COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues
Abstract
:1. Introduction
2. Current Strategies to Deal with the N/MPs Challenge
- Integrated plastic management approaches, including reducing, reusing, recycling, and recovering plastic waste, supporting the transition to a circular economy, which would minimize the stock of mismanaged plastic waste which could degrade into N/MP.
- Technological solutions for the valorization of plastics wastes into chemicals and/or fuels, and so on [25].
- Replacement of nondegradable polymers by biodegradable polymers which will degrade under defined conditions (e.g., composting) or release into the environment (aquatic or terrestrial) in due time [30].
- Development of innovative materials and devices able to sorb/filter microplastics in the aquatic environment [33].
3. Future Needs for Addressing the N/MPs Challenge
4. PRIORITY Approach for Addressing Future N/MPs Challenges
- PRIORITY proposes to drive scientific efforts for addressing future N/MPs challenges through:
- Identification of new strategies to design sustainable plastics as alternatives to these persistent plastics and related N/MPs.
- Identification of mitigation strategies and approaches.
- Design of new workflows to reduce plastics leakage and impacts to the environment.
- Development and optimization of standard protocols for N/MP sampling and measurement procedures and assessing biological hazards.
- Ensuring high confidence in measurement results.
- Assessment and validation of robust measurement procedures for qualitative and quantitative analysis by interlaboratory studies.
- Drawing attention to the importance of reference materials (certified and uncertified) for method validation through the identification of available reference materials and making suggestions for further developments of candidate reference materials with the goal of reaching certification following ISO documentation.
- The identification of needs and entry barriers related to cost and performance.
- The modification and/or improvement of existing instrumentation.
- The identification of the needs for new tools and devices.
- The development of reference materials for method development, calibration, and quality control.
- The definition of the EU roadmap for N/MPs critical issues for the environment.
- PRIORITY contributions will enhance:
- Trans- and interdisciplinary exchanges among stakeholders who will benefit and contribute to the growth of the knowledge in the field.
- Dissemination of protocols for N/MP sampling and measurements.
- Strengthening links between industry, academics, decision-makers, and the general public.
- Raising public awareness by disseminating data in an easy-to-understand format on environmental and health issues related to N/MPs.
5. Outlook
- WG1 Impacts and risks on human health and environment related to N/MPs
- WG2 Monitoring and sampling MPs
- WG3 Instrumentation, modeling, data evaluation, software, and analytical procedures
- WG4 Nanoplastics
- WG5 Remediation, recovery, and development of sustainable alternative to plastic materials
- WG6 Metrology and standardization
- WG7 Develop new strategies to increase the synergies with society and education
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Plastics Europe. Plastics–The Facts 2020: An Analysis of European Plastics Production, Demand and Waste Data. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/ (accessed on 22 April 2022).
- Amorim, M.J.B.; Scott-Fordsmand, J.J. Plastic pollution–A case study with Enchytraeus crypticus–From micro-to nanoplastics. Environ. Pollut. 2021, 271, 116363. [Google Scholar] [CrossRef] [PubMed]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Lavender Law, K. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Penca, J. European Plastics Strategy: What promise for global marine litter? Mar. Policy 2018, 97, 197–201. [Google Scholar] [CrossRef]
- IUCN. Marine Plastics. Available online: https://www.iucn.org/theme/environmental-law/our-work/oceans-and-coasts/marine-plastics (accessed on 22 April 2022).
- Gorrasi, G.; Sorrentino, A.; Lichtfouse, E. Back to plastic pollution in COVID times. Environ. Chem. Lett. 2021, 19, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Patrício Silva, A.L.; Tubić, A.; Vujić, M.; Soares, A.M.V.M.; Duarte, A.C.; Barcelò, D.; Rocha-Santos, T. Implications of COVID-19 pandemic on environmental compartments: Is plastic pollution a major issue? J. Hazard. Mater. Adv. 2022, 5, 100041. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Wohlleben, W. Microplastic regulation should be more precise to incentivize both innovation and environmental safety. Nat. Commun. 2020, 11, 5324. [Google Scholar] [CrossRef] [PubMed]
- Arthur, C.; Baker, J.; Bamford, H. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, 9–11 September 2008. NOAA Marine Debris Program, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, Technical Memorandum NOS-OR&R-30; January 2000. Available online: https://marinedebris.noaa.gov/proceedings-international-research-workshop-microplastic-marine-debris (accessed on 22 April 2022).
- GESAMP. Sources, Sources, Fate and Effects of Microplastics in the Marine Environment: A Global Assessment; Kershaw, P.J., Ed.; (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection); Rep. Stud. GESAMP 2015 No. 90; 96p, Available online: https://ec.europa.eu/environment/marine/good-environmental-status/descriptor-10/pdf/GESAMP_microplastics%20full%20study.pdf (accessed on 22 April 2022).
- Sundt, P.; Schultze, P.-E.; Syversen, F. Sources of microplastic- pollution to the marine environment. Mepex Nor. Environ. Agency 2014, 1–108. [Google Scholar]
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Vethaak, A.D.; Legler, J. Microplastics and human health. Science 2021, 371, 672–674. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Scott-Fordsmand, J.J.; Navas, J.M.; Hund-Rinke, K.; Nowack, B.; Amorim, M.J.B. Nanomaterials to microplastics: Swings and roundabouts. Nano Today 2017, 17, 7–10. [Google Scholar] [CrossRef]
- Amorim, M.J.B.; Lin, S.; Schlich, K.; Navas, J.M.; Brunelli, A.; Neubauer, N.; Vilsmeier, K.; Costa, A.L.; Gondikas, A.; Xia, T.; et al. Environmental Impacts by Fragments Released from Nanoenabled Products: A Multiassay, Multimaterial Exploration by the SUN Approach. Environ. Sci. Technol. 2018, 52, 1514–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GESAMP. Guidelines for the Monitoring and Assessment of Plastic Litter in the Ocean. Kershaw, P., Turra, A., Galgani, F., Eds.; (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection). Rep. Stud. GESAMP. 2019. Available online: http://www.gesamp.org/publications/guidelines-for-the-monitoring-and-assessment-of-plastic-litter-in-the-ocean (accessed on 22 April 2022).
- Santana-Viera, S.; Montesdeoca-Esponda, S.; Guedes-Alonso, R.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Organic pollutants adsorbed on microplastics: Analytical methodologies and occurrence in oceans. Trends Environ. Anal. Chem. 2021, 29, e00114. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.; Wang, G.; Luan, Y.; Dai, W. Adsorption behavior of organic pollutants on microplastics. Ecotoxicol. Environ. Saf. 2021, 217, 112207. [Google Scholar] [CrossRef] [PubMed]
- Ramsperger, A.F.R.M.; Narayana, V.K.B.; Gross, W.; Mohanraj, J.; Thelakkat, M.; Greiner, A.; Schmalz, H.; Kress, H.; Laforsch, C. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 2020, 6, eabd1211. [Google Scholar] [CrossRef]
- Groh, K.J.; Backhaus, T.; Carney-Almroth, B.; Geueke, B.; Inostroza, P.A.; Lennquist, A.; Leslie, H.A.; Maffini, M.; Slunge, D.; Trasande, L.; et al. Overview of known plastic packaging-associated chemicals and their hazards. Sci. Total Environ. 2019, 651, 3253–3268. [Google Scholar] [CrossRef] [PubMed]
- Manfra, L.; Marengo, V.; Libralato, G.; Costantini, M.; De Falco, F.; Cocca, M. Biodegradable polymers: A real opportunity to solve marine plastic pollution? J. Hazard. Mater. 2021, 416, 125763. [Google Scholar] [CrossRef]
- Zheng, T.; Yuan, D.; Liu, C. Molecular toxicity of nanoplastics involving in oxidative stress and desoxyribonucleic acid damage. J. Mol. Recognit. 2019, 32, 3–9. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Wick, P.; Nowack, B. Placing nanoplastics in the context of global plastic pollution. Nat. Nanotechnol. 2020, 16, 115–147. [Google Scholar] [CrossRef]
- Ogunola, O.S.; Onada, O.A.; Falaye, A.E. Mitigation measures to avert the impacts of plastics and microplastics in the marine environment (a review). Environ. Sci. Pollut. Res. 2018, 25, 9293–9310. [Google Scholar] [CrossRef]
- McIlwraith, H.K.; Lin, J.; Erdle, L.M.; Mallos, N.; Diamond, M.L.; Rochman, C.M. Capturing microfibers–marketed technologies reduce microfiber emissions from washing machines. Mar. Pollut. Bull. 2019, 139, 40–45. [Google Scholar] [CrossRef] [PubMed]
- De Falco, F.; Cocca, M.; Guarino, V.; Gentile, G.; Ambrogi, V.; Ambrosio, L.; Avella, M. Novel finishing treatments of polyamide fabrics by electrofluidodynamic process to reduce microplastic release during washings. Polym. Degrad. Stab. 2019, 165, 110–116. [Google Scholar] [CrossRef]
- Allé, P.H.; Garcia-Muñoz, P.; Adouby, K.; Keller, N.; Robert, D. Efficient photocatalytic mineralization of polymethylmethacrylate and polystyrene nanoplastics by TiO2/β-SiC alveolar foams. Environ. Chem. Lett. 2021, 19, 1803–1808. [Google Scholar] [CrossRef]
- Domínguez-Jaimes, L.P.; Cedillo-González, E.I.; Luévano-Hipólito, E.; Acuña-Bedoya, J.D.; Hernández-López, J.M. Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures. J. Hazard. Mater. 2021, 413, 125452. [Google Scholar] [CrossRef] [PubMed]
- Zumstein, M.T.; Schintlmeister, A.; Nelson, T.F.; Baumgartner, R.; Woebken, D.; Wagner, M.; Kohler, H.P.E.; McNeill, K.; Sander, M. Biodegradation of synthetic polymers in soils: Tracking carbon into CO2 and microbial biomass. Sci. Adv. 2018, 4, eaas9024. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Dai, X.; Wang, Q.; van Loosdrecht, M.C.M.; Ni, B.J. Microplastics in wastewater treatment plants: Detection, occurrence and removal. Water Res. 2019, 152, 21–37. [Google Scholar] [CrossRef]
- Ngo, P.L.; Pramanik, B.K.; Shah, K.; Roychand, R. Pathway, classification and removal efficiency of microplastics in wastewater treatment plants. Environ. Pollut. 2019, 255, 113326. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Bian, K.; Wang, H.; Wang, C. A critical review of control and removal strategies for microplastics from aquatic environments. J. Environ. Chem. Eng. 2021, 9, 105463. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Wagner, M. A sustainable future for plastics considering material safety and preserved value. Nat. Rev. Mater. 2022, 7, 71–73. [Google Scholar] [CrossRef]
- Bank, M.S. (Ed.) Microplastic in the Environment: Pattern and Process; Springer: The Hague, The Netherlands, 2022; ISBN 978-3-030-78626-7. [Google Scholar]
- ISO/TR 21960:2020; Plastics—Environmental Aspects—State of Knowledge and Methodologies; International Organization for Standardization: Geneva, Switzerland, 2020.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Federici, S.; Ademovic, Z.; Amorim, M.J.B.; Bigalke, M.; Cocca, M.; Depero, L.E.; Dutta, J.; Fritzsche, W.; Hartmann, N.B.; Kalčikova, G.; et al. COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues. Microplastics 2022, 1, 282-290. https://doi.org/10.3390/microplastics1020020
Federici S, Ademovic Z, Amorim MJB, Bigalke M, Cocca M, Depero LE, Dutta J, Fritzsche W, Hartmann NB, Kalčikova G, et al. COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues. Microplastics. 2022; 1(2):282-290. https://doi.org/10.3390/microplastics1020020
Chicago/Turabian StyleFederici, Stefania, Zahida Ademovic, Mónica J. B. Amorim, Moritz Bigalke, Mariacristina Cocca, Laura Eleonora Depero, Joydeep Dutta, Wolfgang Fritzsche, Nanna B. Hartmann, Gabriela Kalčikova, and et al. 2022. "COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues" Microplastics 1, no. 2: 282-290. https://doi.org/10.3390/microplastics1020020
APA StyleFederici, S., Ademovic, Z., Amorim, M. J. B., Bigalke, M., Cocca, M., Depero, L. E., Dutta, J., Fritzsche, W., Hartmann, N. B., Kalčikova, G., Keller, N., Meisel, T. C., Mitrano, D. M., Morrison, L., Raquez, J.-M., Tubić, A., & Velimirovic, M. (2022). COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues. Microplastics, 1(2), 282-290. https://doi.org/10.3390/microplastics1020020