Advancements and Regulatory Situation in Microplastics Removal from Wastewater and Drinking Water: A Comprehensive Review
Abstract
:1. Introduction
2. Materials and Methods Study of MPs in Wastewater Treatment Plants
2.1. Sizes of MPs in WWTPs
2.2. Sources of MPs in WWTPs
2.3. Detection, Sampling, and Analysis of MPs
2.3.1. Sample Collection
- Wastewater
- Sludge
Sampling Method | Description | Advantages | Disadvantages | Reference |
---|---|---|---|---|
Container collection (Grab sampling) | Manually collects water samples in containers. |
|
| [15,27,28] |
Surface filtration | It employs a filtration system to capture microplastics present on the water’s surface. |
|
| [9,29] |
Autosampler collection | Autosamplers are automated devices that collect water samples at specified time intervals. |
|
| [13,22] |
Separate pumping and filtration | It involves using specialized equipment to pump water and then filter it to collect microplastics. |
|
| [14,24,25,30,31] |
Manual grab sampling | Manually collects the sludge sample for analysis. |
|
| [21] |
Grabbing with autosampler | Automated devices are used to collect the sludge samples. |
|
| [21,26,32] |
2.3.2. Sample Pretreatment
2.3.3. Sample Characterization
2.4. Occurrence of MPs in WWTPs
Fragmentation of MPs in WWTPs
2.5. MP Characteristics and Concentrations in WWTPs
2.6. MP Removal in Various Stages of WWTPs
2.6.1. Removal during Preliminary and Primary Treatment
2.6.2. Removal during Secondary Treatment
2.6.3. Removal during Tertiary Treatment
2.7. Potential Advanced Treatment Technologies MP Removal
2.7.1. Electrocoagulation
2.7.2. Advanced Oxidation Processes (AOP)
2.7.3. Membrane Technologies
2.7.4. Nanotechnology
3. Study of MPs in Drinking Water Treatment Facilities
3.1. Occurrence of MPs in Drinking Water
3.2. Treatment Processes to Remove MPs from Drinking Water
Strategies to Remove MPs from Drinking Water
- Electrocoagulation
- Magnetic extraction
- Membrane separation
- Treatment using microorganisms.
- Treatment using membrane bioreactors.
- Treatment using ultrafiltration.
3.3. Status of MPs in the United States Drinking Water Treatment Plant Facilities
4. Current Regulations and Policies on MPs in the United States
5. Conclusions
- Lack of Standardized Techniques: The absence of standardized techniques for the detection and analysis of MPs hinders accurate assessment. It is imperative for future studies to establish uniform procedures, ensuring the generation of reliable and comparable data for effective analysis.
- Need for Risk Assessment: A critical aspect involves conducting a thorough risk assessment of MPs, considering factors such as toxicity, exposure routes, and concentration. This holistic evaluation is essential for understanding and mitigating potential hazards associated with microplastic pollution.
- Limited Research on NPs: The existing body of research on NPs is notably limited, emphasizing the necessity for more extensive studies to comprehend their implications fully. This is crucial for developing informed strategies to manage and mitigate nanoplastic-related challenges.
- Public Awareness and Policy Gaps: The lack of public awareness, coupled with gaps in policies addressing MP pollution, poses a significant challenge. Delays in creating effective mitigation strategies may result from this insufficient understanding and regulatory framework.
- Challenges in Water Treatment Plants: Existing water treatment processes, such as skimming, sedimentation, and tertiary filtration, are not specifically designed for the removal of MPs. Consequently, a substantial quantity of microplastics can still be discharged with the effluent into aquatic systems, emphasizing the need for targeted interventions.
- Lack of Dedicated Treatment Processes: At present, full-scale wastewater treatment plants lack comprehensive processes exclusively dedicated to MP removal. The technology addressing microplastics in treatment is still in the early stages of research and development, requiring further exploration for practical and scalable solutions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrady, A.L. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Monira, S.; Bhuiyan, M.A.; Haque, N.; Pramanik, B.K. Assess the performance of chemical coagulation process for microplastics removal from stormwater. Process Saf. Environ. Prot. 2021, 155, 11–16. [Google Scholar] [CrossRef]
- Elshewy, A.; El Hariri El Nokab, M.; Sayed, J.; Alassmy, Y.A.; Abduljawad, M.M.; D’hooge, D.R.; Van Steenberge, P.H.M.; Habib, M.H.; Sebakhy, K.O. Surfactant-free peroxidase-mediated enzymatic polymerization of a biorenewable butyrolactone monomer via a green approach: Synthesis of sustainable biobased latexes. ACS Appl. Polym. Mater. 2024, 6, 115–125. [Google Scholar] [CrossRef]
- Madhumitha, J. Production Forecast of Thermoplastics Worldwide from 2025 to 2050. 2024. Available online: https://www.statista.com/statistics/664906/plastics-production-volume-forecastworldwide/ (accessed on 10 January 2024).
- United Nations Environment Programme. An Assessment Report on Issues of Concern: Chemicals and Waste Issues Posing Risks to Human Health and the Environment. 2020. Available online: https://wedocs.unep.org/20.500.11822/33807 (accessed on 1 September 2020).
- Organisation for Economic Co-operation and Development. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options; OECD Publishing, Paris, Europe: 2022. Available online: https://www.oecd-ilibrary.org/environment/global-plastics-outlook_de747aef-en (accessed on 1 December 2023).
- Gigault, J.; Ter Halle, A.; Baudrimont, M.; Pascal, P.Y.; Gauffre, F.; Phi, T.L.; Reynaud, S. Current opinion: What is a nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Microplastics in Drinking-Water. 2019. Available online: https://apps.who.int/iris/rest/bitstreams/1243269/retrieve (accessed on 1 December 2023).
- Carr, S.A.; Liu, J.; Tesoro, A.G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 2016, 91, 174–182. [Google Scholar] [CrossRef]
- Ngo, P.L.; Pramanik, B.K.; Shah, K.; Roychand, R. Pathway, classification, and removal efficiency of microplastics in wastewater treatment plants. Environ. Pollut. 2019, 255, 113326. [Google Scholar] [CrossRef] [PubMed]
- Vassilenko, E.; Watkins, M.; Chastain, S.; Mertens, J.; Posacka, A.M.; Patankar, S.; Ross, P.S. Domestic laundry and microfiber pollution: Exploring fiber shedding from consumer apparel textiles. PLoS ONE 2021, 16, e0250346. [Google Scholar] [CrossRef]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: Global Evaluation of Sources. 2017; p.5. Available online: https://holdnorgerent.no/wp-content/uploads/2020/03/IUCN-report-Primary-microplastics-in-the-oceans.pdf (accessed on 1 December 2023).
- Talvitie, J.; Mikola, A.; Koistinen, A.; Setälä, O. Solutions to microplastic pollution–Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res. 2017, 123, 401–407. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Int-Veen, I.; Loder, M.G.; Primpke, S.; Gerdts, G. Identification of microplastic in effluents of wastewater treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017, 108, 365–372. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef]
- Iyare, P.U.; Ouki, S.K.; Bond, T. Microplastics removal in wastewater treatment plants: A critical review. Environ. Sci. Water Res. Technol. 2020, 6, 2664–2675. [Google Scholar] [CrossRef]
- Okoffo, E.D.; O’Brien, S.; O’Brien, J.W.; Tscharke, B.J.; Thomas, K.V. Wastewater treatment plants as a source of plastics in the environment: A review of occurrence, methods for identification, quantification, and fate. Environ. Sci. Water Res. Technol. 2019, 5, 1908–1931. [Google Scholar] [CrossRef]
- Sun, J.; Dai, X.; Wang, Q.; Van Loosdrecht, M.C.; Ni, B.J. Microplastics in wastewater treatment plants: Detection, occurrence, and removal. Water Res. 2019, 152, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Kole, P.J.; Löhr, A.J.; Van Belleghem, F.G.; Ragas, A.M. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef] [PubMed]
- McDevitt, J.P.; Criddle, C.S.; Morse, M.; Hale, R.C.; Bott, C.B.; Rochman, C.M. Addressing the Issue of Microplastics in the Wake of the Microbead-Free Waters Act a New Standard Can Facilitate Improved Policy. Environ. Sci. Technol. 2017, 51, 6611–6617. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Chen, L.; Cizdziel, J.; Huang, Y. Research progress on microplastics in wastewater treatment plants: A holistic review. J. Environ. Manag. 2023, 325, 116411. [Google Scholar] [CrossRef]
- Michielssen, M.R.; Michielssen, E.R.; Ni, J.; Duhaime, M. Fate of microplastics and other small anthropogenic litter (SAL) in wastewater treatment plants depends on unit processes employed. Environ. Sci. Water Res. Technol. 2016, 2, 1064–1073. [Google Scholar] [CrossRef]
- Gies, E.A.; LeNoble, J.L.; Noël, M.; Etemadifar, A.; Bishay, F.; Hall, E.R.; Ross, P.S. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Mar. Pollut. Bull. 2018, 133, 553–561. [Google Scholar] [CrossRef]
- Ziajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D.L. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 2017, 112, 93. [Google Scholar] [CrossRef]
- Talvitie, J.; Heinonen, M.; Paakkonen, J.P.; Vahtera, E.; Mikola, A.; Setala, O.; Vahala, R. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Sci. Technol. 2015, 72, 1495. [Google Scholar] [CrossRef]
- Pittura, L.; Foglia, A.; Akyol, Ç.; Cipolletta, G.; Benedetti, M.; Regoli, F.; Fatone, F. Microplastics in real wastewater treatment schemes: Comparative assessment and relevant inhibition effects on anaerobic processes. Chemosphere 2021, 262, 128415. [Google Scholar] [CrossRef] [PubMed]
- Tagg, A.S.; Sapp, M.; Harrison, J.P.; Ojeda, J.J. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro- FT-IR imaging. Anal. Chem. 2015, 87, 6032–6040. [Google Scholar] [CrossRef] [PubMed]
- Grab Sampling Image. Available online: https://news-network.rice.edu/news/files/2022/12/1219_WASTEWATER-1-WEB.jpg (accessed on 1 December 2023).
- Campanale, C.; Savino, I.; Pojar, I.; Massarelli, C.; Uricchio, V.F. A Practical Overview of Methodologies for Sampling and Analysis of Microplastics in Riverine Environments. Sustainability 2020, 12, 6755. [Google Scholar] [CrossRef]
- Mason, S.A.; Garneau, D.; Sutton, R.; Chu, Y.; Ehmann, K.; Barnes, J.; Rogers, D.L. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut. 2016, 218, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Liang, J.; Zhu, M.; Zhao, Y.; Zhang, B. Microplastics in seawater and zooplankton from the Yellow Sea. Environ. Pollut. 2018, 242, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Autosampler Image. Available online: https://www.environmental-expert.com/products/model-sludge-sampler-special-automatic-water-samplers-213881 (accessed on 1 December 2023).
- Karami, A.; Golieskardi, A.; Choo, C.K.; Romano, N.; Ho, Y.B.; Salamatinia, B. A high-performance protocol for extraction of microplastics in fish. Sci. Total Environ. 2017, 578, 485–494. [Google Scholar] [CrossRef]
- Cole, M.; Webb, H.; Lindeque, P.K.; Fileman, E.S.; Halsband, C.; Galloway, T.S. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 2014, 4, 4528. [Google Scholar] [CrossRef]
- Erni-Cassola, G.; Gibson, M.I.; Thompson, R.C.; Christie-Oleza, J.A. Lost, but found with nile red: A novel method for detecting and quantifying small microplastics (1 mm to 20 mm) in environmental samples. Environ. Sci. Technol. 2017, 51, 13641–13648. [Google Scholar] [CrossRef]
- Masura, J.; Baker, J.; Foster, G.; Arthur, C. Laboratory methods for the analysis of microplastics in the marine environment: Recommendations for quantifying synthetic particles in waters and sediments. NOAA Tech. Memo. 2015. Available online: https://marinedebris.noaa.gov/sites/default/files/publications-files/noaa_microplastics_methods_manual.pdf (accessed on 10 January 2024).
- McCormick, A.; Hoellein, T.J.; Mason, S.A.; Schluep, J.; Kelly, J.J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 2014, 48, 11863–11871. [Google Scholar] [CrossRef] [PubMed]
- Tagg, A.S.; Harrison, J.P.; Junam, Y.; Sapp, M.; Bradley, E.L.; Sinclair, C.J.; Ojeda, J.J. Fenton’s reagent for the rapid and efficient isolation of microplastics from wastewater. Chem. Commun. 2017, 53, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Quinn, B.; Murphy, F.; Ewins, C. Validation of density separation for the rapid recovery of microplastics from sediment. Anal. Methods 2017, 9, 1491–1498. [Google Scholar] [CrossRef]
- Magni, S.; Binelli, A.; Pittura, L.; Avio, C.G.; Della Torre, C.; Parenti, C.C.; Gorbi, S.; Regoli, F. The fate of microplastics in an Italian Wastewater Treatment Plant. Sci. Total Environ. 2019, 652, 602–610. [Google Scholar] [CrossRef]
- Grbic, J.; Nguyen, B.; Guo, E.; You, J.B.; Sinton, D.; Rochman, C.M. Magnetic extraction of microplastics from environmental samples. Environ. Sci. Technol. Lett. 2019, 6, 68. [Google Scholar] [CrossRef]
- Hidalgoruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef] [PubMed]
- Shim, W.J.; Song, Y.K.; Hong, S.H.; Jang, M. Identification and quantification of microplastics using Nile Red staining. Mar. Pollut. Bull. 2016, 113, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Stanton, T.; Johnson, M.; Nathanail, P.; MacNaughtan, W.; Gomes, R.L. Freshwater and airborne textile fibre populations are dominated by ‘natural’, not microplastic, fibres. Sci. Total Environ. 2019, 666, 377–389. [Google Scholar] [CrossRef] [PubMed]
- Raju, S.; Carbery, M.; Kuttykattil, A.; Senthirajah, K.; Lundmark, A.; Rogers, Z.; Palanisami, T. Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant. Water Res. 2020, 173, 115549. [Google Scholar] [CrossRef] [PubMed]
- Araujo, C.F.; Nolasco, M.M.; Ribeiro, A.M.P.; Ribeiro-Claro, P.J.A. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res. 2018, 142, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Lares, M.; Ncibi, M.C.; Sillanpää, M.; Sillanpää, M. Occurrence, identification, and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 2018, 133, 236–246. [Google Scholar] [CrossRef]
- Elert, A.M.; Becker, R.; Duemichen, E.; Eisentraut, P.; Falkenhagen, J.; Sturm, H.; Braun, U. Comparison of different methods for MP detection: What can we learn from them, and why asking the right question before measurements matters? Environ. Pollut. 2017, 231, 1256–1264. [Google Scholar] [CrossRef]
- Dekiff, J.H.; Remy, D.; Klasmeier, J.; Fries, E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ. Pollut. 2014, 186, 248–256. [Google Scholar] [CrossRef]
- Dümichen, E.; Eisentraut, P.; Bannick, C.G.; Barthel, A.K.; Senz, R.; Braun, U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere 2017, 174, 572–584. [Google Scholar] [CrossRef]
- Ribeiro-Claro, P.J.; Nolasco, M.M.; Araujo, C.F. Chapter 5—Characterization of Microplastics by Raman Spectroscopy. Compr. Anal. Chem. 2017, 75, 119–151. [Google Scholar] [CrossRef]
- Dümichen, E.; Barthel, A.-K.; Braun, U.; Bannick, C.G.; Brand, K.; Jekel, M.; Senz, R. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015, 85, 451–457. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Bakir, A.; Burton, G.A.; Janssen, C.R. Microplastic as a vector for chemicals in the aquatic environment: Critical review and model-supported reinterpretation of empirical studies. Environ. Sci. Technol. 2016, 50, 3315–3326. [Google Scholar] [CrossRef]
- Prata, J.C. Airborne microplastics: Consequences to human health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef]
- Avio, C.G.; Gorbi, S.; Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 2017, 128, 2–11. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Kannan, K. MPs in house dust from 12 countries and associated human exposure. Environ. Int. 2020, 134, 105314. [Google Scholar] [CrossRef]
- Yuan, X.; Lee, J.G.; Yun, H.; Deng, S.; Kim, Y.J.; Lee, J.E.; Kwak, S.K.; Lee, K.B. Solving two environmental issues simultaneously: Waste polyethylene terephthalate plastic bottle-derived microporous carbons for capturing CO2. Chem. Eng. J. 2020, 397, 125350. [Google Scholar] [CrossRef]
- Zhang, L.; Xie, Y.; Liu, J.; Zhong, S.; Qian, Y.; Gao, P. An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environ. Sci. Technol. 2020, 54, 4248–4255. [Google Scholar] [CrossRef]
- Perren, W.; Wojtasik, A.; Cai, Q. Removal of microbeads from wastewater using electrocoagulation. ACS Omega 2018, 3, 3357–3364. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, T.; Chen, W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci. Total Environ. 2020, 700, 134520. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, H.; Zhao, J.; Luo, X.; Wang, Z.; Xing, B. Photodegradation elevated the toxicity of polystyrene microplastics to grouper (Epinephelus moara) through disrupting hepatic lipid homeostasis. Environ. Sci. Technol. 2020, 54, 6202–6212. [Google Scholar] [CrossRef]
- Wei, S.; Luo, H.; Zou, J.; Chen, J.; Pan, X.; Rousseau, D.P.; Li, J. Characteristics and removal of microplastics in rural domestic wastewater treatment facilities of China. Sci. Total Environ. 2020, 739, 139935. [Google Scholar] [CrossRef]
- Bui, X.T.; Nguyen, P.T.; Nguyen, V.T.; Dao, T.S.; Nguyen, P.D. Microplastics pollution in wastewater: Characteristics, occurrence, and removal technologies. Environ. Technol. Innov. 2020, 19, 101013. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Pramanik, S.K.; Monira, S. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes. Chemosphere 2021, 282, 131053. [Google Scholar] [CrossRef]
- Mohana, A.A.; Farhad, S.M.; Haque, N.; Pramanik, B.K. Understanding the fate of nano-plastics in wastewater treatment plants and their removal using membrane processes. Chemosphere 2021, 284, 131430. [Google Scholar] [CrossRef]
- Wilkes, R.A.; Aristilde, L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: Capabilities and challenges. J. Appl. Microbiol. 2017, 123, 582–593. [Google Scholar] [CrossRef]
- Miao, L.; Yu, Y.; Adyel, T.M.; Wang, C.; Liu, Z.; Liu, S.; Hou, J. Distinct microbial metabolic activities of biofilms colonizing microplastics in three freshwater ecosystems. J. Hazard. Mater. 2021, 403, 123577. [Google Scholar] [CrossRef]
- Monira, S.; Roychand, R.; Hai, F.I.; Bhuiyan, M.; Dhar, B.R.; Pramanik, B.K. Nano and microplastics occurrence in wastewater treatment plants: A comprehensive understanding of microplastics fragmentation and their removal. Chemosphere 2023, 334, 139011. [Google Scholar] [CrossRef]
- Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef]
- Cai, M.; He, H.; Liu, M.; Li, S.; Tang, G.; Wang, W.; Cen, Z. Lost but can’t be neglected: Huge quantities of small microplastics hide in the South China Sea. Sci. Total Environ. 2018, 633, 1206–1216. [Google Scholar] [CrossRef]
- Hidayaturrahman, H.; Lee, T.G. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process. Mar. Pollut. Bull. 2019, 146, 696–702. [Google Scholar] [CrossRef]
- Turan, N.B.; Erkan, H.S.; Engin, G.O. Microplastics in wastewater treatment plants: Occurrence, fate and identification. Process Saf. Environ. Prot. 2021, 146, 77–84. [Google Scholar] [CrossRef]
- Mohanty, A.; Mankoti, M.; Rout, P.R.; Meena, S.S.; Dewan, S.; Kalia, B.; Banu, J.R. Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. Int. J. Food Microbiol. 2022, 365, 109538. [Google Scholar] [CrossRef]
- Rout, P.R.; Shahid, M.K.; Dash, R.R.; Bhunia, P.; Liu, D.; Varjani, S.; Zhang, T.C.; Surampalli, R.Y. Nutrient removal from domestic wastewater: A comprehensive review on conventional and advanced technologies. J. Environ. Manag. 2021, 296, 113246. [Google Scholar] [CrossRef]
- Schneiderman, E.T. Discharging Microbeads to Our Waters: An Examination of Wastewater Treatment Plants in New York. New York State Office of the Attorney General 2015, pp. 1–11. Available online: https://ag.ny.gov/sites/default/files/reports/2015_Microbeads_Report_FINAL.pdf (accessed on 1 December 2023).
- Gaur, V.K.; Gupta, S.; Sharma, P.; Gupta, P.; Varjani, S.; Srivastava, J.K.; Chang, J.S.; Bui, X.T. Metabolic cascade for remediation of plastic waste: A case study on microplastic degradation. Curr. Pollut. Rep. 2022, 8, 30–50. [Google Scholar] [CrossRef]
- Bayo, J.; Olmos, S.; López-Castellanos, J. Microplastics in an urban wastewater treatment plant: The influence of physicochemical parameters and environmental factors. Chemosphere 2020, 238, 124593. [Google Scholar] [CrossRef]
- Talvitie, J.; Mikola, A.; Setälä, O.; Heinonen, M.; Koistinen, A. How well is microlitter purified from wastewater?—A detailed study on the stepwise removal of microlitter in a tertiary level wastewater treatment plant. Water Res. 2017, 109, 164–172. [Google Scholar] [CrossRef]
- Scherer, C.; Weber, A.; Lambert, S.; Wagner, M. Interactions of Microplastics with Freshwater Biota. 2018. Available online: https://library.oapen.org/bitstream/handle/20.500.12657/42902/1/2018_Book_FreshwaterMicroplastics.pdf#page=161 (accessed on 1 December 2023).
- Lee, E.; Rout, P.R.; Bae, J. The applicability of anaerobically treated domestic wastewater as a nutrient medium in hydroponic lettuce cultivation: Nitrogen toxicity and health risk assessment. Sci. Total Environ. 2021, 780, 146482. [Google Scholar] [CrossRef]
- Varjani, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef]
- Tiwari, N.; Santhiya, D.; Sharma, J.G. Microbial remediation of micro-nano plastics: Current knowledge and future trends. Environ. Pollut. 2020, 265, 115044. [Google Scholar] [CrossRef]
- Palm, G.J.; Reisky, L.; Böttcher, D.; Müller, H.; Michels, E.A.; Walczak, M.C.; Weber, G. Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate. Nat. Commun. 2019, 10, 1717. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Zhu, D.; Mahmoud, Y.A.G.; Koutra, E.; Sun, J. Plastic wastes biodegradation: Mechanisms, challenges, and future prospects. Sci. Total Environ. 2021, 780, 146590. [Google Scholar] [CrossRef]
- Rout, P.R.; Mohanty, A.; Sharma, A.; Miglani, M.; Liu, D.; Varjani, S. Micro-and nanoplastics removal mechanisms in wastewater treatment plants: A review. J. Hazard. Mater. Adv. 2022, 6, 100070. [Google Scholar] [CrossRef]
- Mishra, B.; Varjani, S.; Iragavarapu, G.P.; Ngo, H.H.; Guo, W.; Vishal, B. Microbial fingerprinting of potential biodegrading organisms. Curr. Pollut. Rep. 2019, 5, 181–197. [Google Scholar] [CrossRef]
- Rout, P.R.; Dash, R.R.; Bhunia, P.; Lee, E.; Bae, J. Comparison between a single unit bioreactor and an integrated bioreactor for nutrient removal from domestic wastewater. Sustain. Energy Technol. Assess. 2021, 48, 101620. [Google Scholar] [CrossRef]
- Varjani, S.; Upasani, V.N.; Pandey, A. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci. Total Environ. 2020, 737, 139766. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Liu, X.; Xing, W. Microplastics in wastewater treatment plants of Wuhan, Central China: Abundance, removal, and potential source in household wastewater. Sci. Total Environ. 2020, 745, 141026. [Google Scholar] [CrossRef] [PubMed]
- Edo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut. 2020, 259, 113837. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Rout, P.R.; Kyun, Y.; Bae, J. Process optimization and energy analysis of vacuum degasifier systems for the simultaneous removal of dissolved methane and hydrogen sulfide from anaerobically treated wastewater. Water Res. 2020, 182, 115965. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, L.; Chen, B.; Zhu, X. Low-pressure driven electrospun membrane with tuned surface charge for efficient removal of polystyrene nanoplastics from water. J. Memb. Sci. 2020, 614, 118470. [Google Scholar] [CrossRef]
- Ali, I.; Ding, T.; Peng, C.; Naz, I.; Sun, H.; Li, J.; Liu, J. Micro-and nanoplastics in wastewater treatment plants: Occurrence, removal, fate, impacts and remediation technologies-a critical review. Chem. Eng. 2021, 423, 130205. [Google Scholar] [CrossRef]
- Rout, P.R.; Goel, M.; Mohanty, A.; Pandey, D.S.; Halder, N.; Mukherjee, S.; Bhatia, S.K.; Sahoo, N.K.; Varjani, S. Recent advancements in microalgal mediated valorisation of wastewater from hydrothermal liquefaction of biomass. Bioenergy Res. 2022, 15, 1–15. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Liu, H.; Guo, X.; Zhang, X.; Yao, X.; Cao, Z.; Zhang, T. A review of the removal of microplastics in global wastewater treatment plants: Characteristics and mechanisms. Environ. Int. 2021, 146, 106277. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Q.; Yan, C.; Mancl, K.; Gong, D.; He, J.; Mei, X. Macro-and/or microplastics as an emerging threat effect crop growth and soil health. Resour. Conserv. Recycl. 2022, 186, 106549. [Google Scholar] [CrossRef]
- Conley, K.; Clum, A.; Deepe, J.; Lane, H.; Beckingham, B. Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year. Water Res. X 2019, 3, 100030. [Google Scholar] [CrossRef] [PubMed]
- Dyachenko, A.; Mitchell, J.; Arsem, N. Extraction and identification of microplastic particles from secondary wastewater treatment plant (WWTP) effluent. Anal. Methods 2017, 9, 1412–1418. [Google Scholar] [CrossRef]
- Beljanski, A.; Cole, C.; Fuxa, F.; Setiawan, E.; Singh, H. Efficiency and Effectiveness of a Low-Cost, Self-Cleaning Microplastic Filtering System for Wastewater Treatment Plants. 2016. Available online: http://libjournals.unca.edu/ncur/wp-content/uploads/2021/06/2064-Beljanski-Alec.pdf (accessed on 1 December 2023).
- Li, L.; Xu, G.; Yu, H.; Xing, J. Dynamic membrane for micro-particle removal in wastewater treatment: Performance and influencing factors. Sci. Total Environ. 2018, 627, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Xue, W.; Hu, C.; Liu, H.; Qu, J.; Li, L. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem. Eng. 2019, 359, 159–167. [Google Scholar] [CrossRef]
- Juliastuti, S.R.; Hisbullah, M.I.; Abdillah, M. High density Polyethylene plastic waste treatment with microwave heating pyrolysis method using coconut-shell activated carbon to produce alternative fuels. IOP Conf. Ser. Mater. Sci. Eng. 2018, 334, 012015. [Google Scholar] [CrossRef]
- Wong, S.L.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sustain. Energy Rev. 2015, 50, 1167–1180. [Google Scholar] [CrossRef]
- Elkhatib, D.; Oyanedel-Craver, V.; Carissimi, E. Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities. Sep. Purif. Technol. 2021, 276, 118877. [Google Scholar] [CrossRef]
- Moussa, D.T.; El-Naas, M.H.; Nasser, M.; Al-Marri, M.J. A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J. Environ. Manag. 2017, 186, 24. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Bian, K.; Wang, H.; Wang, C. A critical review of control and removal strategies for microplastics from aquatic environments. J. Environ. Chem. Eng. 2021, 9, 105463. [Google Scholar] [CrossRef]
- Mishra, S.; Singh, R.P.; Rath, C.C.; Das, A.P. Synthetic microfibers: Source, transport, and their remediation. J. Water Process Eng. 2020, 38, 101612. [Google Scholar] [CrossRef]
- Besseling, E.; Quik, J.T.; Sun, M.; Koelmans, A.A. Fate of nano-and microplastic in freshwater systems: A modeling study. Environ. Pollut. 2017, 220, 540–548. [Google Scholar] [CrossRef]
- Li, P.; Zou, X.; Wang, X.; Su, M.; Chen, C.; Sun, X.; Zhang, H. A preliminary study of the interactions between microplastics and citrate-coated silver nanoparticles in aquatic environments. J. Hazard. Mater. 2020, 385, 121601.10. [Google Scholar] [CrossRef]
- Pathak, V.M. Review on the current status of polymer degradation: A microbial approach. Bioresour. Bioprocess 2017, 4, 1–31. [Google Scholar] [CrossRef]
- Kosuth, M.; Mason, S.A.; Wattenberg, E.V. Anthropogenic contamination of tap water, beer, and seasalt. PLoS ONE 2018, 13, e0194970. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Song, B.; Zhu, Y.; Zeng, G.; Zhang, Y.; Yang, Y.; Yi, H. Removal of microplastics via drinking water treatment: Current knowledge and future directions. Chemosphere 2020, 251, 126612. [Google Scholar] [CrossRef]
- Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018, 643, 1644–1651. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Nor, N.H.M.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Danopoulos, E.; Twiddy, M.; Rotchell, J.M. Microplastic contamination of drinking water: A systematic review. PLoS ONE 2020, 15, e0236838. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, D.; Oßmann, B.E.; Benismail, N.; Boukerma, K.; Dallmann, G.; Von der Esch, E.E.; Fischer, D.; Fischer, F.; Gilliland, D.; Glas, K.; et al. Analysis of microplastics in drinking water and other clean water samples with micro-Raman and micro-infrared spectroscopy: Minimum requirements and best practice guidelines. Anal. Bioanal. Chem. 2021, 413, 5969–5994. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Jiang, Q.; Hu, X.; Zhong, X. Occurrence and identification of microplastics in tap water from China. Chemosphere 2020, 252, 126493. [Google Scholar] [CrossRef] [PubMed]
- Westphalen, H.; Abdelrasoul, A. Challenges and treatment of microplastics in water. Water Challenges an Urban. World 2018, 5, 71–82. [Google Scholar] [CrossRef]
- Vecchiotti, G.; Colafarina, S.; Aloisi, M.; Zarivi, O.; Di Carlo, P.; Poma, A. Genotoxicity and oxidative stress induction by polystyrene nanoparticles in the colorectal cancer cell line HCT116. PLoS ONE 2021, 16, e0255120. [Google Scholar] [CrossRef] [PubMed]
- Yee, M.S.-L.; Hii, L.-W.; Looi, C.K.; Lim, W.-M.; Wong, S.-F.; Kok, Y.-Y.; Tan, B.-K.; Wong, C.-Y.; Leong, C.-O. Impact of microplastics and nanoplastics on human health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef]
- Mintenig, S.M.; Löder, M.G.J.; Primpke, S.; Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef] [PubMed]
- Millar, G.J.; Lin, J.; Arshad, A.; Couperthwaite, S.J. Evaluation of electrocoagulation for the pre-treatment of coal seam water. J. Water Process Eng. 2014, 4, 166–178. [Google Scholar] [CrossRef]
- Pico, Y.; Barcelo, D. Analysis and prevention of microplastics pollution in water: Current perspectives and future directions. ACS Omega 2019, 4, 6709–6719. [Google Scholar] [CrossRef] [PubMed]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.W. Membrane Technology and Applications, 3rd ed.; 2012. Available online: https://www.eng.uc.edu/~beaucag/Classes/Properties/Books/Richard%20W.%20Baker(auth.)%20-%20Membrane%20Technology%20and%20Applications,%20Third%20Edition%20(2012).pdf (accessed on 1 December 2023).
- Webb, H.K.; Arnott, J.; Crawford, R.J.; Ivanova, E.P. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers 2012, 5, 1–18. [Google Scholar] [CrossRef]
- Chandra, P.; Singh, D.P. Microplastic degradation by bacteria in aquatic ecosystem. In Microorganisms for Sustainable Environment and Health; Elsevier: Amsterdam, The Netherlands, 2020; pp. 431–467. [Google Scholar] [CrossRef]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and enzymatic degradation of synthetic plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Sharma, S.; Gupta, S.; Ghosal, A.; Nadda, A.K.; Jose, R.; Raizada, P. Prevalence and implications of microplastics in potable water system: An update. Chemosphere 2023, 317, 137848. [Google Scholar] [CrossRef]
- Sharma, A.; Kumari, S.; Chopade, R.L.; Pandit, P.P.; Rai, A.R.; Nagar, V.; Awasthi, G.; Singh, A.; Awasthi, K.K.; Sankhla, M.S. An assessment of the impact of structure and type of microplastics on ultrafiltration technology for microplastic remediation. Sci. Prog. 2023, 106, 00368504231176399. [Google Scholar] [CrossRef]
- Dalmau-Soler, J.; Ballesteros-Cano, R.; Boleda, M.R.; Paraira, M.; Ferrer, N.; Lacorte, S. Microplastics from headwaters to tap water: Occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain). Environ. Sci. Pollut. Res. 2021, 28, 59462–59472. [Google Scholar] [CrossRef]
- Cuartucci, M. Ultrafiltration, a cost-effective solution for treating surface water to potable standard. Water Pract. Technol. 2020, 15, 426–436. [Google Scholar] [CrossRef]
- Federal Reserve. FAQs: What Is a Regulation and How Is It Made? 2018. Retrieved 1 June 2022. Available online: https://www.federalreserve.gov/faqs/what-is-a-regulation.htm (accessed on 1 December 2023).
- USEPA. Trash-Free Waters. 2021. Available online: https://www.epa.gov/trash-free-waters (accessed on 2 December 2023).
- USEPA. Overview of the Safe Drinking Water Act. 2021. Available online: https://www.epa.gov/sdwa/overview-safe-drinking-water-act (accessed on 4 October 2023).
- FDA, Supporting Document for Action Level for Inorganic Arsenic in Rice Cereals for Infants. 2020. Available online: https://www.fda.gov/media/97121/download (accessed on 1 December 2023).
- Rosengren, C. US Virgin Islands Plastic Bag Ban to Take Effect in 2017. Waste Dive. 2016. Retrieved 1 June 2022. Available online: https://www.wastedive.com/news/us-virgin-islands-plastic-bag-ban-to-take-effect-in-2017/427972/ (accessed on 1 December 2023).
- National Conference of State Legislatures (NCSL). State Plastic Bag Legislation. 2021. Retrieved 1 February 2022. Available online: https://www.ncsl.org/environment-and-natural-resources/state-plastic-bag-legislation (accessed on 1 December 2023).
- Coto, D. Puerto Rico to Ban Use of Plastic Bags through Executive Order after Legislators Opposed Bill. US News. 2015. Available online: https://www.foxnews.com/politics/after-legislation-fails-puerto-ricos-governor-bans-plastic-bags-in-executive-order (accessed on 1 December 2023).
- Romer, J.R. The evolution of San Francisco’s plastic-bag ban. Gold. Gate Univ. Environ. Law J. 2010, 1, 439–465. Available online: https://heinonline.org/HOL/LandingPage?handle=hein.journals/gguelr1&div=23&id=&page= (accessed on 1 December 2023).
- Gibbens, S. A Brief History of How Plastic Straws Took over the World. National Geographic. 2019. Retrieved 1 February 2022. Available online: https://www.nationalgeographic.com/environment/article/news-plastic-drinking-straw-history-ban (accessed on 1 December 2023).
- Maddela, N.R.; Ramakrishnan, B.; Kadiyala, T.; Venkateswarlu, K.; Megharaj, M. Do Microplastics and Nanoplastics Pose Risks to Biota in Agricultural Ecosystems? Soil Syst. 2023, 7, 19. [Google Scholar] [CrossRef]
Method | Concept | Advantages | Disadvantages |
---|---|---|---|
Microscopy | The number of MPs counted based on shape, size, color, thickness. |
|
|
Staining microscopy | Impurities are stained with dye and counted. |
|
|
FTIR | Involves measuring the absorption of infrared light by a sample. |
|
|
Raman | The inelastic scattering of light, providing information about molecular vibrations and rotational transition. |
|
|
LDIR | Using infrared light to analyze molecular composition and identify polymer types in a sample. |
|
|
Pyrolysis-GC-MS | Samples are thermally decomposed and separated by GC column and pass to mass spectroscopy. |
|
|
Type of Microplastic | Description | ||||
---|---|---|---|---|---|
Polyester (PES) | |||||
Fibers
| |||||
Polyethylene (PE) | |||||
Particles
| |||||
Polyamide (PA) | |||||
Fibers
| |||||
Polypropylene (PP) | |||||
Particles
|
Location | WWTPs Technologies | Influent Concentration (MPs/L) | Effluent Concentration (MPs/L) | Lower Size Range (μm) | Removal Efficiency (%) | References |
---|---|---|---|---|---|---|
Primary Treatment | ||||||
China | 6-mm screen mesh before grit chamber | 79.9 | 47.4 | 100 | 40.7 | [95] |
Finland | 6-mm screen mesh before grit chamber | 57.6 ± 12.4 | 0.6 ± 0.2 | 250 | 99 | [47] |
South Korea | Grit Chamber | 4200 | 1568 | Not Reported | 62.7 | [71] |
Spain | Grit Chamber | 12.4 ± 2.7 | 3.2 ± 0.5 | 200–400 | 74 | [77] |
Finland | Dissolve Air Floatation | 2 | 1 | 20 | 95 | [13] |
Scotland | Coagulation | 15.7 ± 5.2 | 3.4 ± 0.3 | 11 | 78.3 | [15] |
China | Coagulation | 1520 ± 258 | 136 ± 22 | 0.05–0.5 | 44.5–75.0 | [60] |
South Korea | Coagulation | 7863 | 1444 | Not Reported | 81.6 | [71] |
United States (Mississippi) | Grit Chamber | 62.3 | 6.23 | Not Reported | 90 | [96] |
Secondary Treatment | ||||||
Spain | Activated sludge process | 3.2 ± 0.5 | 1.2 ± 0.1 | 200–400 | 62 | [77] |
South Korea | Activated sludge process | 2080 | 433 | Not Reported | 77.3 | [71] |
Italy | Activated sludge process | 2.5 ± 0.3 | 0.9 ± 0.3 | 8 | 64 | [40] |
Finland | Activated sludge process | 57.6 ± 12.4 | 1.0 ± 0.4 | 250 | 98.3 | [47] |
Madrid | Anaerobic/Anoxic/Oxic process | 171 ± 42 | 10.7 ± 5.2 | 25 | <0–98 | [90] |
United States (Mississippi) | Activated sludge process | 6.23 | 1.5 | Not reported | 75 | [96] |
United States (South Carolina) | Activated sludge process. (Avg of 3 WWTPs) | 139.66 | 12.83 | 60 | 90.83 | [97] |
United States (Southern California) | Activated sludge process. (Avg of 8 WWTPS) | 1 | 0.0088 | >20 | 99.12 | [9] |
Unites States (New York) | Primary + Secondary | - | 0.004 | >125 | - | [30] |
United States (Detroit, Michigan) | Activated sludge process. (Avg of 3 WWTPs) | 133 | 5.9 | >20 | 95.56 | [22] |
United States (Oaklank, California) | Primary + Secondary | - | 0.23 | - | - | [98] |
Tertiary Treatment | ||||||
Italy | Sand filtration | 0.9 ± 0.3 | 0.4 ± 0.1 | 8 | 56 | [40] |
China | Sand filtration | 3472 ± 178 | 2230 ± 91 | 0.05–0.5 | 29–41 | [60] |
South Korea | Rapid sand filtration | 215 | 66 | Not Reported | 74 | [71] |
Finland | Rapid sand filtration | 0.7 ± 0.1 | 0.02 | 20 | 97 | [13] |
China | Granular-activated carbon | 930 ± 44 | 906 ± 45 | 0.05–0.5 | 56.8–60.9 | [60] |
United States (Northfield, Michigan) | Tertiary treatment | 83.3 | 2.6 | >20 | 96.88 | [22] |
United States (Northern California) | Primary, Secondary, Tertiary (Avg of 9 WWTPs) | - | 0.195–0.127 | >125 | - | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jani, V.; Wu, S.; Venkiteshwaran, K. Advancements and Regulatory Situation in Microplastics Removal from Wastewater and Drinking Water: A Comprehensive Review. Microplastics 2024, 3, 98-123. https://doi.org/10.3390/microplastics3010007
Jani V, Wu S, Venkiteshwaran K. Advancements and Regulatory Situation in Microplastics Removal from Wastewater and Drinking Water: A Comprehensive Review. Microplastics. 2024; 3(1):98-123. https://doi.org/10.3390/microplastics3010007
Chicago/Turabian StyleJani, Vyoma, Shenghua Wu, and Kaushik Venkiteshwaran. 2024. "Advancements and Regulatory Situation in Microplastics Removal from Wastewater and Drinking Water: A Comprehensive Review" Microplastics 3, no. 1: 98-123. https://doi.org/10.3390/microplastics3010007
APA StyleJani, V., Wu, S., & Venkiteshwaran, K. (2024). Advancements and Regulatory Situation in Microplastics Removal from Wastewater and Drinking Water: A Comprehensive Review. Microplastics, 3(1), 98-123. https://doi.org/10.3390/microplastics3010007