.C.; Laperriere, G.; Germain, H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Sci. Rep. 2017, 7, 2409. [Google Scholar] [CrossRef] [PubMed]
- Kojabad, A.A.; Farzanehpour, M.; Galeh, H.E.G.; Dorostkar, R.; Jafarpour, A.; Bolandian, M.; Nodooshan, M.M. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J. Med. Virol. 2021, 93, 4182–4197. [Google Scholar] [CrossRef]
- Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-mediated isothermal amplification (LAMP): Principle, features, and future prospects. J. Microbiol. 2015, 53, 1–5. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Martins, D.B.G.; Kimura, M.; Catena, A.D.S.; Borba, M.A.C.S.M.; Mattos, S.D.S.; Abe, H.; Yoshikawa, R.; de Lima Filho, J.L.; Yasuda, J. Development and evaluation of a rapid molecular diagnostic test for Zika virus infection by reverse transcription loop-mediated isothermal amplification. Sci. Rep. 2017, 7, 13503. [Google Scholar] [CrossRef] [PubMed]
- Francois, P.; Tangomo, M.; Hibbs, J.; Bonetti, E.J.; Boehme, C.C.; Notomi, T.; Perkins, M.D.; Schrenzel, J. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol. Med. Microbiol. 2011, 62, 41–48. [Google Scholar] [CrossRef]
- Silva, S.J.R.D.; Paiva, M.H.S.; Guedes, D.R.D.; Krokovsky, L.; Melo, F.L.D.; Silva, M.A.L.D.; Silva, A.; Ayres, C.F.J.; Pena, L.J. Development and validation of reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of ZIKV in mosquito samples from Brazil. Sci. Rep. 2019, 9, 4494. [Google Scholar] [CrossRef] [PubMed]
- Jeba, J.M.P.; Deepalakshmi, P. Selection of Robust Feature Selection Methods Used for Gene Expression Analysis of Microarray Data. In Proceedings of the 2024 IEEE 5th International Conference on Image Processing and Capsule Networks (ICIPCN), Dhulikhel, Nepal, 3–4 July 2024; pp. 918–924. [Google Scholar]
- Földes-Papp, Z.; Egerer, R.; Birch-Hirschfeld, E.; Striebel, H.-M.; Demel, U.; Tilz, G.P.; Wutzler, P. Detection of multiple human herpes viruses by DNA microarray technology. Mol. Diagn. 2004, 8, 1–9. [Google Scholar] [CrossRef]
- Matteoli, B.; Ceccherini-Nelli, L. Viral DNA and cDNA Array in the Diagnosis of Respiratory Tract Infections. In Biomedical Tissue Culture; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Bonde, J.; Rebolj, M.; Ejegod, D.M.; Preisler, S.; Lynge, E.; Rygaard, C. HPV prevalence and genotype distribution in a population-based split-sample study of well-screened women using CLART HPV2 human papillomavirus genotype microarray system. BMC Infect. Dis. 2014, 14, 413. [Google Scholar] [CrossRef]
- Shand, H.; Dutta, S.; Rajakumar, S.; James Paulraj, S.; Mandal, A.K.; KT, R.D.; Ghorai, S. New age detection of viruses: The nano-biosensors. Front. Nanotechnol. 2022, 3, 814550. [Google Scholar] [CrossRef]
- Zhai, J.; Cui, H.; Yang, R. DNA based biosensors. Biotechnol. Adv. 1997, 15, 43–58. [Google Scholar] [CrossRef]
- Yuwen, L.; Zhang, S.; Chao, J. Recent advances in DNA nanotechnology-enabled biosensors for virus detection. Biosensors 2023, 13, 822. [Google Scholar] [CrossRef]
- Chakraborty, B.; Das, S.; Gupta, A.; Xiong, Y.; TV, V.; Kizer, M.E.; Duan, J.; Chandrasekaran, A.R.; Wang, X. Aptamers for viral detection and inhibition. ACS Infect. Dis. 2022, 8, 667–692. [Google Scholar] [CrossRef]
- Song, J.; Cha, B.; Moon, J.; Jang, H.; Kim, S.; Jang, J.; Yong, D.; Kwon, H.J.; Lee, I.C.; Lim, E.K.; et al. Smartphone-based SARS-CoV-2 and variants detection system using colorimetric DNAzyme reaction triggered by loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPR). ACS Nano 2022, 16, 11300–11314. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Wu, N.; Wu, J.; Wang, G.; Zhao, G.; Wang, J. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth. Biol. 2019, 8, 2228–2237. [Google Scholar] [CrossRef]
- Zhang, Y.; Odiwuor, N.; Xiong, J.; Sun, L.; Nyaruaba, R.O.; Wei, H.; Tanner, N.A. Rapid molecular detection of SARS-CoV-2 (COVID-19) virus RNA using colorimetric LAMP. MedRxiv 2020. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef]
- Li, S.Y.; Cheng, Q.X.; Liu, J.K.; Nie, X.Q.; Zhao, G.P.; Wang, J. CRISPR-Cas12a has both cis-and trans-cleavage activities on single-stranded DNA. Cell Res. 2018, 28, 491–493. [Google Scholar] [CrossRef] [PubMed]
- Kazim, I.; Gande, T.; Reyher, E.; Bhutia, K.G.; Dhingra, K.; Verma, S. Advancements in sequencing technologies: From genomic revolution to single-cell insights in precision medicine. J. Knowl. Learn. Sci. Technol. 2024, 3, 108–124. [Google Scholar] [CrossRef]
- Datta, S.; Budhauliya, R.; Das, B.; Chatterjee, S.; Veer, V. Next-generation sequencing in clinical virology: Discovery of new viruses. World J. Virol. 2015, 4, 265. [Google Scholar] [CrossRef] [PubMed]
- Sip, M.; Bystricka, D.; Kmoch, S.; Noskova, L.; Hartmannova, H.; Dedic, P. Detection of viral infections by an oligonucleotide microarray. J. Virol. Methods 2010, 165, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-generation sequencing technology: Current trends and advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef]
- Ilié, M.; Benzaquen, J.; Hofman, V.; Long-Mira, E.; Lassalle, S.; Boutros, J.; Bontoux, C.; Lespinet-Fabre, V.; Bordone, O.; Tanga, V.; et al. Accurate Detection of SARS-CoV-2 by Next-Generation Sequencing in Low Viral Load Specimens. Int. J. Mol. Sci. 2023, 24, 3478. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Bester, R.; Burger, J.T.; Maree, H.J. Next-generation sequencing for virus detection: Covering all the bases. Virol. J. 2016, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Rechenchoski, D.Z.; Faccin-Galhardi, L.C.; Linhares, R.E.C.; Nozawa, C. Herpesvirus: An underestimated virus. Folia Microbiol. 2017, 62, 151–156. [Google Scholar] [CrossRef]
- Knipe, D.M.; Cliffe, A. Chromatin control of herpes simplex virus lytic and latent infection. Nat. Rev. Microbiol. 2008, 6, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Mettenleiter, T.C.; Ehlers, B.; Müller, T.; Yoon, K.J.; Teifke, J.P. Herpesviruses. In Diseases of Swine; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 548–575. [Google Scholar]
- Kukhanova, M.; Korovina, A.; Kochetkov, S.J.B. Human herpes simplex virus: Life cycle and development of inhibitors. Biochemistry 2014, 79, 1635–1652. [Google Scholar] [CrossRef]
- Roizman, B.; Pellett, P.E. The family Herpesviridae: A brief introduction. In Fields Virology, 4th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; Volume 2, pp. 2381–2397. [Google Scholar]
- Gershon, A.A.; Breuer, J.; Cohen, J.I.; Cohrs, R.J.; Gershon, M.D.; Gilden, D.; Grose, C.; Hambleton, S.; Kennedy, P.G.E.; Oxman, M.N.; et al. Varicella zoster virus infection. Nat. Rev. Dis. Primers 2015, 1, 15016. [Google Scholar] [CrossRef] [PubMed]
- Schelhaas, M.; Jansen, M.; Haase, I.; Knebel-Mörsdorf, D. Herpes simplex virus type 1 exhibits a tropism for basal entry in polarized epithelial cells. J. Gen. Virol. 2003, 84, 2473–2484. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Warren, T.; Wald, A. Genital herpes. Lancet 2007, 370, 2127–2137. [Google Scholar] [CrossRef]
- Gilden, D.H.; Vafai, A.; Shtram, Y.; Becker, Y.; Devlin, M.; Wellish, M. Varicella-zoster virus DNA in human sensory ganglia. Nature 1983, 306, 478–480. [Google Scholar] [CrossRef] [PubMed]
- Laing, K.J.; Ouwendijk, W.J.D.; Koelle, D.M.; Verjans, G.M.G.M. Immunobiology of Varicella-Zoster Virus Infection. J. Infect. Dis. 2018, 218 (Suppl. S2), S68–S74. [Google Scholar] [CrossRef] [PubMed]
- Hummel, M.; Abecassis, M.M. A model for reactivation of CMV from latency. J. Clin. Virol. 2002, 25, 123–136. [Google Scholar] [CrossRef]
- Leng, S.X.; Kamil, J.; Purdy, J.G.; Lemmermann, N.A.; Reddehase, M.J.; Goodrum, F.D. Recent advances in CMV tropism, latency, and diagnosis during aging. GeroScience 2017, 39, 251–259. [Google Scholar] [CrossRef]
- Liu, X.F.; Wang, X.; Yan, S.; Zhang, Z.; Abecassis, M.; Hummel, M. Epigenetic control of cytomegalovirus latency and reactivation. Viruses 2013, 5, 1325–1345. [Google Scholar] [CrossRef]
- Pantry, S.N.; Medveczky, P.G.J.V. Latency, integration, and reactivation of human herpesvirus-6. Viruses 2017, 9, 194. [Google Scholar] [CrossRef] [PubMed]
- Hannolainen, L.; Pyöriä, L.; Pratas, D.; Lohi, J.; Skuja, S.; Rasa-Dzelzkaleja, S.; Murovska, M.; Hedman, K.; Jahnukainen, T.; Perdomo, M.F. Reactivation of a Transplant Recipient’s Inherited Human Herpesvirus 6 and Implications to the Graft. J. Infect. Dis. 2024, jiae268. [Google Scholar] [CrossRef]
- Rotola, A.; Ravaioli, T.; Gonelli, A.; Dewhurst, S.; Cassai, E.; Di Luca, D. U94 of human herpesvirus 6 is expressed in latently infected peripheral blood mononuclear cells and blocks viral gene expression in transformed lymphocytes in culture. Proc. Natl. Acad. Sci. USA 1998, 95, 13911–13916. [Google Scholar] [CrossRef]
- Lusso, P.; Markham, P.D.; Tschachler, E.; Veronese, F.d.M.; Salahuddin, S.Z.; Ablashi, D.V.; Pahwa, S.; Krohn, K.; Gallo, R.C. In vitro cellular tropism of human B-lymphotropic virus (human herpesvirus-6). J. Exp. Med. 1988, 167, 1659–1670. [Google Scholar] [CrossRef]
- Berneman, Z.N.; Ablashi, D.V.; Li, G.; Eger-Fletcher, M.; Reitz, M.S., Jr.; Hung, C.L.; Brus, I.; Komaroff, A.L.; Gallo, R.C. Human herpesvirus 7 is a T-lymphotropic virus and is related to, but significantly different from, human herpesvirus 6 and human cytomegalovirus. Proc. Natl. Acad. Sci. USA 1992, 89, 10552–10556. [Google Scholar] [PubMed]
- Corey, L.; Brodie, S.; Huang, M.; Koelle, D.M.; Wald, A. HHV-8 infection: A model for reactivation and transmission. Rev. Med. Virol. 2002, 12, 47–63. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K. KSHV genome replication and maintenance in latency. Adv. Exp. Med. Biol. 2018, 1045, 299–320. [Google Scholar]
- Dunmire, S.K.; Verghese, P.S.; Balfour, H.H. Primary Epstein-Barr virus infection. J. Clin. Virol. 2018, 102, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Liang, J.H.; Zhang, Y.; Lutchenkov, M.; Li, Z.; Wang, Y.; Trujillo-Alonso, V.; Puri, R.; Giulino-Roth, L.; Gewurz, B.E. Methionine metabolism controls the B cell EBV epigenome and viral latency. Cell Metab. 2022, 34, 1280–1297.e9. [Google Scholar] [CrossRef] [PubMed]
- Jeffery-Smith, A.; Riddell, A. Herpesviruses. Medicine 2021, 49, 780–784. [Google Scholar] [CrossRef]
- Whitley, R.J. Herpesviruses. In Medical Microbiology, 4th ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996. [Google Scholar]
- Roizman, B.; Whitley, R.J. An inquiry into the molecular basis of HSV latency and reactivation. Annu. Rev. Microbiol. 2013, 67, 355–374. [Google Scholar] [CrossRef] [PubMed]
- Crawford, L.B.; Microbiology, I. Hematopoietic stem cells and betaherpesvirus latency. Front. Cell Infect. Microbiol. 2023, 13, 1189805. [Google Scholar] [CrossRef]
- Arvin, A.; Campadelli-Fiume, G.; Mocarski, E.; Moore, P.S.; Roizman, B.; Whitley, R.; Yamanishi, K. Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kessler, H.H.; Mühlbauer, G.; Rinner, B.; Stelzl, E.; Berger, A.; Dörr, H.-W.; Santner, B.; Marth, E.; Rabenau, H. Detection of herpes simplex virus DNA by real-time PCR. J. Clin. Microbiol. 2000, 38, 2638–2642. [Google Scholar] [CrossRef]
- Lopez Roa, P.; Alonso, R.; de Egea, V.; Usubillaga, R.; Muñoz, P.; Bouza, E. PCR for detection of herpes simplex virus in cerebrospinal fluid: Alternative acceptance criteria for diagnostic workup. J. Clin. Microbiol. 2013, 51, 2880–2883. [Google Scholar] [CrossRef] [PubMed]
- Druce, J.; Catton, M.; Chibo, D.; Minerds, K.; Tyssen, D.; Kostecki, R.; Maskill, B.; Leong-Shaw, W.; Gerrard, M.; Birch, C. Utility of a multiplex PCR assay for detecting herpesvirus DNA in clinical samples. J. Clin. Microbiol. 2002, 40, 1728–1732. [Google Scholar] [CrossRef]
- Xiu, L.; Zhang, C.; Li, Y.; Wang, F.; Peng, J. Simultaneous detection of eleven sexually transmitted agents using multiplexed PCR coupled with MALDI-TOF analysis. Infect. Drug Resist. 2019, 12, 2671–2682. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, P.; Lu, L.; Zhong, H.; Xu, M.; Jia, R.; Su, L.; Cao, L.; Sun, Y.; Guo, M.; et al. Development of a multiplex droplet digital PCR assay for detection of enterovirus, parechovirus, herpes simplex virus 1 and 2 simultaneously for diagnosis of viral CNS infections. Virol. J. 2022, 19, 70. [Google Scholar] [CrossRef]
- Liu, W.; Wang, C.; Pan, F.; Shao, J.; Cui, Y.; Han, D.; Zhang, H. Clinical application of a multiplex droplet digital PCR in the rapid diagnosis of children with suspected bloodstream infections. Pathogens 2023, 12, 719. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Xia, H.; Moore, M.D.; Deng, C.; Li, N.; Ren, H.; Chen, Y.; Liu, J.; Du, F.; Zheng, G.; et al. Metagenomic next-generation sequencing in the diagnosis of HHV-1 reactivation in a critically ill COVID-19 patient: A case report. Front. Med. 2021, 8, 715519. [Google Scholar] [CrossRef] [PubMed]
- Modhusudon, S.; Bithi, R.; Islam, M.A.J.F. Detection of herpes simplex virus 2: A SYBR-Green-based real-time PCR assay. F1000Res 2021, 10, 655. [Google Scholar]
- Liu, J.; Yi, Y.; Chen, W.; Si, S.; Yin, M.; Jin, H.; Liu, J.; Zhou, J.; Zhang, J. Development and evaluation of the quantitative real-time PCR assay in detection and typing of herpes simplex virus in swab specimens from patients with genital herpes. Int. J. Clin. Exp. Med. 2015, 8, 18758. [Google Scholar]
- Navti, O.B.; Al-Belushi, M.; Konje, J.C. Cytomegalovirus infection in pregnancy—An update. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 258, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Nahass, G.T.; Mandel, M.J.; Cook, S.; Fan, W.; Leonardi, C.L. Detection of herpes simplex and varicella-zoster infection from cutaneous lesions in different clinical stages with the polymerase chain reaction. J. Am. Acad. Dermatol. 1995, 32, 730–733. [Google Scholar] [CrossRef]
- Fan, F.; Stiles, J.; Mikhlina, A.; Lu, X.; Babady, N.E.; Tang, Y.-W. Clinical validation of the Lyra direct HSV 1 + 2/VZV assay for simultaneous detection and differentiation of three herpesviruses in cutaneous and mucocutaneous lesions. J. Clin. Microbiol. 2014, 52, 3799–3801. [Google Scholar] [CrossRef]
- Guo, M.; Deng, L.; Liang, H.; Du, Y.; Gao, W.; Tian, N.; Bi, Y.; Li, J.; Ma, T.; Zhang, Y.; et al. Development and preliminary application of a droplet digital PCR assay for quantifying the oncolytic herpes simplex virus type 1 in the clinical-grade production. Viruses 2023, 15, 178. [Google Scholar] [CrossRef] [PubMed]
- Si, Z.; Li, L.; Han, J. Analysis of metagenomic next-generation sequencing (mNGS) in the diagnosis of herpes simplex virus (HSV) encephalitis with normal cerebrospinal fluid (CSF). Infect. Drug Resist. 2023, 16, 3431–3439. [Google Scholar] [CrossRef] [PubMed]
- Hartung, J.; Enders, G.; Chaoui, R.; Arents, A.; Tennstedt, C.; Bollmann, R. Prenatal diagnosis of congenital varicella syndrome and detection of varicella-zoster virus in the fetus: A case report. Prenat. Diagn. 1999, 19, 163–166. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, M.; Ding, C.; Peng, Z.; Wang, W.; Sun, B.; Cheng, J.; Chen, C.; Chen, W.; Wei, H.; et al. Metagenomic next-generation sequencing vs. traditional microbiological tests for diagnosing varicella-zoster virus central nervous system infection. Front. Public Health 2022, 9, 738412. [Google Scholar] [CrossRef]
- Han, J.; Si, Z.; Wei, N.; Cao, D.; Ji, Y.; Kang, Z.; Zhu, J. Next-generation sequencing of cerebrospinal fluid for the diagnosis of VZV-associated rhombencephalitis. J. Integr. Neurosci. 2023, 22, 36. [Google Scholar] [CrossRef]
- Farisyi, M.A.; Sufiawati, I.J.O.D. Detection of Epstein–Barr virus DNA in saliva of HIV-1-infected individuals with oral hairy leukoplakia. Oral Dis. 2020, 26, 158–160. [Google Scholar] [CrossRef]
- Idesawa, M.; Sugano, N.; Ikeda, K.; Oshikawa, M.; Takane, M.; Seki, K.; Ito, K. Detection of Epstein–Barr virus in saliva by real-time PCR. Oral Microbiol. Immunol. 2004, 19, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Le, Q.-T.; Yom, S.S.; Pinsky, B.A.; Bratman, S.V.; Ng, R.H.W.; El Mubarak, H.S.; Chan, K.C.A.; Sander, M.; Conley, B.A. Current state of PCR-based Epstein-Barr virus DNA testing for nasopharyngeal cancer. J. Natl. Cancer Inst. 2017, 109, djx007. [Google Scholar] [CrossRef]
- Wang, S.; Xiong, H.; Yan, S.; Wu, N.; Lu, Z. Identification and characterization of Epstein-Barr virus genomes in lung carcinoma biopsy samples by next-generation sequencing technology. Sci. Rep. 2016, 6, 26156. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.A.; Ahmed, A.; Palmer, A.L.; Michaels, M.G.; Sánchez, P.J.; Bernstein, D.I.; Tolan, R.W., Jr.; Novak, Z.; Chowdhury, N.; Fowler, K.B.; et al. Detection of congenital cytomegalovirus infection by real-time polymerase chain reaction analysis of saliva or urine specimens. J. Infect. Dis. 2014, 210, 1415–1418. [Google Scholar]
- Mallory, M.A.; Hymas, W.C.; Simmon, K.E.; Pyne, M.T.; Stevenson, J.B.; Barker, A.P.; Hillyard, D.R.; Hanson, K.E. Development and validation of a next-generation sequencing assay with open-access analysis software for detecting resistance-associated mutations in CMV. J. Clin. Microbiol. 2023, 61, e00829-23. [Google Scholar] [CrossRef]
- Al-Sadeq, D.W.; Zedan, H.T.; Aldewik, N.; Elkhider, A.; Hicazi, A.; Younes, N.; Ayoub, H.H.; Abu Raddad, L.; Yassine, H.M.; Nasrallah, G.K. Human herpes simplex virus-6 (HHV-6) detection and seroprevalence among Qatari nationals and immigrants residing in Qatar. IJID Reg. 2021, 2, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Boutolleau, D.; Duros, C.; Bonnafous, P.; Caïola, D.; Karras, A.; De Castro, N.; Ouachée, M.; Narcy, P.; Gueudin, M.; Agut, H.; et al. Identification of human herpesvirus 6 variants A and B by primer-specific real-time PCR may help to revisit their respective role in pathology. J. Clin. Virol. 2006, 35, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Kidd, I.; A Clark, D.; Bremner, J.A.; Pillay, D.; Griffiths, P.D.; Emery, V.C. A multiplex PCR assay for the simultaneous detection of human herpesvirus 6 and human herpesvirus 7, with typing of HHV-6 by enzyme cleavage of PCR products. J. Virol. Methods 1998, 70, 29–36. [Google Scholar] [CrossRef]
- Agut, H.; Bonnafous, P.; Gautheret-Dejean, A. Human Herpesviruses 6A, 6B, and 7. Microbiol. Spectr. 2016, 4, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, R.H.; Cook, L.; Huang, M.-L.; Magaret, A.; Zerr, D.M.; Boeckh, M.; Jerome, K.R. Identification of chromosomally integrated human herpesvirus 6 by droplet digital PCR. Clin. Chem. 2014, 60, 765–772. [Google Scholar] [CrossRef]
- Sharp, C.; Golubchik, T.; Gregory, W.F.; McNaughton, A.L.; Gow, N.; Selvaratnam, M.; Mirea, A.; Foster, D.; Andersson, M.; Klenerman, P.; et al. Human Herpes Virus 6 (HHV-6)-Pathogen or Passenger? A Pilot Study of Clinical Laboratory Data and Next Generation Sequencing; Cold Spring Harbor Laboratory: Laurel Hollow, NY, USA, 2017; p. 236083. [Google Scholar]
- Deback, C.; Agbalika, F.; Scieux, C.; Marcelin, A.; Gautheret-Dejean, A.; Cherot, J.; Hermet, L.; Roger, O.; Agut, H. Detection of human herpesviruses HHV-6, HHV-7 and HHV-8 in whole blood by real-time PCR using the new CMV, HHV-6, 7, 8 R-gene™ kit. J. Virol. Methods 2008, 149, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhao, Y.; Wang, Y.; Rao, J. A multiplex real-time PCR quantitation of human herpesvirus-6, 7, 8 viruses: Application in blood transfusions. Virol. J. 2021, 18, 38. [Google Scholar] [CrossRef] [PubMed]
- Shirahama, S.; Tanaka, R.; Kaburaki, T. Anterior Uveitis Associated with Human Herpesvirus 7 Infection Diagnosed by Multiplex Polymerase Chain Reaction Assay: A Case Report. Ocul. Immunol. Inflamm. 2023, 31, 474–476. [Google Scholar] [CrossRef]
- Hindson, B.J.; Ness, K.D.; Masquelier, D.A.; Belgrader, P.; Heredia, N.J.; Makarewicz, A.J.; Bright, I.J.; Lucero, M.Y.; Hiddessen, A.L.; Legler, T.C.; et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 2011, 83, 8604–8610. [Google Scholar] [CrossRef]
- Lallemand, F.; Desire, N.; Rozenbaum, W.; Nicolas, J.-C.; Marechal, V. Quantitative Analysis of Human Herpesvirus 8 Viral Load Using a Real-Time PCR Assay. J. Clin. Microbiol. 2000, 38, 1404–1408. [Google Scholar] [CrossRef]
- Pellett, P.E.; Spira, T.J.; Bagasra, O.; Boshoff, C.; Corey, L.; de Lellis, L.; Huang, M.-L.; Lin, J.-C.; Matthews, S.; Monini, P.; et al. Multicenter Comparison of PCR Assays for Detection of Human Herpesvirus 8 DNA in Semen. J. Clin. Microbiol. 1999, 37, 1298–1301. [Google Scholar] [CrossRef]
- Derafshi, R.; Ghapanchi, J.; Rezazadeh, F.; Kalantari, M.H.; Naeeni, A.M.; Farzin, M.; Moattari, A. PCR Detection of HHV8 DNA in the Saliva of Removable Denture Wearers Compared to Dentate Cases in Shiraz, South of Iran. BioMed Res. Int. 2020, 2020, 9358947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Cotton, V.E.; Hidalgo-Bravo, A.; Huang, Y.; Bell, A.J.; Jarrett, R.F.; Wilkie, G.S.; Davison, A.J.; Nacheva, E.P.; Siebert, R.; et al. HHV-8-unrelated primary effusion-like lymphoma associated with clonal loss of inherited chromosomally-integrated human herpesvirus-6A from the telomere of chromosome 19q. Sci. Rep. 2016, 6, 22730. [Google Scholar] [CrossRef] [PubMed]
- Whitley, R. Neonatal herpes simplex virus infections. J. Med. Virol. 1993, 41 (Suppl. S1), 13–21. [Google Scholar] [CrossRef]
- Lafferty, W.E.; Downey, L.; Celum, C.; Wald, A. Herpes simplex virus type 1 as a cause of genital herpes: Impact on surveillance and prevention. J. Infect. Dis. 2000, 181, 1454–1457. [Google Scholar] [CrossRef]
- Nahmias, A.J.; Keyserling, H.; Lee, F.K. Herpes simplex viruses 1 and 2. Viral Infect. Hum. Epidemiol. Control 1989, 393–417. [Google Scholar]
- Anderson, N.W.; Buchan, B.W.; Ledeboer, N.A. Light microscopy, culture, molecular, and serologic methods for detection of herpes simplex virus. J. Clin. Microbiol. 2014, 52, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, S.R.; Pretty, K.; Hengartner, R.; Robinson, C.C. Comparison of herpes simplex virus PCR with culture for virus detection in multisource surface swab specimens from neonates. J. Clin. Microbiol. 2018, 56, e00632-18. [Google Scholar] [CrossRef]
- Bagga, B.; Kate, A.; Joseph, J.; Dave, V.P. Herpes simplex infection of the eye: An introduction. Community Eye Health 2020, 33, 68. [Google Scholar]
- Wald, A. Genital HSV-1 Infections. Sex Transm. Infect. 2006, 82, 189–190. [Google Scholar] [CrossRef]
- Singh, A.; Preiksaitis, J.; Romanowski, B. The laboratory diagnosis of herpes simplex virus infections. Can. J. Infect. Dis. Med. Microbiol. 2005, 16, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Scoular, A.; Gillespie, G.; Carman, W. Polymerase chain reaction for diagnosis of genital herpes in a genitourinary medicine clinic. Sex. Transm. Infect. 2002, 78, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Strick, L.B.; Wald, A. Diagnostics for Herpes Simplex Virus. Mol. Diagn. Ther. 2006, 10, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Xia, D.; Zhou, Q.; Xu, W.; Xu, S.; Yin, Y. An evaluation of a multiplex PCR assay for the detection of Treponema pallidum, HSV-1, and HSV-2. Diagn. Microbiol. Infect. Dis. 2023, 106, 115958. [Google Scholar] [CrossRef]
- Jain, S.; Wyatt, D.; McCaughey, C.; O’Neill, H.J.; Coyle, P.V. Nested multiplex polymerase chain reaction for the diagnosis of cutaneous herpes simplex and herpes zoster infections and a comparison with electronmicroscopy. J. Med. Virol. 2001, 63, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, M.; Amorim, J.B.; Oliveira, J.G.; Bonjardim, C.A.; Ferreira, P.C.; Kroon, E.G. Comparison of virus isolation and various polymerase chain reaction methods in the diagnosis of mucocutaneous herpesvirus infection. Acta Virol. 2000, 44, 61–66. [Google Scholar]
- Aryee, E.A.; Bailey, R.L.; Natividad-Sancho, A.; Kaye, S.; Holland, M.J. Detection, quantification and genotyping of Herpes Simplex Virus in cervicovaginal secretions by real-time PCR: A cross sectional survey. Virol. J. 2005, 2, 61. [Google Scholar] [CrossRef] [PubMed]
- AK, A.K.; Bhutta, B.S.; Mendez, M.D. Herpes simplex encephalitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Tong, Y.; McCarthy, K.; Kong, H.; Lemieux, B. Development and comparison of a rapid isothermal nucleic acid amplification test for typing of herpes simplex virus types 1 and 2 on a portable fluorescence detector. J. Mol. Diagn. 2012, 14, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Legoff, J.; Bouhlal, H.; Grésenguet, G.; Weiss, H.; Khonde, N.; Hocini, H.; Désiré, N.; Si-Mohamed, A.; de Dieu Longo, J.; Chemin, C.; et al. Real-time PCR quantification of genital shedding of herpes simplex virus (HSV) and human immunodeficiency virus (HIV) in women coinfected with HSV and HIV. J. Clin. Microbiol. 2006, 44, 423–432. [Google Scholar] [CrossRef]
- Domingues, R.; Lakeman, F.D.; Mayo, M.S.; Whitley, R.J. Application of competitive PCR to cerebrospinal fluid samples from patients with herpes simplex encephalitis. J. Clin. Microbiol. 1998, 36, 2229–2234. [Google Scholar] [CrossRef]
- Tanaka, T.; Kogawa, K.; Sasa, H.; Nonoyama, S.; Furuya, K.; Sato, K. Rapid and simultaneous detection of 6 types of human herpes virus (herpes simplex virus, varicella-zoster virus, Epstein-Barr virus, cytomegalovirus, human herpes virus 6A/B, and human herpes virus 7) by multiplex PCR assay. Biomed. Res. 2009, 30, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Yap, T.; Khor, S.; Kim, J.S.; Kim, J.; Yun, J.S.W.; Kern, J.S.; Martyres, R.; Varigos, G.; Chan, H.T.; McCullough, M.J.; et al. Intraoral human herpes viruses detectable by PCR in majority of patients. Oral Dis. 2021, 27, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Ando, Y.; Kimura, H.; Miwata, H.; Kudo, T.; Shibata, M.; Morishima, T. Quantitative analysis of herpes simplex virus DNA in cerebrospinal fluid of children with herpes simplex encephalitis. J. Med. Virol. 1993, 41, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Futamura, M.; Kito, H.; Ando, T.; Goto, M.; Kuzushima, K.; Shibata, M.; Morishima, T. Detection of viral DNA in neonatal herpes simplex virus infections: Frequent and prolonged presence in serum and cerebrospinal fluid. J. Infect. Dis. 1991, 164, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Troendle-Atkins, J.; Demmler, G.J.; Buffone, G.J. Buffone, Rapid diagnosis of herpes simplex virus encephalitis by using the polymerase chain reaction. J. Pediatr. 1993, 123, 376–380. [Google Scholar] [CrossRef]
- Benjamin, L.A.; Kelly, M.; Cohen, D.; Neuhann, F.; Galbraith, S.; Mallewa, M.; Hopkins, M.; Hart, I.J.; Guiver, M.; Lalloo, D.G.; et al. Detection of herpes viruses in the cerebrospinal fluid of adults with suspected viral meningitis in Malawi. Infection 2012, 41, 27–31. [Google Scholar] [CrossRef]
- Studahl, M.; Hagberg, L.; Rekabdar, E.; Bergström, T. Herpesvirus DNA detection in cerebral spinal fluid: Differences in clinical presentation between alpha-, beta-, and gamma-herpesviruses. Scand. J. Infect. Dis. 2000, 32, 237–248. [Google Scholar] [PubMed]
- Doan, T.; Acharya, N.R.; Pinsky, B.A.; Sahoo, M.K.; Chow, E.D.; Banaei, N.; Budvytiene, I.; Cevallos, V.; Zhong, L.; Zhou, Z.; et al. Metagenomic DNA sequencing for the diagnosis of intraocular infections. Ophthalmology 2017, 124, 1247–1248. [Google Scholar] [CrossRef] [PubMed]
- Musa, M.; Enaholo, E.; Aluyi-Osa, G.; Atuanya, G.N.; Spadea, L.; Salati, C.; Zeppieri, M. Herpes simplex keratitis: A brief clinical overview. World J. Virol. 2024, 13, 89934. [Google Scholar] [CrossRef]
- Joseph, J.; Guda, S.J.M.; Sontam, B.; Bagga, B.; Ranjith, K.; Sharma, S. Evaluation of multiplex real-time polymerase chain reaction for the detection of herpes simplex virus-1 and 2 and varicella-zoster virus in corneal cells from normal subjects and patients with keratitis in India. Indian J. Ophthalmol. 2019, 67, 1040–1046. [Google Scholar] [CrossRef]
- Kobayashi, T.; Suzuki, T.; Okajima, Y.; Aoki, K.; Ishii, Y.; Tateda, K.; Hori, Y. Metagenome techniques for detection of pathogens causing ocular infection. Reports 2021, 4, 6. [Google Scholar] [CrossRef]
- Doan, T.; Wilson, M.R.; Crawford, E.D.; Chow, E.D.; Khan, L.M.; Knopp, K.A.; O’donovan, B.D.; Xia, D.; Hacker, J.K.; Stewart, J.M.; et al. Illuminating uveitis: Metagenomic deep sequencing identifies common and rare pathogens. Genome Med. 2016, 8, 90. [Google Scholar] [CrossRef]
- Gilden, D.; Mahalingam, R.; Nagel, M.A.; Pugazhenthi, S.; Cohrs, R.J. The neurobiology of varicella zoster virus infection. Neuropathol. Appl. Neurobiol. 2011, 37, 441–463. [Google Scholar] [CrossRef]
- O’Riavdan, M.; O’Gorman, C.; Morgan, C. Seroprevelence of varicella zoster virus in pregnant women in Dublin. J. Med. Sci. 2000, 169, 288. [Google Scholar]
- Leikin, E.; Figueroa, R.; Bertkau, A.; Lysikiewicz, A.; Visintainer, P.; Tejani, N. Seronegativity to varicella-zoster virus in a tertiary care obstetric population. Obstet. Gynecol. 1997, 90, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.; Cradock-Watson, T.; Ridehalgh, M.S.J.T.L. Outcome in newborn babies given anti-varicella-zoster immunoglobulin after perinatal maternal infection with varicella-zoster virus. Lancet 1989, 334, 371–373. [Google Scholar] [CrossRef] [PubMed]
- Gershon, A.A.; Raker, R.; Steinberg, S.; Topf-Olstein, B.; Drusin, L.M. Antibody to varicella-zoster virus in parturient women and their offspring during the first year of life. Pediatrics 1976, 58, 692–696. [Google Scholar] [CrossRef]
- Chapman, S.J. Varicella in pregnancy. In Seminars in Perinatology; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Mendelson, E.; Aboudy, Y.; Smetana, Z.; Tepperberg, M.; Grossman, Z. Laboratory assessment and diagnosis of congenital viral infections: Rubella, cytomegalovirus (CMV), varicella-zoster virus (VZV), herpes simplex virus (HSV), parvovirus B19 and human immunodeficiency virus (HIV). Reprod. Toxicol. 2006, 21, 350–382. [Google Scholar] [CrossRef]
- Herlin, L.K.; Hansen, K.S.; Bodilsen, J.; Larsen, L.; Brandt, C.; Andersen, C.; Hansen, B.R.; Lüttichau, H.R.; Helweg-Larsen, J.; Wiese, L.; et al. Varicella Zoster Virus Encephalitis in Denmark from 2015 to 2019—A Nationwide Prospective Cohort Study. Clin. Infect. Dis. 2020, 72, 1192–1199. [Google Scholar] [CrossRef]
- Mirouse, A.; Sonneville, R.; Razazi, K.; Merceron, S.; Argaud, L.; Bigé, N.; Faguer, S.; Perez, P.; Géri, G.; Guérin, C.; et al. Neurologic outcome of VZV encephalitis one year after ICU admission: A multicenter cohort study. Ann. Intensiv. Care 2022, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Lizzi, J.; Hill, T.; Jakubowski, J. Varicella zoster virus encephalitis. Clin. Pract. Cases Emerg. Med. 2019, 3, 380–382. [Google Scholar] [CrossRef] [PubMed]
- Finnström, N.; Bergsten, K.; Ström, H.; Sundell, T.; Martin, S.; Wutzler, P.; Sauerbrei, A. Analysis of varicella-zoster virus and herpes simplex virus in various clinical samples by the use of different PCR assays. J. Virol. Methods 2009, 160, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Sauerbrei, A.; Eichhorn, U.; Schacke, M.; Wutzler, P. Laboratory diagnosis of herpes zoster. J. Clin. Virol. 1999, 14, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Mouly, F.; Mirlesse, V.; Méritet, J.F.; Rozenberg, F.; Poissonier, M.H.; Lebon, P.; Daffos, F. Prenatal diagnosis of fetal varicella-zoster virus infection with polymerase chain reaction of amniotic fluid in 107 cases. Am. J. Obstet. Gynecol. 1997, 177, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Puchhammer-Stöckl, E.; Kunz, C.; Wagner, G.; Enders, G. Detection of varicella zoster virus (VZV) DNA in fetal tissue by polymerase chain reaction. J. Perinat. Med. 1994, 22, 65–69. [Google Scholar] [CrossRef]
- Tang, Y.W.; Espy, M.J.; Persing, D.H.; Smith, T.F. Molecular evidence and clinical significance of herpesvirus coinfection in the central nervous system. J. Clin. Microbiol. 1997, 35, 2869–2872. [Google Scholar] [CrossRef]
- Mehta, S.K.; Tyring, S.K.; Cohrs, R.J.; Gilden, D.; Feiveson, A.H.; Lechler, K.J.; Pierson, D.L. Rapid and sensitive detection of varicella zoster virus in saliva of patients with herpes zoster. J. Virol. Methods 2013, 193, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Rowley, A.; Whitley, R.J.; Lakeman, F.D.; Wolinsky, S.M. Rapid detection of herpes-simplex-virus DNA in cerebrospinal fluid of patients with herpes simplex encephalitis. Lancet 1990, 335, 440–441. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.-W.; Mitchell, P.S.; Espy, M.J.; Smith, T.F.; Persing, D.H. Molecular diagnosis of herpes simplex virus infections in the central nervous system. J. Clin. Microbiol. 1999, 37, 2127–2136. [Google Scholar] [CrossRef]
- Weidmann, M.; Meyer-König, U.; Hufert, F.T. Rapid detection of herpes simplex virus and varicella-zoster virus infections by real-time PCR. J. Clin. Microbiol. 2003, 41, 1565–1568. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, C.; Zauli, D.J.C.C. A-308 The Molecular Diagnosis of Varicella Zoster Virus (VZV): A Validation of a Real-Time PCR (qPCR) Assay for the Qualitative Detection. Clin. Chem. 2023, 69 (Suppl. S1), hvad097.273. [Google Scholar] [CrossRef]
- Leung, J. Notes from the field: Congenital varicella syndrome case—Illinois, 2021. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 390–392. [Google Scholar] [CrossRef]
- Abusalah, M.A.H.; Gan, S.H.; Al-Hatamleh, M.A.; Irekeola, A.A.; Shueb, R.H.; Yean Yean, C. Recent advances in diagnostic approaches for epstein–barr virus. Pathogens 2020, 9, 226. [Google Scholar] [CrossRef]
- Gulley, M.L. Molecular diagnosis of Epstein-Barr virus-related diseases. J. Mol. Diagn. 2001, 3, 1–10. [Google Scholar] [CrossRef]
- Gulley, M.L.; Tang, W. Laboratory assays for Epstein-Barr virus-related disease. J. Mol. Diagn. 2008, 10, 279–292. [Google Scholar] [CrossRef]
- Kimura, H.; Ito, Y.; Suzuki, R.; Nishiyama, Y. Measuring Epstein–Barr virus (EBV) load: The significance and application for each EBV-associated disease. Rev. Med. Virol. 2008, 18, 305–319. [Google Scholar] [CrossRef]
- Smatti, M.K.; Al-Sadeq, D.W.; Ali, N.H.; Pintus, G.; Abou-Saleh, H.; Nasrallah, G.K. Epstein–Barr virus epidemiology, serology, and genetic variability of LMP-1 oncogene among healthy population: An update. Front. Oncol. 2018, 8, 211. [Google Scholar] [CrossRef]
- De Paschale, M.; Clerici, P. Serological diagnosis of Epstein-Barr virus infection: Problems and solutions. World J. Virol. 2012, 1, 31–43. [Google Scholar] [CrossRef]
- Grimm-Geris, J.; Dunmire, S.K.; Duval, L.M.; Filtz, E.A.; Leuschen, H.J.; Schmeling, D.O.; Kulasingam, S.L.; Balfour, H.H. Screening for Epstein–Barr virus (EBV) infection status in university freshmen: Acceptability of a gingival swab method. Epidemiol. Infect. 2019, 147, e140. [Google Scholar] [CrossRef]
- Owens, G.P.; Bennett, J.L. Trigger, pathogen, or bystander: The complex nexus linking Epstein–Barr virus and multiple sclerosis. Mult. Scler. 2012, 18, 1204–1208. [Google Scholar] [CrossRef]
- Cocuzza, C.E.; Piazza, F.; Musumeci, R.; Oggioni, D.; Andreoni, S.; Gardinetti, M.; Fusco, L.; Frigo, M.; Banfi, P.; Rottoli, M.R.; et al. Quantitative Detection of Epstein-Barr Virus DNA in Cerebrospinal Fluid and Blood Samples of Patients with Relapsing-Remitting Multiple Sclerosis. PLoS ONE 2014, 9, e94497. [Google Scholar] [CrossRef]
- Zuhair, M.; Smit, G.S.A.; Wallis, G.; Jabbar, F.; Smith, C.; Devleesschauwer, B.; Griffiths, P. Estimation of the worldwide seroprevalence of cytomegalovirus: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2034. [Google Scholar] [CrossRef]
- Griffiths, P.; Baraniak, I.; Reeves, M. The pathogenesis of human cytomegalovirus. J. Pathol. 2015, 235, 288–297. [Google Scholar] [CrossRef]
- Dioverti, M.V.; Razonable, R.R. Cytomegalovirus. Microbiol. Spectr. 2016, 4, 97–125. [Google Scholar] [CrossRef]
- Ho, M.; Suwansirikul, S.; Dowling, J.N.; Youngblood, L.A.; Armstrong, J.A. The transplanted kidney as a source of cytomegalovirus infection. N. Engl. J. Med. 1975, 293, 1109–1112. [Google Scholar] [CrossRef]
- Krstanović, F.; Britt, W.J.; Jonjić, S.; Brizić, I. Cytomegalovirus Infection and Inflammation in Developing Brain. Viruses 2021, 13, 1078. [Google Scholar] [CrossRef]
- Umbach, J.L.; Kramer, M.F.; Jurak, I.; Karnowski, H.W.; Coen, D.M.; Cullen, B.R. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008, 454, 780–783. [Google Scholar] [CrossRef]
- Nigro, G. Maternal–fetal cytomegalovirus infection: From diagnosis to therapy. J. Matern. Fetal. Neonatal. Med. 2009, 22, 169–174. [Google Scholar] [CrossRef]
- Grossi, P.A.; Peghin, M. Recent advances in cytomegalovirus infection management in solid organ transplant recipients. Curr. Opin. Organ Transplant. 2024, 29, 131–137. [Google Scholar] [CrossRef]
- Boeckh, M.; Boivin, G. Quantitation of Cytomegalovirus: Methodologic Aspects and Clinical Applications. Clin. Microbiol. Rev. 1998, 11, 533–554. [Google Scholar] [CrossRef]
- Hildenbrand, C.; Wedekind, L.; Li, G.; vonRentzell, J.E.; Shah, K.; Rooney, P.; Harrington, A.T.; Zhao, R.Y. Clinical evaluation of Roche COBAS® AmpliPrep/COBAS® TaqMan® CMV test using nonplasma samples. J. Med. Virol. 2018, 90, 1611–1619. [Google Scholar] [CrossRef]
- Boeckh, M.; Huang, M.; Ferrenberg, J.; Stevens-Ayers, T.; Stensland, L.; Nichols, W.G.; Corey, L. Optimization of Quantitative Detection of Cytomegalovirus DNA in Plasma by Real-Time PCR. J. Clin. Microbiol. 2004, 42, 1142–1148. [Google Scholar] [CrossRef]
- Satou, J.; Funato, T.; Satoh, N.; Abe, Y.; Ishii, K.; Sasaki, T.; Kaku, M. Quantitative PCR determination of human cytomegalovirus in blood cells. J. Clin. Lab. Anal. 2001, 15, 122–126. [Google Scholar] [CrossRef]
- Gault, E.; Michel, Y.; Dehée, A.; Belabani, C.; Nicolas, J.-C.; Garbarg-Chenon, A. Quantification of Human Cytomegalovirus DNA by Real-Time PCR. J. Clin. Microbiol. 2001, 39, 772–775. [Google Scholar] [CrossRef]
- Shlonsky, Y.; Smair, N.S.; Mubariki, R.; Bamberger, E.; Hemo, M.; Cohen, S.; Riskin, A.; Srugo, I.; Bader, D.; Golan-Shany, O. Pooled saliva CMV DNA detection: A viable laboratory technique for universal CMV screening of healthy newborns. J. Clin. Virol. 2021, 138, 104798. [Google Scholar] [CrossRef]
- Yamamoto, A.Y.; Mussi-Pinhata, M.M.; Marin, L.J.; Brito, R.M.; Oliveira, P.F.C.; Coelho, T.B. Is saliva as reliable as urine for detection of cytomegalovirus DNA for neonatal screening of congenital CMV infection? J. Clin. Virol. 2006, 36, 228–230. [Google Scholar] [CrossRef]
- Demmler, G.J. Screening for congenital cytomegalovirus infection: A tapestry of controversies. J. Pediatr. 2005, 146, 162–164. [Google Scholar] [CrossRef]
- Halwachs-Baumann, G.; Genser, B.; Pailer, S.; Engele, H.; Rosegger, H.; Schalk, A.; Kessler, H.H.; Truschnig-Wilders, M. Human cytomegalovirus load in various body fluids of congenitally infected newborns. J. Clin. Virol. 2002, 25, 81–87. [Google Scholar] [CrossRef]
- Boeckh, M.; Gallez-Hawkins, G.M.; Myerson, D.; Zaia, J.A.; Bowden, R.A. Plasma polymerase chain reaction for cytomegalovirus DNA after allogeneic marrow transplantation: Comparison with Polymerase Chain Reaction Using Peripheral Blood Leukocytes, pp65 Antigenemia, and Viral Culture. Transplantation 1997, 64, 108–113. [Google Scholar] [CrossRef]
- Boivin, G.; Handfield, J.; Toma, E.; Murray, G.; Lalonde, R.; Bergeron, M.G. Comparative Evaluation of the Cytomegalovirus DNA Load in Polymorphonuclear Leukocytes and Plasma of Human Immunodeficiency Virus-Infected Subjects. J. Infect. Dis. 1998, 177, 355–360. [Google Scholar] [CrossRef]
- Boeckh, M.; Leisenring, W.; Riddell, S.R.; Bowden, R.A.; Huang, M.-L.; Myerson, D.; Stevens-Ayers, T.; Flowers, M.E.D.; Cunningham, T.; Corey, L. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: Importance of viral load and T-cell immunity. Blood 2003, 101, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Spector, S.A.; Hsia, K.; Crager, M.; Pilcher, M.; Cabral, S.; Stempien, M.J. Cytomegalovirus (CMV) DNA Load Is an Independent Predictor of CMV Disease and Survival in Advanced AIDS. J. Virol. 1999, 73, 7027–7030. [Google Scholar] [CrossRef]
- Deback, C.; Fillet, A.; Dhedin, N.; Barrou, B.; Varnous, S.; Najioullah, F.; Bricaire, F.; Agut, H. Monitoring of human cytomegalovirus infection in immunosuppressed patients using real-time PCR on whole blood. J. Clin. Virol. 2007, 40, 173–179. [Google Scholar] [CrossRef]
- Garrigue, I.; Doussau, A.; Asselineau, J.; Bricout, H.; Couzi, L.; Rio, C.; Merville, P.; Fleury, H.; Lafon, M.-E.; Thiébaut, R. Prediction of Cytomegalovirus (CMV) Plasma Load from Evaluation of CMV Whole-Blood Load in Samples from Renal Transplant Recipients. J. Clin. Microbiol. 2008, 46, 493–498. [Google Scholar] [CrossRef]
- Razonable, R.R.; Brown, R.A.; Wilson, J.; Groettum, C.; Kremers, W.; Espy, M.; Smith, T.F.; Paya, C.V. The clinical use of various blood compartments for cytomegalovirus (CMV) DNA quantitation in transplant recipients with CMV disease. Transplantation 2002, 73, 968–973. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, H.; Zhang, Y.; Zhou, Y.; Bai, G.; Shen, L.; Zhou, H.; Chen, X.; Hu, L. Clinical metagenomic next-generation sequencing for diagnosis of secondary glaucoma in patients with cytomegalovirus-induced corneal endotheliitis. Front. Microbiol. 2022, 13, 940818. [Google Scholar] [CrossRef]
- Smith, I.L.; Macdonald, J.C.; Freeman, W.R.; Shapiro, A.M.; Spector, S.A. Cytomegalovirus (CMV) retinitis activity is accurately reflected by the presence and level of CMV DNA in aqueous humor and vitreous. J. Infect. Dis. 1999, 179, 1249–1253. [Google Scholar] [CrossRef]
- Bolle, L.D.; Naesens, L.; Clercq, E.D. Update on Human Herpesvirus 6 Biology, Clinical Features, and Therapy. Clin. Microbiol. Rev. 2005, 18, 217–245. [Google Scholar] [CrossRef]
- Ablashi, D.; Agut, H.; Alvarez-Lafuente, R.; Clark, D.A.; Dewhurst, S.; DiLuca, D.; Flamand, L.; Frenkel, N.; Gallo, R.; Gompels, U.A.; et al. Classification of HHV-6A and HHV-6B as distinct viruses. Arch. Virol. 2013, 159, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Burbelo, P.D.; Bayat, A.; Wagner, J.; Nutman, T.B.; Baraniuk, J.N.; Iadarola, M.J. No serological evidence for a role of HHV-6 infection in chronic fatigue syndrome. Am. J. Transl. Res. 2012, 4, 443. [Google Scholar]
- Agut, H.; Bonnafous, P.; Gautheret-Dejean, A. Laboratory and Clinical Aspects of Human Herpesvirus 6 Infections. Clin. Microbiol. Rev. 2015, 28, 313–335. [Google Scholar] [CrossRef]
- Campadelli-Fiume, G.; Mirandola, P.; Menotti, L. Human herpesvirus 6: An emerging pathogen. Emerg. Infect. Dis. 1999, 5, 353–366. [Google Scholar] [CrossRef]
- Mullins, T.B.; Krishnamurthy, K. Roseola infantum. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Norton, R.A.; Caserta, M.T.; Hall, C.B.; Schnabel, K.; Hocknell, P.; Dewhurst, S. Detection of human herpesvirus 6 by reverse transcription-PCR. J. Clin. Microbiol. 1999, 37, 3672–3675. [Google Scholar] [CrossRef]
- Bortolotti, D.; Gentili, V.; Rotola, A.; Caselli, E.; Rizzo, R. HHV-6A infection induces amyloid-beta expression and activation of microglial cells. Alzheimer’s Res. Ther. 2019, 11, 104. [Google Scholar] [CrossRef]
- Leibovitch, E.C.; Brunetto, G.S.; Caruso, B.; Fenton, K.; Ohayon, J.; Reich, D.S.; Jacobson, S. Coinfection of human herpesviruses 6A (HHV-6A) and HHV-6B as demonstrated by novel digital droplet PCR assay. PLoS ONE 2014, 9, e92328. [Google Scholar] [CrossRef]
- Marci, R.; Gentili, V.; Bortolotti, D.; Lo Monte, G.; Caselli, E.; Bolzani, S.; Rotola, A.; Di Luca, D.; Rizzo, R. Presence of HHV-6A in endometrial epithelial cells from women with primary unexplained infertility. PLoS ONE 2016, 11, e0158304. [Google Scholar] [CrossRef] [PubMed]
- Caselli, E.; Bortolotti, D.; Marci, R.; Rotola, A.; Gentili, V.; Soffritti, I.; D’Accolti, M.; Monte, G.L.; Sicolo, M.; Barao, I.; et al. HHV-6A infection of endometrial epithelial cells induces increased endometrial NK cell-mediated cytotoxicity. Front. Microbiol. 2017, 8, 2525. [Google Scholar] [CrossRef]
- Morissette, G.; Flamand, L. Herpesviruses and chromosomal integration. J. Virol. 2010, 84, 12100–12109. [Google Scholar] [CrossRef]
- Pellett, P.E.; Ablashi, D.V.; Ambros, P.F.; Agut, H.; Caserta, M.T.; Descamps, V.; Flamand, L.; Gautheret-Dejean, A.; Hall, C.B.; Kamble, R.T.; et al. Chromosomally integrated human herpesvirus 6: Questions and answers. Rev. Med. Virol. 2011, 22, 144–155. [Google Scholar] [CrossRef]
- Wang, H.; Tomatis-Souverbielle, C.; Everhart, K.; Oyeniran, S.J.; Leber, A.L. Detection of human herpesvirus 6 in pediatric CSF samples: Causing disease or incidental distraction? Diagn. Microbiol. Infect. Dis. 2023, 107, 116029. [Google Scholar] [CrossRef]
- Kamble, R.T.; A Clark, D.; Leong, H.N.; E Heslop, H.; Brenner, M.K.; Carrum, G. Transmission of integrated human herpesvirus-6 in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2007, 40, 563–566. [Google Scholar] [CrossRef]
- Zerr, D.M.; Corey, L.; Kim, H.W.; Huang, M.; Nguy, L.; Boeckh, M. Clinical outcomes of human herpesvirus 6 reactivation after hematopoietic stem cell transplantation. Clin. Infect. Dis. 2005, 40, 932–940. [Google Scholar] [CrossRef]
- Strenger, V.; Caselli, E.; Lautenschlager, I.; Schwinger, W.; Aberle, S.W.; Loginov, R.; Gentili, V.; Nacheva, E.; DiLuca, D.; Urban, C. Detection of HHV-6-specific mRNA and antigens in PBMCs of individuals with chromosomally integrated HHV-6 (ciHHV-6). Clin. Microbiol. Infect. 2014, 20, 1027–1032. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Akimoto, S.; Nishimura, N.; Ozaki, T.; Ihira, M.; Ohashi, M.; Morooka, M.; Suga, S.; Asano, Y.; Takemoto, M.; et al. Evaluation of active human herpesvirus 6 infection by reverse transcription-PCR. J. Med. Virol. 2003, 70, 267–272. [Google Scholar] [CrossRef]
- Locatelli, G.; Santoro, F.; Veglia, F.; Gobbi, A.; Lusso, P.; Malnati, M.S. Real-Time Quantitative PCR for Human Herpesvirus 6 DNA. J. Clin. Microbiol. 2000, 38, 4042–4048. [Google Scholar] [CrossRef]
- Kainth, M.K.; Caserta, M.T. Molecular diagnostic tests for human herpesvirus 6. Pediatr. Infect. Dis. J. 2011, 30, 604–605. [Google Scholar] [CrossRef]
- Chiu, S.S.; Cheung, C.Y.; Tse, C.Y.C.; Peiris, M. Early diagnosis of primary human herpesvirus 6 infection in childhood: Serology, polymerase chain reaction, and virus load. J. Infect. Dis. 1998, 178, 1250–1256. [Google Scholar] [CrossRef]
- Clark, D.A.; Ait-Khaled, M.; Wheeler, A.C.; Kidd, I.M.; McLaughlin, J.E.; Johnson, M.A.; Griffiths, P.D.; Emery, V.C. Quantification of human herpesvirus 6 in immunocompetent persons and post-mortem tissues from AIDS patients by PCR. J. Gen. Virol. 1996, 77, 2271–2275. [Google Scholar] [CrossRef]
- Ward, K.N.; Leong, H.N.; Thiruchelvam, A.D.; Atkinson, C.E.; Clark, D.A. Human herpesvirus 6 DNA levels in cerebrospinal fluid due to primary infection differ from those due to chromosomal viral integration and have implications for diagnosis of encephalitis. J. Clin. Microbiol. 2007, 45, 1298–1304. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.A.; Kidd, I.M.; E Collingham, K.; Tarlow, M.; Ayeni, T.; Riordan, A.; Griffiths, P.D.; Emery, V.C.; Pillay, D. Diagnosis of primary human herpesvirus 6 and 7 infections in febrile infants by polymerase chain reaction. Arch. Dis. Child. 1997, 77, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Zerr, D.M.; Huang, M.-L.; Corey, L.; Erickson, M.; Parker, H.L.; Frenkel, L.M. Sensitive Method for Detection of Human Herpesviruses 6 and 7 in Saliva Collected in Field Studies. J. Clin. Microbiol. 2000, 38, 1981–1983. [Google Scholar] [CrossRef] [PubMed]
- Flamand, L.; Gravel, A.; Boutolleau, D.; Alvarez-Lafuente, R.; Jacobson, S.; Malnati, M.S.; Kohn, D.; Tang, Y.-W.; Yoshikawa, T.; Ablashi, D. Multicenter comparison of PCR assays for detection of human herpesvirus 6 DNA in serum. J. Clin. Microbiol. 2008, 46, 2700–2706. [Google Scholar] [CrossRef]
- Sugita, S.; Shimizu, N.; Watanabe, K.; Ogawa, M.; Maruyama, K.; Usui, N.; Mochizuki, M. Virological Analysis in Patients with Human Herpes Virus 6–Associated Ocular Inflammatory Disorders. Investig. Opthalmology Vis. Sci. 2012, 53, 4692–4698. [Google Scholar] [CrossRef] [PubMed]
- Theodore, W.H.; Epstein, L.; Gaillard, W.D.; Shinnar, S.; Wainwright, M.S.; Jacobson, S. Human herpes virus 6B: A possible role in epilepsy? Epilepsia 2008, 49, 1828–1837. [Google Scholar] [CrossRef]
- Perlejewski, K.; Popiel, M.; Laskus, T.; Nakamura, S.; Motooka, D.; Stokowy, T.; Lipowski, D.; Pollak, A.; Lechowicz, U.; Cortés, K.C.; et al. Next-generation sequencing (NGS) in the identification of encephalitis-causing viruses: Unexpected detection of human herpesvirus 1 while searching for RNA pathogens. J. Virol. Methods 2015, 226, 1–6. [Google Scholar] [CrossRef]
- Gomez, C.A.; Pinsky, B.A.; Liu, A.; Banaei, N. Delayed Diagnosis of Tuberculous Meningitis Misdiagnosed as Herpes Simplex Virus-1 Encephalitis with the FilmArray Syndromic Polymerase Chain Reaction Panel. Open Forum Infect. Dis. 2016, 4, ofw245. [Google Scholar] [CrossRef] [PubMed]
- Kawada, J.-I.; Okuno, Y.; Torii, Y.; Okada, R.; Hayano, S.; Ando, S.; Kamiya, Y.; Kojima, S.; Ito, Y. Identification of Viruses in Cases of Pediatric Acute Encephalitis and Encephalopathy Using Next-Generation Sequencing. Sci. Rep. 2016, 6, 33452. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Wilson, T.; Fischer, K.F.; Kriesel, J.D. Deep sequencing to identify the causes of viral encephalitis. PLoS ONE 2014, 9, e93993. [Google Scholar] [CrossRef] [PubMed]
- Lusso, P.; Gallo, R.C. 9 Human herpesvirus 6. Baillieres Clin. Haematol. 1995, 8, 201–223. [Google Scholar] [CrossRef]
- Foiadelli, T.; Rossi, V.; Paolucci, S.; Rovida, F.; Novazzi, F.; Orsini, A.; Brambilla, I.; Marseglia, G.L.; Baldanti, F.; Savasta, S. Human herpes virus 7-related encephalopathy in children. Acta Biomed. 2022, 92 (Suppl. S4), e2021415. [Google Scholar]
- Tanaka, K.; Kondo, T.; Torigoe, S.; Okada, S.; Mukai, T.; Yamanishi, K. Human herpesvirus 7: Another causal agent for roseola (exanthem subitum). J. Pediatr. 1994, 125, 1–5. [Google Scholar] [CrossRef]
- Epstein, L.G.; Shinnar, S.; Hesdorffer, D.C.; Nordli, D.R.; Hamidullah, A.; Benn, E.K.T.; Pellock, J.M.; Frank, L.M.; Lewis, D.V.; Moshe, S.L.; et al. Human herpesvirus 6 and 7 in febrile status epilepticus: The FEBSTAT study. Epilepsia 2012, 53, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Chapenko, S.; Roga, S.; Skuja, S.; Rasa, S.; Cistjakovs, M.; Svirskis, S.; Zaserska, Z.; Groma, V.; Murovska, M. Detection frequency of human herpesviruses-6A-6B, and-7 genomic sequences in central nervous system DNA samples from post-mortem individuals with unspecified encephalopathy. J. Neurovirol. 2016, 22, 488–497. [Google Scholar] [CrossRef]
- Ongrádi, J.; Ablashi, D.V.; Yoshikawa, T.; Stercz, B.; Ogata, M. Roseolovirus-associated encephalitis in immunocompetent and immunocompromised individuals. J. Neurovirol. 2017, 23, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Luzzi, S.; Lucifero, A.G.; Brambilla, I.; Mantelli, S.S.; Mosconi, M.; Foiadelli, T.; Savasta, S. Targeting the medulloblastoma: A molecular-based approach. Acta Biomed. 2020, 91 (Suppl. S7), 79. [Google Scholar]
- Ward, K.N.; Andrews, N.J.; Verity, C.M.; Miller, E.; Ross, E.M. Human herpesviruses-6 and-7 each cause significant neurological morbidity in Britain and Ireland. Arch. Dis. Child. 2005, 90, 619–623. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.K.; Chik, K.; To, K.; Li, C.; Shing, M.M.; Ng, K.; Yuen, P.M.; Cheng, A.F. Case report: Human herpesvirus 7 associated fatal encephalitis in a peripheral blood stem cell transplant recipient. J. Med. Virol. 2002, 66, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Rasa, S.; Nora-Krukle, Z.; Henning, N.; Eliassen, E.; Shikova, E.; Harrer, T.; Scheibenbogen, C.; Murovska, M.; Prusty, B.K. Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J. Transl. Med. 2018, 16, 268. [Google Scholar] [CrossRef]
- Wallace, H.L.; Natelson, B.; Gause, W.; Hay, J. Human Herpesviruses in Chronic Fatigue Syndrome. Clin. Diagn. Lab. Immunol. 1999, 6, 216–223. [Google Scholar] [CrossRef]
- Prusty, B.K.; Gulve, N.; Rasa, S.; Murovska, M.; Hernandez, P.C.; Ablashi, D.V. Possible chromosomal and germline integration of human herpesvirus 7. J. Gen. Virol. 2017, 98, 266–274. [Google Scholar] [CrossRef]
- Ward, K.N. The natural history and laboratory diagnosis of human herpesviruses-6 and -7 infections in the immunocompetent. J. Clin. Virol. 2005, 32, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, J.S.P.; van Zeijl, J.; Rotteveel, J.; Melchers, W.G.; Gabrels, F.M.; Galama, J.D. Neuroinvasion by human herpesvirus type 7 in a case of exanthem subitum with severe neurologic manifestations. Neurology 1999, 52, 1077. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Farooqi, I.S.; O’Rahilly, S. Invasion by human herpesvirus 6 and human herpesvirus 7 of the central nervous system in patients with neurological signs and symptoms. Arch. Dis. Child. 2000, 83, 170–171. [Google Scholar] [CrossRef]
- Leveque, N.; Van Haecke, A.; Renois, F.; Boutolleau, D.; Talmud, D.; Andreoletti, L. Rapid Virological Diagnosis of Central Nervous System Infections by Use of a Multiplex Reverse Transcription-PCR DNA Microarray. J. Clin. Microbiol. 2011, 49, 3874–3879. [Google Scholar] [CrossRef]
- Osman, H.; Peiris, J.S.; Taylor, C.E.; Karlberg, J.P.; Madeley, C.R. Correlation between the detection of viral DNA by the polymerase chain reaction in peripheral blood leukocytes and serological responses to human herpesvirus 6, human herpesvirus 7, and cytomegalovirus in renal allograft recipients. J. Med. Virol. 1997, 53, 288–294. [Google Scholar] [CrossRef]
- Wilborn, F.; Schmidt, C.A.; Lorenz, F.; Peng, R.; Gelderblom, H.; Huhn, D.; Siegert, W. Human herpesvirus type 7 in blood donors: Detection by the polymerase chain reaction. J. Med. Virol. 1995, 47, 65–69. [Google Scholar] [CrossRef]
- Schulz, T.F. Epidemiology of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus 8. Adv. Cancer Res. 1999, 76, 121–160. [Google Scholar] [PubMed]
- Mariggiò, G.; Koch, S.; Schulz, T.F. Kaposi sarcoma herpesvirus pathogenesis. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160275. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.Y.; Nabel, C.S.; Finkelman, B.S.; Ruth, J.R.; Kurzrock, R.; van Rhee, F.; Krymskaya, V.P.; Kelleher, D.; Rubenstein, A.H.; Fajgenbaum, D.C. Idiopathic multicentric Castleman’s disease: A systematic literature review. Lancet Haematol. 2016, 3, e163–e175. [Google Scholar] [CrossRef]
- Calabrò, M.L.; Sarid, R. Human herpesvirus 8 and lymphoproliferative disorders. Mediterr. J. Hematol. Infect. Dis. 2018, 10, e2018061. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.; Kainthla, R.; Lazarte, S.; Chen, W.; Nijhawan, A.E.; Knights, S. Outcomes in Kaposi’s sarcoma-associated herpesvirus-associated primary effusion lymphoma and multicentric Castleman’s disease in patients with human immunodeficiency virus (HIV) in a safety-net hospital system. Eur. J. Haematol. 2024, 112, 723–730. [Google Scholar] [CrossRef]
- Gonçalves, P.H.; Uldrick, T.S.; Yarchoan, R. HIV-associated Kaposi sarcoma and related diseases. AIDS 2017, 31, 1903–1916. [Google Scholar] [CrossRef]
- Cohen, J.I. Herpesvirus latency. J. Clin. Investig. 2020, 130, 3361–3369. [Google Scholar] [CrossRef] [PubMed]
- Edelman, D.C. Human herpesvirus 8—A novel human pathogen. Virol. J. 2005, 2, 78. [Google Scholar] [CrossRef]
- Andreoni, M.; Sarmati, L.; Nicastri, E.; El Sawaf, G.; El Zalabani, M.; Uccella, I.; Bugarini, R.; Parisi, S.G.; Rezza, G. Primary human herpesvirus 8 infection in immunocompetent children. JAMA 2002, 287, 1295–1300. [Google Scholar] [CrossRef]
- Wang, Q.J.; Jenkins, F.J.; Jacobson, L.P.; Kingsley, L.A.; Day, R.D.; Zhang, Z.-W.; Meng, Y.-X.; Pellet, P.E.; Kousoulas, K.G.; Baghian, A.; et al. Primary human herpesvirus 8 infection generates a broadly specific CD8+ T-cell response to viral lytic cycle proteins. Blood 2001, 97, 2366–2373. [Google Scholar] [CrossRef] [PubMed]
- Auten, M.; Kim, A.S.; Bradley, K.T.; Rosado, F.G. Human herpesvirus 8-related diseases: Histopathologic diagnosis and disease mechanisms. In Seminars in Diagnostic Pathology; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Phipps, W.; Saracino, M.; Selke, S.; Huang, M.-L.; Jaoko, W.; Mandaliya, K.; Wald, A.; Casper, C.; McClelland, R.S. Oral HHV-8 replication among women in Mombasa, Kenya. J. Med. Virol. 2014, 86, 1759–1765. [Google Scholar] [CrossRef]
- Taylor, M.M.; Chohan, B.; Lavreys, L.; Hassan, W.; Huang, M.; Corey, L.; Morrow, R.A.; Richardson, B.A.; Mandaliya, K.; Ndinya-Achola, J.; et al. Shedding of Human Herpesvirus 8 in Oral and Genital Secretions from HIV-1-Seropositive and -Seronegative Kenyan Women. J. Infect. Dis. 2004, 190, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Zghair, A.N.; Kasim, S.F.; Mohammed, N.S.; Sharma, A.K. Seroprevalence and Biomarkers Detection of Human Herpes Virus (HHV-8) in Patients with Kaposi Sarcoma. J. Tech. 2023, 5, 141–146. [Google Scholar] [CrossRef]
- Lawson, J.S.; Glenn, W.K. Evidence for a causal role by human papillomaviruses in prostate cancer—A systematic review. Infect. Agents Cancer 2020, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Frobert, E.; Escuret, V.; Javouhey, E.; Casalegno, J.; Bouscambert-Duchamp, M.; Moulinier, C.; Gillet, Y.; Lina, B.; Floret, D.; Morfin, F. Respiratory viruses in children admitted to hospital intensive care units: Evaluating the CLART® Pneumovir DNA array. J. Med. Virol. 2010, 83, 150–155. [Google Scholar] [CrossRef]
- Romero-Gómez, M.P.; González, M.R.; Hierro, S.; Gutiérrez, A. Evaluation of a new immunochromatographic test for detecting adenovirus in respiratory samples from pediatric patients. Enferm. Infecc. Microbiol. Clin. 2008, 26, 598–599. [Google Scholar] [PubMed]
- Huang, S.C.M.; Tsao, S.W.; Tsang, C.M. Interplay of viral infection, host cell factors and tumor microenvironment in the pathogenesis of nasopharyngeal carcinoma. Cancers 2018, 10, 106. [Google Scholar] [CrossRef]
- Rebolj, M.; Bonde, J.; Preisler, S.; Ejegod, D.; Rygaard, C.; Lynge, E. Human papillomavirus assays and cytology in primary cervical screening of women aged 30 years and above. PLoS ONE 2016, 11, e0147326. [Google Scholar] [CrossRef] [PubMed]
- Eklund, C.; Forslund, O.; Wallin, K.-L.; Zhou, T.; Dillner, J. The 2010 global proficiency study of human papillomavirus genotyping in vaccinology. J. Clin. Microbiol. 2012, 50, 2289–2298. [Google Scholar] [CrossRef]
- Yang, S.; Rothman, R.E. PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. Lancet Infect. Dis. 2004, 4, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Saubolle, M.A.; Wojack, B.R.; Wertheimer, A.M.; Fuayagem, A.Z.; Young, S.; Koeneman, B.A. Multicenter clinical validation of a cartridge-based real-time PCR system for detection of Coccidioides spp. in lower respiratory specimens. J. Clin. Microbiol. 2018, 56, e01277-17. [Google Scholar] [CrossRef]
- Emmadi, R.; Boonyaratanakornkit, J.B.; Selvarangan, R.; Shyamala, V.; Zimmer, B.L.; Williams, L.; Bryant, B.; Schutzbank, T.; Schoonmaker, M.M.; Wilson, J.A.A.; et al. Molecular methods and platforms for infectious diseases testing: A review of FDA-approved and cleared assays. J. Mol. Diagn. 2011, 13, 583–604. [Google Scholar] [CrossRef]
- Mirabile, A.; Sangiorgio, G.; Bonacci, P.G.; Bivona, D.; Nicitra, E.; Bonomo, C.; Bongiorno, D.; Stefani, S.; Musso, N. Advancing Pathogen Identification: The Role of Digital PCR in Enhancing Diagnostic Power in Different Settings. Diagnostics 2024, 14, 1598. [Google Scholar] [CrossRef] [PubMed]
- Hindson, C.M.; Chevillet, J.R.; Briggs, H.A.; Gallichotte, E.N.; Ruf, I.K.; Hindson, B.J.; Vessella, R.L.; Tewari, M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 2013, 10, 1003–1005. [Google Scholar] [CrossRef]
- Teh, S.-Y.; Lin, R.; Hung, L.-H.; Lee, A.P. Droplet microfluidics. Lab A Chip 2008, 8, 198–220. [Google Scholar] [CrossRef] [PubMed]
- Kwong, J.; Mccallum, N.; Sintchenko, V.; Howden, B. Whole genome sequencing in clinical and public health microbiology. Pathology 2015, 47, 199–210. [Google Scholar] [CrossRef]
- Coupland, P.; Chandra, T.; Quail, M.; Reik, W.; Swerdlow, H. Direct sequencing of small genomes on the Pacific Biosciences RS without library preparation. BioTechniques 2012, 53, 365–372. [Google Scholar] [CrossRef]
- Rhoads, A.; Au, K.F. Proteomics, and Bioinformatics, PacBio sequencing and its applications. Genom. Proteom. Bioinform. 2015, 13, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Samandari, L.; Taherpour, A.; Pashabadi, A. Sub-femtomolar detection of HIV-1 gene using DNA immobilized on composite platform reinforced by a conductive polymer sandwiched between two nanostructured layers: A solid signal-amplification strategy. Anal. Chim. Acta 2019, 1055, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Strakova, P.; Richtera, L.; Adam, V.; Ashrafi, A. Biosensors-based approaches for other viral infection detection. In Advanced Biosensors for Virus Detection; Elsevier: Amsterdam, The Netherlands, 2022; pp. 391–405. [Google Scholar]
- Maddali, H.; Miles, C.E.; Kohn, J.; O’Carroll, D.M. Optical biosensors for virus detection: Prospects for SARS-CoV-2/COVID-19. Chembiochem 2021, 22, 1176–1189. [Google Scholar] [CrossRef]
- Castillo-Henríquez, L.; Brenes-Acuña, M.; Castro-Rojas, A.; Cordero-Salmerón, R.; Lopretti-Correa, M.; Vega-Baudrit, J.R. Biosensors for the detection of bacterial and viral clinical pathogens. Sensors 2020, 20, 6926. [Google Scholar] [CrossRef]
- Kumar, H.; Kuča, K.; Bhatia, S.K.; Saini, K.; Kaushal, A.; Verma, R.; Bhalla, T.C.; Kumar, D. Applications of Nanotechnology in Sensor-Based Detection of Foodborne Pathogens. Sensors 2020, 20, 1966. [Google Scholar] [CrossRef]
- Hua, Y.; Ma, J.; Li, D.; Wang, R. DNA-based biosensors for the biochemical analysis: A review. Biosensors 2022, 12, 183. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Adhikari, B.R.; Sen, P.; Soleymani, L.; Li, Y. Functional nucleic acid-based biosensors for virus detection. Adv. Agrochem. 2023, 2, 246–257. [Google Scholar] [CrossRef]
- Collias, D.; Beisel, C.L. CRISPR technologies and the search for the PAM-free nuclease. Nat. Commun. 2021, 12, 555. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef]
- Harrington, L.B.; Burstein, D.; Chen, J.S.; Paez-Espino, D.; Ma, E.; Witte, I.P.; Cofsky, J.C.; Kyrpides, N.C.; Banfield, J.F.; Doudna, J.A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018, 362, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F. Development of CRISPR-Cas systems for genome editing and beyond. Q. Rev. Biophys. 2019, 52, e6. [Google Scholar] [CrossRef]
Technique | Principle | Samples | Advantages | Disadvantages |
---|---|---|---|---|
PCR | Amplifies specific DNA sequences to detect viral presence. | Swabs, CSF, blood, mucosal samples | High sensitivity and specificity; rapid results | Single-pathogen detection per reaction (conventional PCR) |
Real-Time PCR (qPCR) | A variant of PCR that quantifies DNA in real time during amplification | Swabs, CSF, blood, mucosal samples | Rapid, quantitative; widely applicable | Low throughput, single-pathogen detection |
Multiplex qPCR | Detects multiple pathogens using distinct primers | Swabs, CSF, blood, biopsies | Simultaneous detection; cost-effective | Risk of cross-reactivity, complex setup |
Droplet Digital PCR (ddPCR) | Absolute quantification of DNA via droplet partitioning | Swabs, CSF, blood, saliva | High precision and sensitivity; ideal for low viral loads | Expensive, prone to contamination, requires specialized equipment |
Loop-Mediated Isothermal Amplification (LAMP) | Amplifies DNA at a constant temperature, eliminating thermal cycling | Swabs, CSF, blood, ocular fluids | Rapid, field-friendly; no complex equipment needed | Less specific than PCR; primer design is critical |
Microarrays | Hybridization-based detection of thousands of DNA fragments simultaneously | Blood, CSF, tissue samples | High throughput; can detect multiple pathogens at once | High cost; requires complex data interpretation |
Biosensors | Converts DNA-binding events into electrical, optical, or acoustic signals | Saliva, blood, ocular fluids | Rapid, portable; cost-effective | Limited availability; requires advanced transducer technologies |
CRISPR Technology | CRISPR-Cas systems target and detect viral DNA/RNA | Swabs, CSF, blood, saliva | High sensitivity and specificity; potential for multiplexing | Pre-amplification often required; contamination risk |
Next-Generation Sequencing (NGS) | High-throughput sequencing for comprehensive pathogen analysis | Blood, CSF, biopsies, respiratory samples | Detects co-infections and mutations; ideal for unknown pathogens | Expensive; requires bioinformatics expertise |
Virus | Molecular Method of Viral Genome Detection | Type of Sample | Clinical Applications | References |
---|---|---|---|---|
HSV-1 | qPCR | CSF, saliva, blood, swabs from lesions, BAL | Rapid detection of herpes encephalitis; diagnosing oral/genital herpes; outbreak monitoring | [65,66] |
Multiplex qPCR | CSF, feces, urine, saliva, blood, swabs, corneal scrapes, biopsies | Detects multiple viruses; rapid herpes encephalitis diagnosis; early infection detection in transplant patients | [67,68] | |
Droplet Digital PCR | CSF, blood, saliva, urine, swabs | Accurate monitoring of viral replication and treatment response; detects low-concentration samples | [69,70] | |
NGS | Blood, NPAs, lung lavage, stomach fluid | Detects unknown or co-infections; suitable for low viral loads | [71] | |
HSV-2 | qPCR | CSF, swabs from genital lesions, blood | Diagnoses genital herpes and HSV-related meningitis; rapid detection of genital herpes | [72,73] |
Multiplex qPCR | CSF, blood, cervical, endocervical, vaginal samples | Rapid detection of multiple viruses; comprehensive diagnostics for genital infections | [74,75] | |
Droplet Digital PCR | CSF, blood, genital lesion swabs | Monitors viral load; co-detection of HSV-1 and HSV-2 | [76,77] | |
NGS | CSF, blood, lesion swabs | High sensitivity; useful for early-stage infection or co-infection detection | [78] | |
VZV | qPCR | Vesicle fluids, swabs, crusts, CSF, amniotic fluid | Diagnosis of central nervous system infections, prenatal congenital varicella syndrome | [74,75] |
Nested PCR | Vesicle fluids, swabs, CSF, amniotic fluid | Detects VZV in skin lesions, encephalitis, meningitis | [79] | |
NGS | CSF | High sensitivity; identifies multiple pathogens in CNS samples | [80,81] | |
EBV | qPCR | CSF, peripheral blood, gingival/salivary swabs | Mononucleosis diagnosis; monitoring EBV in cancers; oral hairy leukoplakia detection | [82,83,84] |
NGS | Biopsy samples | Identifies cancer associations (e.g., NPC, Burkitt’s lymphoma) | [85] | |
CMV | qPCR | Blood, saliva, urine, amniotic fluid | Diagnoses congenital infections; monitors immunocompromised patients | [86] |
NGS | Aqueous humor | Detects ocular infections and antiviral resistance | [87] | |
HHV-6 | qPCR | Oral samples, CSF, blood, tissues | Identifies active infection; monitors transplant patients for graft-related complications | [88,89] |
Multiplex qPCR | CSF, oral samples, blood, tissues | Rapid encephalitis detection; post-transplant viral monitoring; classification of HHV-6 A and B | [90,91] | |
Droplet Digital PCR | Oral samples, CSF, blood | Detects chromosomally integrated HHV-6 (ciHHV-6); quantifies low-grade infections | [92] | |
Conventional PCR | CSF, oral samples, blood, serum | Differentiates between latent and active infections and HHV-6 A and B; standardized methods and rapid results | [89] | |
NGS | CSF | Comprehensive virome analysis; tracks neurotropic impacts | [93] | |
HHV-7 | qPCR | Blood, CSF, saliva | Rapid detection of reactivations; diagnoses conditions like pityriasis rosea | [94] |
Multiplex qPCR | Blood, CSF, saliva | Screens blood donors; detects ocular infections | [95,96] | |
Droplet Digital PCR | Blood, CSF, saliva | Monitors viral loads in immunocompromised patients | [97] | |
HHV-8 | qPCR | Saliva, blood, semen | Detects Kaposi’s sarcoma-associated virus; monitors immune-suppressed patients | [98,99] |
Nested PCR | Saliva, blood, semen | Identifies early lesions; frequent monitoring for disease progression | [100] | |
Droplet Digital PCR | Saliva, blood, semen | Monitors therapy response; tracks epidemiological transmission patterns | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maini, G.; Cianci, G.; Ferraresi, M.; Gentili, V.; Bortolotti, D. DNA-Based Technology for Herpesvirus Detection. DNA 2024, 4, 553-581. https://doi.org/10.3390/dna4040037
Maini G, Cianci G, Ferraresi M, Gentili V, Bortolotti D. DNA-Based Technology for Herpesvirus Detection. DNA. 2024; 4(4):553-581. https://doi.org/10.3390/dna4040037
Chicago/Turabian StyleMaini, Gloria, Giorgia Cianci, Matteo Ferraresi, Valentina Gentili, and Daria Bortolotti. 2024. "DNA-Based Technology for Herpesvirus Detection" DNA 4, no. 4: 553-581. https://doi.org/10.3390/dna4040037
APA StyleMaini, G., Cianci, G., Ferraresi, M., Gentili, V., & Bortolotti, D. (2024). DNA-Based Technology for Herpesvirus Detection. DNA, 4(4), 553-581. https://doi.org/10.3390/dna4040037