Effect of Different Additives on the Quality of Rehydrated Corn Grain Silage: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Data Mining
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Firkins, J.L.; Eastridge, M.L.; St-Pierre, N.R.; Noftsger, S.M. Effects of grain variability and processing on starch utilization by lactating dairy cattle. J. Anim. Sci. 2001, 79, E218. [Google Scholar] [CrossRef]
- Tullo, E.; Finzi, A.; Guarino, M. Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Sci. Total Environ. 2019, 650, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- Devendra, C.; Leng, R.A. Invited Review-Feed Resources for Animals in Asia: Issues, Strategies for Use, Intensification and Integration for Increased Productivity. J. Anim. Sci. 2011, 24, 303–321. [Google Scholar] [CrossRef]
- Ferraretto, L.F.; Fredin, S.M.; Shaver, R.D. Influence of ensiling, exogenous protease addition, and bacterial inoculation on fermentation profile, nitrogen fractions, and ruminal in vitro starch digestibility in rehydrated and high-moisture corn. J. Dairy Sci. 2015, 98, 7318–7327. [Google Scholar] [CrossRef] [PubMed]
- Morais, G.; Daniel, C.; Kleinshmitt, C.; Carvalho, P.A.; Fernandes, J.; Nussio, L.G. Additives for grain silages: A review. Slov. J. Anim. Sci. 2017, 50, 42–54. Available online: https://office.sjas-journal.org/index.php/sjas/article/view/137 (accessed on 16 July 2023).
- Daniel, J.L.P.; Bernardes, T.F.; Jobim, C.C.; Schmidt, P.; Nussio, L.G. Production and utilization of silages in tropical areas with focus on Brazil. Grass Forage Sci. 2019, 74, 188–200. [Google Scholar] [CrossRef]
- Gervásio, J.R.S.; da Silva, N.C.; Pradosa, L.F.; Trivelato, M.J.L.; Daniel, J.L.P.; Resende, F.D.; Siqueira, G.R. Effects of particle size and storage length on the fermentation pattern and ruminal disappearance of rehydrated corn grain silage hammer mill processed. Anim. Feed Sci. Technol. 2023, 306, 115810. [Google Scholar] [CrossRef]
- Ferraretto, L.F.; Taysom, K.; Taysom, D.M.; Shaver, R.D.; Hoffman, P.C. Relationships between dry matter content, ensiling, ammonia-nitrogen, and ruminal in vitro starch digestibility in high-moisture corn samples. J. Dairy Sci. 2014, 97, 3221–3227. [Google Scholar] [CrossRef]
- Jacovaci, F.A.; Salvo, P.A.R.; Jobim, C.C.; Daniel, J.L.P. Effect of ensiling on the feeding value of flint corn grain for feedlot beef cattle: A meta-analysis. Rev. Bras. Zootec. 2021, 50, e20200111. [Google Scholar] [CrossRef]
- Mata, D.G.; Ítavo, L.C.V.; Ítavo, C.C.B.F.; Ferreira, J.D.J.; Paulino, P.V.R.; Moraes, G.J.; Niwa, M.V.G.; Kozerski, N.D.; Leal, E.S.; Costa, M.C.M. Ruminal responses, digestibility, and blood parameters of beef cattle fed diets without forage with different hybrids and processing of the corn. J. Anim. Physiol. Anim. Nutr. 2023, 107, 367–378. [Google Scholar] [CrossRef]
- Silva, A.S.; Pereira, L.G.R.; Pedreira, M.S.; Machado, F.S.; Campos, M.M.; Cortinhas, C.S.; Acedo, T.S.; Santos, R.D.; Rodrigues, J.P.P.; Maurício, R.M.; et al. Exogenous amylase increases gas production and improves in vitro ruminal digestion kinetics of sorghum and corn grains. Arq. Bras. Med. Vet. Zootec. 2023, 75, 511–518. [Google Scholar] [CrossRef]
- Correa, C.E.S.; Shaver, R.D.; Pereira, M.N.; Lauer, J.G.; Kohn, K. Relationship between Corn Vitreousness and Ruminal In Situ Starch Degradability. J. Dairy Sci. 2002, 85, 3008–3012. [Google Scholar] [CrossRef] [PubMed]
- Rossi, L.G.; Rabelo, C.H.S.; Andrade, M.E.B.; Siqueira, G.R.; Vicente, E.F.; Nogueira, D.A.; Reis, R.A. Feed intake, digestibility, ruminal fermentation, growth performance, and carcass traits of lambs fed corn silage treated with Lentilactobacillus buchneri and stored for different times. Anim. Feed Sci. Technol. 2023, 304, 115751. [Google Scholar] [CrossRef]
- Gomide, D.R.; Pereira, R.A.N.; Silva, R.B.; Carvalho, J.T.R.; Lara, M.A.S.; Pereira, M.N. Effect of Particle Size of Silage of Flint Corn Grain on Dairy Cows Fed Tropical Pasture: Performance, Intake, Ruminal Fermentation, and Digestibility. Animals 2023, 13, 1932. [Google Scholar] [CrossRef]
- Santos, W.P.; Salvati, G.G.S.; Arthur, B.A.V.; Daniel, J.L.P.; Nussio, L.G. The effect of sodium benzoate on the nutritive value of rehydrated sorghum grain silage for dairy cows. Anim. Feed Sci. Technol. 2019, 256, 114267. [Google Scholar] [CrossRef]
- Nafisah, A.; Annazhifah, N.; Putri, N.N. The use of mix ration corn-silage based for dairy cattle: A systematic review on methane emission and milk quality. J. Peternak. 2023, 20, 109–120. [Google Scholar] [CrossRef]
- Krogstad, K.C.; Bradford, B.J. The effects of feeding α-amylase-enhanced corn silage with different dietary starch concentrations to lactating dairy cows on milk production, nutrient digestibility, and blood metabolites. J. Dairy Sci. 2023, 106, 4666–4681. [Google Scholar] [CrossRef]
- Philippeau, C.; De Monredon, F.L.D.; Michalet-Doreau, B. Relationship between ruminal starch degradation and the physical characteristics of corn grain. J. Anim. Sci. 1999, 77, 238–243. [Google Scholar] [CrossRef]
- Costa, C.; Baldassini, W.A.; Leal, M.S.; Meirelles, P.R.L.; Castilhos, A.M.; Nascimento Júnior, N.G.; Silveira, J.P.F.; Pariz, C.M.; Roça, R.O.; Factori, M.A.; et al. Carcass, meat quality traits, and economic analysis of Nellore bulls fed with fnishing feedlot diets containing mechanically processed corn silage. Trop. Anim. Health Prod. 2023, 55, 121. [Google Scholar] [CrossRef]
- Castro, L.P.; Pereira, M.N.; Dias, J.D.L.; Lage, D.V.D.; Barbosa, E.F.; Melo, R.P.; Ferreira, K.; Carvalho, J.T.R.; Cardoso, F.F.; Pereira, R.A.N. Lactation performance of dairy cows fed rehydrated and ensiled corn grain differing in particle size and proportion in the diet. J. Dairy Sci. 2019, 102, 9857–9869. [Google Scholar] [CrossRef]
- Fernandes, J.; da Silva, É.B.; de Carvalho-Estrada, P.A.; Daniel, J.L.P.; Nussio, L.G. Influence of hybrid, moisture, and length of storage on the fermentation profile and starch digestibility of corn grain silages. Anim. Feed Sci. Technol. 2020, 271, 114707. [Google Scholar] [CrossRef]
- Jesus, M.A.; Monção, F.P.; Rigueira, J.P.; Rocha, V.R., Jr.; Gomes, V.M.; Delvaux, N.A., Jr.; Santos, A.S. Effects of microbial inoculant and fibrolytic enzymes on fermentation quality and nutritional value of BRS capiaçu grass silage. Semin. Cienc. Agrar. 2021, 43, 1837–1852. [Google Scholar] [CrossRef]
- Silva, N.C.; Nascimento, C.F.; Campos, V.M.A.; Alves, M.A.P.; Resende, F.D.; Daniel, J.L.P.; Siqueira, G.R. Influence of storage length and inoculation with Lactobacillus buchneri on the fermentation, aerobic stability, and ruminal degradability of high-moisture corn and rehydrated corn grain silage. Anim. Feed Sci. Technol. 2018, 55, 124–133. [Google Scholar] [CrossRef]
- Hoffman, P.C.; Esser, N.M.; Shaver, R.D.; Coblentz, W.K.; Scott, M.P.; Bodnar, A.L.; Schmidt, R.J.; Charley, R.C. Influence of ensiling time and inoculation on alteration of the starch-protein matrix in high-moisture corn. J. Dairy Sci. 2011, 94, 2465–2474. [Google Scholar] [CrossRef] [PubMed]
- Varela, J.; Ferraretto, L.F.; Kaeppler, S.M.; León, N. Effect of endosperm type and storage length of whole plant corn silage on nitrogen fraction, fermentation products, zein profile and starch digestibility. J. Dairy Sci. 2023, 23, S0022-0302. [Google Scholar] [CrossRef] [PubMed]
- Cueva, S.F.; Harper, M.; Roth, G.W.; Wells, H.; Canale, C.; Gallo, A.; Masoero, F.; Hristov, A.N. Effects of ensiling time on corn silage starch ruminal degradability evaluated in situ or in vitro. J. Dairy Sci. 2023, 106, 3961–3974. [Google Scholar] [CrossRef]
- Ledley, A.J.; Ziegler, G.R.; Elias, R.J.; Cockburn, D.W. Microscopic assessment of the degradation of millet starch granules by endogenous and exogenous enzymes during mashing. Carbohydr. Polym. 2023, 314, 120935. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. Biochemical Silage, 2nd ed.; Chalcombe Publications: Kingston, UK, 1991. [Google Scholar]
- Kleinschmit, D.H.; Schmidt, R.J.; Kung, L. The Effects of Various Antifungal Additives on the Fermentation and Aerobic Stability of Corn Silage. J. Dairy Sci. 2005, 88, 2130–2139. [Google Scholar] [CrossRef]
- Lala, B.; Pereira, V.V.; Possamai, A.P.S.; Diniz, P.P.; Silva, S.C.C.; Grande, P.A. Aditivos no processo de ensilagem. BioEng 2010, 4, 175–183. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Akins, M.S. Silage review: Recent advances and future technologies for baled silages. J. Dairy Sci. 2018, 101, 4075–4092. [Google Scholar] [CrossRef]
- Yitbarek, M.B.; Tamir, B. Silage Additives: Review. Open J. Appl. Sci. 2014, 4, 258–274. [Google Scholar] [CrossRef]
- Tian, J.; Yin, X.; Zhang, J. Changes of the fermentation quality and microbial community during re-ensiling of sweet corn stalk silage. Ital. J. Anim. Sci. 2022, 21, 168–177. [Google Scholar] [CrossRef]
- Schreiter, S.; Sandmann, M.; Smalla, K.; Grosch, R. Soil Type Dependent Rhizosphere Competen ceand Biocontrol of Two Bacterial Inoculant Strains and Their Effects on the Rhizosphere Microbial Community of Field-Grown Lettuce. PLoS ONE 2014, 9, 103726. [Google Scholar] [CrossRef] [PubMed]
- Ozduven, M.L.; Koc, F.; Akay, V. Effects of bacterial inoculants and enzymes on the fermentation, aerobic stability and in vitro organic matter digestibility characteristics of sunflower silages. Pak. J. Nutr. 2017, 16, 22–27. [Google Scholar] [CrossRef]
- Nolan, P.; Doyle, E.M.; Grant, J.; O’Kiely, P. Upgrading grass biomass during ensiling with contrasting fibrolytic enzyme additives for enhanced methane production. Renew. Energy 2018, 115, 462–473. [Google Scholar] [CrossRef]
- Salem, A.Z.M.; Gado, H.M.; Colombatto, D.; Elghandour, M.M.Y. Effects of exogenous enzymes on nutrient digestibility, ruminal fermentation and growth performance in beef steers. Livest Sci. 2013, 154, 69–73. [Google Scholar] [CrossRef]
- Salem, A.Z.M.; Buendía-Rodríguez, G.; Elghandour, M.M.M.; Berasain, M.A.M.; Jiménez, F.J.P.; Pliego, A.B.; Chagoyán, J.C.V.; Cerrillo, M.A.; Rodríguez, M.A. Effects of cellulase and xylanase enzymes mixed with increasing doses of Salix babylonica extract on in vitro rumen gas production kinetics of a mixture of corn silage with concentrate. J. Integr. Agric. 2015, 14, 131–139. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J. Clin. Epidemiol. 2016, 75, 40–46. [Google Scholar] [CrossRef]
- Ferraretto, L.F.; Shaver, R.D.; Luck, B.D. Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting. J. Dairy Sci. 2018, 101, 3937–3951. [Google Scholar] [CrossRef]
- Rezende, A.V.; Rabelo, C.H.; Veiga, R.M.; Andrade, L.P.; Härter, C.J.; Rabelo, F.H.; Basso, F.C.; Reis, R.A. Rehydration of corn grain with acid whey improves the silage quality. Anim. Feed Sci. Technol. 2014, 197, 213–221. [Google Scholar] [CrossRef]
- Silva, N.C.; Nascimento, C.F.; Nascimento, F.A.; De Resende, F.D.; Daniel, J.L.P.; Siqueira, G.R. Fermentation and aerobic stability of rehydrated corn grain silage treated with different doses of Lactobacillus buchneri or a combination of Lactobacillus plantarum and Pediococcus acidilactici. J. Dairy Sci. 2018, 101, 4158–4167. [Google Scholar] [CrossRef] [PubMed]
- Souza, W.L.; Cidrini, I.A.; Neiva Júnior, A.P.; Silva, M.D.; Gervásio, J.R.S.; Abreu, M.J.I.; Nascimento, D.C. Effect of rehydration with whey and inoculation with Lactobacillus plantarum and Propionibacterium acidipropionici on the chemical composition, microbiological dynamics, and fermentative losses of corn grain silage. Semin. Ciênc Agrár. 2020, 41, 3351–3363. [Google Scholar] [CrossRef]
- Cruz, F.N.F.; Moncao, F.P.; Rocha, V.R.; Alencar, A.M.S.; Rigueira, J.P.S.; Silva, A.F.; Miorin, R.L.; Soares, A.C.M.; Carvalho, C.C.S.; Albuquerque, C.J.B. Fermentative losses and chemical composition and in vitro digestibility of corn grain silage rehydrated with water or acid whey combined with bacterial-enzymatic inoculant. Semin. Cienc. Agrar. 2021, 42, 3497–3513. [Google Scholar] [CrossRef]
- Menezes, G.L.; Oliveira, A.F.; Lana, Â.M.Q.; de Pires, F.P.A.A.; de Menezes, R.A.; Sousa, P.G.; Oliveira, E.C.; Monteiro, R.G.A.; Martins, G.G.; Souza, R.C.; et al. Effects of different moist orange pulp inclusions in the corn grain rehydration for silage production on chemical composition, fermentation, aerobic stability, microbiological profile, and losses. Anim. Sci. J. 2022, 93, e13701. [Google Scholar] [CrossRef]
- Junges, D.; Morais, G.; Spoto, M.H.F.; Santos, P.S.; Adesogan, A.T.; Nussio, L.G.; Daniel, J.L.P. Short communication: Influence of various proteolytic sources during fermentation of reconstituted corn grain silages. J. Dairy Sci. 2017, 100, 9048–9051. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, J.; Yu, C.; Li, J.; Tao, X.; Chen, S.; Shao, T. Nutritional evaluation of wet brewers’ grains as substitute for common vetch in ensiled total mixed ration. Ital. J. Anim. Sci. 2020, 19, 1015–1025. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, X.; Dong, Z.; Li, J.; Guo, G.; Bai, Y.; Shao, T. Characteristics of isolated lactic acid bacteria and their effects on the silage quality. Asian-Australas J. Anim. Sci. 2017, 30, 819–827. [Google Scholar] [CrossRef]
- Carvalho, B.F.; Ávila, C.L.S.; Bernardes, T.F.; Pereira, M.N.; Santos, C.; Schwan, R.F. Fermentation profile and identification of lactic acid bacteria and yeasts of rehydrated corn kernel silage. J. Appl. Microbiol. 2017, 122, 589–600. [Google Scholar] [CrossRef]
- Pereira, D.M.; Santos, E.M.; Oliveira, J.S.; Santos, F.N.S.; Lopes, R.C.; Santos, M.A.C.; Júnior, P.T. Effect of cactus pear as a moistening additive in the production of rehydrated corn grain silage. J. Agric. Sci. 2021, 159, 731–742. [Google Scholar] [CrossRef]
- Oliveira, K.D.S.; Salvati, G.G.D.S.; Morais, G.D.; Carvalho-Estrada, P.D.A.; Santos, W.P.D.; Salvatte, J.M.S.; Nussio, L.G. Effect of length of storage and chemical additives on the nutritive value and starch degradability of reconstituted corn grain silage. Agronomy 2023, 13, 209. [Google Scholar] [CrossRef]
- Roseira, J.P.S.; Pereira, O.G.; da Silveira, T.C.; da Silva, V.P.; Alves, W.S.; Agarussi, M.C.N.; Ribeiro, K.G. Effects of exogenous protease addition on fermentation and nutritive value of rehydrated corn and sorghum grains silages. Sci. Rep. 2023, 13, 7302. [Google Scholar] [CrossRef] [PubMed]
- Silva Neto, A.B.; Ribeiro, A.P.; Volpato, A.; Machado, J.; Nazato, L.M.; Santos, D.P.; Nussio, L.G. Propionic acid-based additive with surfactant action on the feeding value of rehydrated corn grain silage for dairy cows performance. Livest. Sci. 2023, 275, 105292. [Google Scholar] [CrossRef]
- Costa, D.M.; Carvalho, B.F.; de Souza, V.C.; Pereira, M.N.; Silva Ávila, C.L. Particle size and storage length affect fermentation and ruminal degradation of rehydrated corn grain silage. Arch. Anim. Nutr. 2023, 1–15. [Google Scholar] [CrossRef]
- Lara, E.C.; Basso, F.C.; De Assis, F.B.; Souza, F.A.; Berchielli, T.T.; Reis, R.A. Changes in the nutritive value and aerobic stability of corn silages inoculated with Bacillus subtilis alone or combined with Lactobacillus plantarum. Anim. Prod. Sci. 2016, 56, 1867–1874. [Google Scholar] [CrossRef]
- Salvati, G.G.S.; Santos, W.P.; Silveira, J.M.; Gritti, V.C.; Arthur, B.A.V.; Salvo, P.A.R.; Fachin, L.; Ribeiro, A.P.; Morais Júnior, N.N.; Ferraretto, L.F.; et al. Effect of kernel processing and particle size of whole-plant corn silage with vitreous endosperm on dairy cow performance. J. Dairy Sci. 2021, 104, 1794–1810. [Google Scholar] [CrossRef]
- Bernardes, T.F.; Cardoso, M.V.S.; Lima, L.M. Silage feeding programs on intensive dairy farms. J. Dairy Sci. 2018, 2, 257. [Google Scholar]
- Mombach, M.A.; Pereira, D.H.; Pina, D.S.; Bolson, D.C.; Pedreira, B.C. Silage of rehydrated corn grain. Arq. Bras. Med. Vet. Zootec. 2019, 71, 959–966. [Google Scholar] [CrossRef]
- Duniere, L.; Xu, S.; Long, J.; Elekwachi, C.; Wang, Y.; Turkington, K.; McAllister, T.A. Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage. BMC Microbiol. 2017, 17, 50. [Google Scholar] [CrossRef]
- Benini, C.M.; Carvalho, V.T.W.; Pereira, G.V.R.; Tavares, Q.G.; Minighin, D.C.; de Jesus Nunes, R.F.; Silva, L.V. Avaliação química da silagem grão de milho reidratado em diferentes níveis de adição de água. Pubvet 2020, 14, 1–6. [Google Scholar] [CrossRef]
- Rahimi, A.; Ghorbani, G.R.; Hashemzadeh, F.; Mirzaei, M.; Saberipour, H.R.; Ahmadi, F.; . Ghaffari, M.H. Impact of corn processing and weaning age on calf performance, blood metabolites, rumen fermentation, and behavior. Sci. Rep. 2023, 13, 10701. [Google Scholar] [CrossRef] [PubMed]
- Borburema, J.B.; Santos, E.M.; Ramos, J.P.F.; Pinho, R.M.A.; Oliveira, J.S.; Araújo, G.P. Evaluation of elephant grass silages added with pornunça hay. Red. Vet. 2016, 17, 1–10. [Google Scholar]
- Zielińska, K.; Fabiszewska, A.; Stefańska, I. Different aspects of Lactobacillus inoculants on the improvement of quality and safety of alfalfa silage. Chil. J. Agric. Res. 2015, 75, 298–306. [Google Scholar] [CrossRef]
- Santos, A.O.; Avila, C.L.S.; Pinto, J.C.; Carvalho, B.F.; Dias, D.R.; Schwan, R.F. Fermentative profile and bacterial diversity of corn silages inoculated with new tropical lactic acid bactéria. J. Appl. Microbiol. 2015, 120, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Navarrete-Molina, C.; Meza-Herrera, C.A.; Herrera-Machuca, M.A.; Lopez-Villalobos, N.; Lopez-Santos, A.; Veliz-Deras, F.G. To beef or not to beef: Unveiling the economic environmental impact generated by the intensive beef cattle industry in an arid region. J. Clean. Prod. 2019, 231, 1027–1035. [Google Scholar] [CrossRef]
- Almeida Carvalho-Estrada, P.; Fernandes, J.; da Silva, É.B.; Tizioto, P.; Paziani, S.D.F.; Duarte, A.P.; Coutinho, L.L.; Verdi, M.C.Q.; Nussio, L.G. Effects of Hybrid, Kernel Maturity, and Storage Period on the Bacterial Community in High-Moisture and Rehydrated Corn Grain Silages. Syst. Appl. Microbiol. 2020, 43, 126131. [Google Scholar] [CrossRef]
- Agarussi, M.C.N.; Pereira, O.G.; Pimentel, F.E.; Azevedo, C.F.; da Silva, V.P.; Silva, F.F. Microbiome of rehydrated corn and sorghum grain silages treated with microbial inoculants in different fermentation periods. Sci. Rep. 2022, 12, 16864. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef]
- Wilkinson, J.M. Managing silage making to reduce losses. Livest. Sci. 2015, 20, 280–286. [Google Scholar] [CrossRef]
- Jobim, C.C.; Nussio, L.G. Princípios básicos da fermentação na ensilagem. In Forragicultura–Ciência, Tecnologia e Gestão de Recursos Forrageiros; Editora FUNEP: Jaboticabal, Brazil, 2013. [Google Scholar]
- Pereira, E.S.; Mizubuti, I.Y.; Ribeiro, E.L.A.; Villarroel, A.B.S.; Pimentel, P.G. Consumo, digestibilidade aparente dos nutrientes e comportamento ingestivo de bovinos da raça Holandesa alimentados com dietas contendo feno de capim-tifton 85 com diversos tamanhos de partícula. R. Bras. Zootec. 2009, 38, 190–195. [Google Scholar] [CrossRef]
- Neumann, M.; Restle, J.; Mühlbach, P.R.F.; Nörnberg, J.; Romano, M.A.; Lustosa, S. Comportamento ingestivo e de atividades de novilhos confinados com silagens de milho de diferentes tamanhos de partícula e alturas de colheita. Cienc. Anim. Bras. 2009, 10, 462473. [Google Scholar] [CrossRef]
- Tan, F.; Kayisoglu, B.; Okur, E. Effects of compaction pressure on the temperature distribution in bunker type silage silo. Ind. J. An. Sci. 2018, 88, 116–120. [Google Scholar] [CrossRef]
- Tan, F.; Dalmis, I.S.; Koc, F. Effects of compaction pressure on silage fermentation in bunker silo. Agron. Res. 2017, 15, 298–306. [Google Scholar]
- Wilkinson, J.M.; Davies, D.R. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 2013, 68, 1–19. [Google Scholar] [CrossRef]
- Sucu, E.; Kalkan, H.; Canbolat, O.; Filya, I. Effects of ensiling density on nutritive value of maize and sorghum silages. R. Bras. Zootec. 2016, 45, 596–603. [Google Scholar] [CrossRef]
- Rinne, M.; Seppälä, A. Particle size effects of forages on the ensiling process and animal performance. In Proceedings of the II International Symposium on Forage Quality and Conservation, Sao Paulo, Brazil. 2011. Available online: hhttps://www.isfqcbrazil.com.br/proceedings/2011/particle-size-effects-of-forages-on-the-ensiling-process-and-animal-performance--63.pdf (accessed on 16 July 2023).
- Reis, W.; Jobim, C.C.; Macedo, F.A.F.; Martins, E.N.; Cecato, U. Characteristics of the carcass of lambs fed diets with corn grains conserved in different forms. R. Bras. Zootec. 2001, 30, 1308–1315. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Windle, M.C.; Walker, N. The effect of an exogenous protease on the fermentation and nutritive value of high-moisture corn. J. Dairy Sci. 2014, 97, 1707–1712. [Google Scholar] [CrossRef]
- Gobetti, S.T.C.; Neuman, M.; Olibon, I.R.; Oliveira, M.R. Use of humid grains silage in the diet of ruminants. Rev. Amb. 2013, 9, 239–255. [Google Scholar]
- Carvalho, P.A.; Bigaton, A.D.; Fernandes, J.; Santos, M.C.; Daniel, J.L.P.; Duarte, A.P.; Nussio, L.G. Shifts on Bacterial Population of High Moisture Corn Silages and Its Correlation with Fermentation End-Products. In Proceedings of the Piracicaba: ESALQ, 2015; Available online: http://www.isc2015brazil.com/pictures/Proceedings-of-the-XVII-International-Silage-Conference-Brazil%202015.pdf (accessed on 16 June 2023).
- Hu, W.; Schmidt, R.J.; McDonell, E.E.; Klingerman, C.M.; Kung, L. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents. J. Dairy Sci. 2009, 92, 3907–3914. [Google Scholar] [CrossRef]
- Zanine, A.M.; Santos, E.M.; Ferreira, D.J.; Pinto, L.F.B.; Pereira, O.G. Características fermentativas e composição químico-bromatológica de silagens de capim-elefante com ou sem Lactobacillus plantarum e farelo de trigo isoladamente ou em combinação. Cienc. Anim. Bras. 2007, 8, 621–628. [Google Scholar]
- Okoye, C.O.; Wu, Y.; Wang, Y.; Gao, L.; Li, X.; Jiang, J. Fermentation profile, aerobic stability, and microbial community dynamics of corn straw ensiled with Lactobacillus buchneri PC-C1 and Lactobacillus plantarum PC1-1. Microbiol. Res. 2023, 270, 127329. [Google Scholar] [CrossRef] [PubMed]
- Silva Neto, A.B.; Goulart, L.B.L.; Ribeiro, A.P.; Nazato, L.M.; Santos, D.P.; Francisco, L.F.; Nussio, L.G. Propionic acid-based additive with surfactant action on the nutritive value of rehydrated corn grain silage for growing ewe lambs performance. Anim. Sci. Technol. 2022, 294, 115515. [Google Scholar] [CrossRef]
- Silva, C.M.; Amaral, P.N.C.; Baggio, R.A.; Tubin, J.S.B.; Conte, R.A.; Pivo, J.C.D.; Krahl, G.; Zampar, A.; Paiano, D. Stability of high moisture corn silage and corn rehydrated. Rev. Bras. Saude Prod. Anim. 2016, 17, 341–343. [Google Scholar] [CrossRef]
- Faustino, T.F.; Dias, N.C.; Leite, R.F.; Silva, F.F.G.; Florentino, L.A.; Rezende, A.V. Use of silage of rehydrated sorghum grain in the animal feeding. Nucleus Animalium. 2018, 10, 47–60. [Google Scholar] [CrossRef]
- Franco, M.; Tapio, I.; Rinne, M. Preservation characteristics and bacterial communities of crimped ensiled barley grains modulated by moisture content and additive application. Front. Microbiol. 2022, 13, 1–14. [Google Scholar] [CrossRef]
- Jobim, C.C.; Branco, A.F.; Gai, V.F.; Calixto Junior, M.C.; Santos, G.T. Quality of high moisture corn grain silage with addition of raw soybean grains and parameters of partial and total digestibility in cattle. Arq. Bras. Med. Vet. Zootec. 2010, 62, 107–115. [Google Scholar] [CrossRef]
- Filya, I.; Sucu, E.; Karabulut, A. The effects of Propionibacterium acidipropionici and Lactobacillus plantarum, applied at ensiling, on the fermentation and aerobic stability of low dry matter corn and sorghum silages. J. Ind. Microbiol. Biotechnol. 2006, 33, 353–358. [Google Scholar] [CrossRef]
- Wahyono, T.; Sholikin, M.M.; Konca, Y.; Obitsu, T.; Sadarman, S.; Jayanegara, A. Effects of urea supplementation on ruminal fermentation characteristics, nutrient intake, digestibility, and performance in sheep: A meta-analysis. Vet. World 2022, 15, 331–340. [Google Scholar] [CrossRef]
- Pádua, F.T.; Almeida, J.C.C.; Nepomuceno, D.D.; Cabral Neto, O.; Deminicis, B.B. Effect of the level of urea and period of treatment on composition of paspalum notatum hay. Arch. Zootec. 2011, 60, 57–62. [Google Scholar] [CrossRef]
- Ohshima, M.; McDonald, P. A review of the changes in nitrogenous compounds of herbage during ensilage. J. Sci. Food Agric. 1978, 29, 497–505. [Google Scholar] [CrossRef]
- Xu, H.; Wu, N.; Na, N.; Sun, L.; Zhao, Y.; Ding, H.; Fang, Y.; Wang, T.; Xue, Y.; Zhong, J. Fermentation weight loss, fermentation quality, and bacterial community of ensiling of sweet sorghum with lactic acid bacteria at different silo densities. Front. Microbiol. 2022, 13, 101391. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, S.; Philip, L.E.; Fellner, V.; Idziak, E.S. Comparative assessment of bacterial inoculation and propionic acid treatment on aerobic stability and microbial populations of ensiled high-moisture ear corn. Ciênc. Anim. Bras. 1996, 74, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, D.M.; Brotz, P.G.; Arp, S.C.; Cook, D.K. Inoculation of corn silage and high moisture corn with lactic acid bacteria and its effects on the subsequent fermentations and on feedlot performance of beef steers. Anim. Feed Sci. Technol. 1989, 25, 23–38. [Google Scholar] [CrossRef]
- Rossi, L.G.; Andrade, M.E.B.; Rabelo, C.H.S.; Siqueira, G.R.; Vicente, E.F.; Silva, W.L.; Silva, M.M.; Reis, R.A. Flint corn silage management: Influence of maturity stage, inoculation with Lentilactobacillus buchneri, and storage time on fermentation pattern, aerobic stability, and nutritional characteristics. Front. Microbiol. 2023, 14, 1223717. [Google Scholar] [CrossRef] [PubMed]
- Morrison, I.M. Changes in the cell wall components of laboratory silages and the effect of various additives on these changes. J. Agric. Sci. 1979, 93, 581–586. [Google Scholar] [CrossRef]
- Kung, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.E.; Rust, S.R.; Yokoyama, M.T. Improved fermentation and aerobic stability of ensiled, high moisture corn with the use of Propionibacterium acidipropionici. J. Dairy Sci. 1998, 81, 1015–1021. [Google Scholar] [CrossRef]
- Woolford, M.K.; Pahlow, G. The silage fermentation. In Microbiology of Fermented Foods; Wood, B.J.B., Ed.; Springer: Boston, MA, USA, 1998. [Google Scholar] [CrossRef]
- Ávila, C.L.S.; Carvalho, B.F. Silage fermentation updates focusing on the performance of micro-organisms. J. Appl. Microbiol. 2019, 128, 966–984. [Google Scholar] [CrossRef]
- Pahlow, G. Role of microflora in forage conservation. In Forage Conservation; Pahlow, G., Honig, H., Eds.; Institute of Grassland Forage Research: Braunschweig, Germany, 1991; pp. 26–36. [Google Scholar]
- Wang, S.; Yuan, X.; Dong, Z.; Li, J.; Shao, T. Characteristics of lactic acid bacteria isolated from different sources and their effects on the silage quality of oat (Avena sativa L.) straw on the Tibetan Plateau. Grassl Sci. 2018, 64, 128–136. [Google Scholar] [CrossRef]
- Bueno, A.V.I.; Jobim, C.C.; Daniel, J.L.P.; Gierus, M. Fermentation profile and hygienic quality of rehydrated corn grains treated with condensed tannins from quebracho plant extract. Anim. Sci. Technol. 2020, 267, 114559. [Google Scholar] [CrossRef]
- Abdul Rahman, N.; Abd Halim, M.R.; Mahawi, N.; Hasnudin, H.; Al-Obaidi, J.R.; Abdullah, N. Determination of the use of Lactobacillus plantarum and Propionibacterium freudenreichii application on fermentation profile and chemical composition of corn silage. Bio. Med. Res. Int. 2017, 2017, 2038062. [Google Scholar] [CrossRef]
- Ribas, T.M.B.; Neumann, M.; Souza, A.M.d.; Dochwat, A.; Almeida, E.R.d.; Horst, E.H. Effect of inoculants combining Lactobacillus buchneri strain LN40177 in different strata of the silo. Acta. Sci. Anim. Sci. 2019, 41, e44847. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Davies, D.R. A estabilidade aeróbica da silagem: Principais descobertas e desenvolvimentos recentes. Grama Sci. 2013, 68, 1–19. [Google Scholar]
- Muck, R.E.; O’kiely, P. Deterioração aeróbica de silagens de luzerna (Medicago sativa) e milho (Zea mais)-efeitos de produtos de fermentação. J. Sci. Alim. Agrí. 1992, 59, 145–149. [Google Scholar]
- Saylor, B.A.; Fernandes, T.; Sultana, H.; Gallo, A.; Ferraretto, L.F. Influence of microbial inoculation and length of storage on fermentation profile, N fractions, and ruminal in situ starch disappearance of whole-plant corn silage. Anim. Feed Sci. Technol. 2020, 267, 11455. [Google Scholar] [CrossRef]
- Silva, B.C.; Pacheco, M.V.C.; Godoi, L.A.; Silva, F.A.S.; Zanetti, D.; Menezes, A.C.B.; Valadares Filho, S.C. In situ and in vitro techniques for estimating degradation parameters and digestibility of diets based on maize or sorghum. J. Agric. Sci. 2020, 158, 150–158. [Google Scholar] [CrossRef]
- Fernandes, T.; Fernandes, T.; da Silva, K.T.; Carvalho, B.F.; Schwan, R.F.; Pereira, R.A.N.; Pereira, M.N.; da Silva Ávila, C.L. Effect of amylases and storage length on losses, nutritional value, fermentation, and microbiology of silages of corn and sorghum kernels. Anim. Feed Sci. Technol. 2022, 285, 115–227. [Google Scholar] [CrossRef]
- Lashkari, S.; Taghizadeh, A. Nutrient digestibility and evaluation of protein and carbohydrate fractionation of citrus by-products. J. Anim. Physiol. Anim. Nutr. 2012, 97, 701–709. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, M.; Wang, X.; Yu, Z.; Na, R. Ensiling alfalfa with whole crop corn improves the silage quality and in vitro digestibility of the silage mixtures. Grassl Sci. 2017, 63, 211–217. [Google Scholar] [CrossRef]
- Kosikowski, F.V. Whey utilization and whey products. J. Dairy Sci. 1979, 62, 1149–1160. [Google Scholar] [CrossRef]
- Santos, E.M.; Zanine, A.M.; Ferreira, D.J.; Oliveira, J.S.; Pereira, O.G.; Almeida, J.C.C. Effect of cheese whey serum addition on bromatologic, composition fermentation, losses and dry matter recovery in elephant grass silage. Cien. Anim. Bras. 2006, 7, 223–235. [Google Scholar]
- Pinho, R.M.A.; Santos, E.M.; de Oliveira, J.S.; Loureiro, A.H.R.; da Macêdo, A.J.S.; Alves, J.P.; Santos, A.P.M.; dos Santos, V.D.S. Effect of spineless-cactus mucilage on the in vitro rumen fermentation of cellulose, starch, and protein. Rev. Bras. Saúde Prod. Anim. 2017, 8, 505–517. [Google Scholar] [CrossRef]
- Nair, J.; Huaxin, N.; Andrada, E.; Yang, H.E.; Chevaux, E.; Drouin, P.; Wang, Y. Effects of inoculation of corn silage with Lactobacillus hilgardii and Lactobacillus buchneri on silage quality, aerobic stability, nutrient digestibility, and growth performance of growing beef cattle. J. Dairy Sci. 2020, 98, 267. [Google Scholar] [CrossRef] [PubMed]
- Benton, J.R.; Klopfenstein, T.J.; Erickson, G.E. Effects of corn moisture and length ensiling on dry matter digestibility and rumen degradable protein. In Nebraska Beef Cattle Report; University of Nebraska–Lincoln: Lincoln, NE, USA, 2009; Available online: https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1150&context=animalscinbcr (accessed on 16 July 2023).
- Pereira, M.; Lino, F.; Melo, A. Degradabilidade de grão reconstituído de milho e sorgo ensilados com diferentes granulometrias. In Proceedings of the Anais XXI Congresso Brasileiro de Zootecnia. Inovações Tecnológicas e Mercado Consumidor, Maceió, Brazil; 2011; Volume 9, pp. 23–27. Available online: https://revistas.ufg.br/vet/article/view/416 (accessed on 15 June 2023).
- Dai, T.; Wang, J.; Dong, D.; Yin, X.; Zong, C.; Jia, Y. Effects of brewers’ spent grains on fermentation quality, chemical composition and in vitro digestibility of mixed silage prepared with corn stalk, dried apple pomace and sweet potato vine. Ital. J. Anim. Sci. 2022, 21, 198–207. [Google Scholar] [CrossRef]
- Moore, K.J.; Collins, M.; Nelson, C.J.; Redfearn, D.D. Forages (The Science of Grassland Agriculture)||Factors Affecting Forage Quality; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 701–717. [Google Scholar] [CrossRef]
- Silva, É.B.; Liu, X.; Mellinger, C.; Gressley, T.F.; Stypinski, J.D.; Moyer, N.A.; Kung, L., Jr. Effect of dry matter content on the microbial community and on the effectiveness of a microbial inoculant to improve the aerobic stability of corn silage. J. Dairy Sci. 2022, 105, 5024–5043. [Google Scholar] [CrossRef]
- Arriola, K.G.; Vyas, D.; Kim, D.; Agarussi, M.C.; Silva, V.P.; Flores, M.; Adesogan, A.T. Effect of Lactobacillus hilgardii, Lactobacillus buchneri, or their combination on the fermentation and nutritive value of sorghum silage and corn silage. J. Dairy Sci. 2021, 104, 9664–9675. [Google Scholar] [CrossRef]
- Silva, E.B.; Smith, M.L.; Savage, R.M.; Polukis, S.A.; Drouin, P.; Kung, L., Jr. Effects of Lactobacillus hilgardii 4785 and Lactobacillus buchneri 40788 on the bacterial community, fermentation and aerobic stability of high-moisture corn silage. J. Appl. Microbiol. 2021, 130, 1481–1493. [Google Scholar] [CrossRef]
ID | Reference | Title | Evaluated Parameters |
---|---|---|---|
1 | Ferraretto et al. [41] | Effect of ensiling time on fermentation profile and ruminal in vitro starch digestibility in rehydrated corn with or without varied concentrations of wet brewers grains | Chemical composition |
2 | Rezende et al. [42] | Rehydration of corn grain with acid whey improves the silage quality | Chemical composition, fermentation parameters, and aerobic stability |
3 | Silva et al. [43] | Fermentation and aerobic stability of rehydrated corn grain silage treated with different doses of Lactobacillus buchneri or a combination of Lactobacillus plantarum and Pediococcus acidilactici | Chemical composition, fermentation parameters, and aerobic stability |
4 | Souza et al. [44] | Effect of rehydration with whey and inoculation with Lactobacillus plantarum and Propionibacterium acidipropionici on the chemical composition, microbiological dynamics, and fermentative losses of corn grain silage | Chemical composition and fermentation parameters |
5 | Cruz et al. [45] | Fermentative losses and chemical composition and in vitro digestibility of corn grain silage rehydrated with water or acid whey combined with bacterial-enzymatic inoculant | Chemical composition, fermentation parameters, and DM in vitro digestibility |
6 | Menezes et al. [46] | Effects of different moist orange pulp inclusions in the corn grain rehydration for silage production on chemical composition, fermentation, aerobic stability, microbiological profile, and losses | Chemical composition, fermentation parameters, aerobic stability, and DM in vitro digestibility |
7 | Jungues et al. [47] | Short communication: Influence of various proteolytic sources during fermentation of reconstituted corn grain silages | Chemical composition and fermentation parameters |
8 | Wang et al. [48] | Nutritional evaluation of wet brewers’ grains as substitute for common vetch in ensiled total mixed ration. | Fermentation quality, nutritional value, aerobic stability, and in vitro gas production kinetics and digestibility |
9 | Wang et al. [49] | Fermentation quality, aerobic stability and in vitro gas production kinetics and digestibility in total mixed ration silage treated with lactic acid bacteria inoculants and antimicrobial additives. | Chemical composition, fermentative parameters, and aerobic stability |
10 | Carvalho et al. [50] | Fermentation profile and identification of lactic acid bacteria and yeasts of rehydrated corn kernel silage. | Chemical and microbiological characteristics |
11 | Pereira et al. [51] | Effect of cactus pear as a moistening additive in the production of rehydrated corn grain silage. | Fermentative and microbiological characteristics, aerobic stability, and chemical composition |
12 | Oliveira et al. [52] | Effect of Length of Storage and Chemical Additives on the Nutritive Value and Starch Degradability of Reconstituted Corn Grain Silage | Chemical composition, fermentation characteristics, and ruminal in situ degradability |
13 | Roseira et al. [53] | Effects of exogenous protease addition on fermentation and nutritive value of rehydrated corn and sorghum grains silages. | Fermentation and nutritive value |
14 | Silva Neto et al. [54] | Propionic acid-based additive with surfactant action on the feeding value of rehydrated corn grain silage for dairy cows performance. | Nutritional value and animal performance |
15 | Costa et al. [55] | Particle size and storage length affect fermentation and ruminal degradation of rehydrated corn grain silage | Chemical and microbiological characteristics, aerobic stability |
Category | Additives | Classification 1 |
---|---|---|
By-product | Wet orange pulp | Fermentation stimulants/nutrients |
Wet brewery waste | Nutrients | |
By-product | Milk whey | Fermentation stimulants/nutrients |
Bacterial inoculant | Lactobacillus plantarum | Fermentation stimulants |
Pediococcus | Fermentation stimulants | |
Lactobacillus buchneri | Fermentation stimulants/Aerobic spoilage inhibitors | |
Enterococcus faecium | Fermentation stimulants | |
Pediococcus acidilactici | Fermentation stimulants | |
Propionibacteriu acidipropionici | Fermentation stimulants | |
Enzymatic Inoculant | Cellulase and hemi-cellulase | Fermentation stimulants |
Antimycotic agent | Natamycin | Fermentation inhibitors |
Irradiation | Gama irradiation | Fermentation inhibitors |
Chemical compound | Lactic acid | Fermentation stimulants |
Acetic acid | Fermentation inhibitors/Aerobic spoilage inhibitors | |
Ethanol | Fermentation inhibitors |
Item | Rehydrated Corn Grain Silage | n 1 | SEM 2 | p-Value 3 | ||
---|---|---|---|---|---|---|
without Additive | with Additive | |||||
Chemical composition (g kg−1 DM) | ||||||
Dry matter | Mean | 658 | 644 | 39 | 8.91 | 0.27 |
Minimum | 586 | 564 | ||||
Maximum | 700 | 695 | ||||
Crude protein | Mean | 90.3 | 93.0 | 39 | 3.67 | 0.48 |
Minimum | 70.0 | 74.7 | ||||
Maximum | 101 | 118 | ||||
Neutral detergent fiber | Mean | 120 | 130 | 28 | 19.8 | 0.66 |
Minimum | 61.2 | 56.9 | ||||
Maximum | 214 | 232 | ||||
Acid detergent fiber | Mean | 27.2 | 28.3 | 20 | 4.81 | 0.88 |
Minimum | 11.4 | 5.4 | ||||
Maximum | 38.2 | 62.2 |
Item | Rehydrated Corn Grain Silage | n 1 | SEM 2 | p-Value 3 | ||
---|---|---|---|---|---|---|
without Additive | with Additive | |||||
pH | Mean | 4.09 | 4.25 | 28 | 0.20 | 0.42 |
Minimum | 3.74 | 3.67 | ||||
Maximum | 4.94 | 5.66 | ||||
Organic acids and ethanol (g kg−1 DM) | ||||||
Lactic acid | Mean | 15.4 | 15.54 | 27 | 2.21 | 0.99 |
Minimum | 9.07 | 0.90 | ||||
Maximum | 27.6 | 28.1 | ||||
Acetic acid | Mean | 2.27 | 4.47 | 27 | 1.74 | 0.26 |
Minimum | 1.49 | 1.10 | ||||
Maximum | 3.60 | 16.2 | ||||
Propionic acid | Mean | 0.54 | 0.68 | 23 | 0.38 | 0.62 |
Minimum | 0.03 | 0.01 | ||||
Maximum | 1.10 | 1.51 | ||||
Butyric acid | Mean | 0.47 | 0.01 | 15 | 0.16 | 0.074 |
Minimum | 0.01 | 0.00 | ||||
Maximum | 1.71 | 0.14 | ||||
Ethanol | Mean | 6.53 | 5.57 | 15 | 2.08 | 0.66 |
Minimum | 5.25 | 0.30 | ||||
Maximum | 7.16 | 12.5 | ||||
Microbial population (log cfu g−1) | ||||||
Lactic acid bacteria (LAB) | Mean | 5.03 | 4.74 | 12 | 0.95 | 0.50 |
Minimum | 3.70 | 2.00 | ||||
Maximum | 6.10 | 6.28 | ||||
Yeasts | Mean | 3.49 | 2.47 | 8 | 0.40 | 0.13 |
Minimum | 4.02 | 2.00 | ||||
Maximum | 4.23 | 3.37 | ||||
Molds | Mean | 3.54 | 3.23 | 12 | 0.67 | 0.65 |
Minimum | 2.39 | 3.00 | ||||
Maximum | 4.51 | 4.85 |
Item | Rehydrated Corn Grain Silage | n 1 | SEM 2 | p-Value 3 | ||
---|---|---|---|---|---|---|
without Additive | with Additive | |||||
Effluent losses (kg/t 4) | Mean | 2.36 | 3.05 | 8 | 1.07 | 0.55 |
Minimum | 2.12 | 1.23 | ||||
Maximum | 2.33 | 5.70 | ||||
Gas losses (%) | Mean | 5.84 | 5.13 | 15 | 3.70 | 0.93 |
Minimum | 1.11 | 1.31 | ||||
Maximum | 12.3 | 21.2 | ||||
Dry matter recovery (g kg−1) | Mean | 965 | 976 | 25 | 7.48 | 0.14 |
Minimum | 941 | 936 | ||||
Maximum | 987 | 999 | ||||
Aerobic stability (hours) | Mean | 96.2 | 98.9 | 23 | 42.7 | 0.95 |
Minimum | 36.0 | 25.5 | ||||
Maximum | 213 | 288 | ||||
DM in vitro digestibility (g kg−1 DM) | Mean | 875 | 839 | 8 | 48.1 | 0.77 |
Minimum | 805 | 786 | ||||
Maximum | 911 | 909 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diogénes, L.V.; Pereira Filho, J.M.; Edvan, R.L.; de Oliveira, J.P.F.; Nascimento, R.R.d.; Santos, E.M.; Alencar, E.J.S.; Mazza, P.H.S.; Oliveira, R.L.; Bezerra, L.R. Effect of Different Additives on the Quality of Rehydrated Corn Grain Silage: A Systematic Review. Ruminants 2023, 3, 425-444. https://doi.org/10.3390/ruminants3040035
Diogénes LV, Pereira Filho JM, Edvan RL, de Oliveira JPF, Nascimento RRd, Santos EM, Alencar EJS, Mazza PHS, Oliveira RL, Bezerra LR. Effect of Different Additives on the Quality of Rehydrated Corn Grain Silage: A Systematic Review. Ruminants. 2023; 3(4):425-444. https://doi.org/10.3390/ruminants3040035
Chicago/Turabian StyleDiogénes, Luciana Viana, José Morais Pereira Filho, Ricardo Loiola Edvan, Juliana Paula Felipe de Oliveira, Romilda Rodrigues do Nascimento, Edson Mauro Santos, Elisvaldo José Silva Alencar, Pedro Henrique Soares Mazza, Ronaldo Lopes Oliveira, and Leilson Rocha Bezerra. 2023. "Effect of Different Additives on the Quality of Rehydrated Corn Grain Silage: A Systematic Review" Ruminants 3, no. 4: 425-444. https://doi.org/10.3390/ruminants3040035
APA StyleDiogénes, L. V., Pereira Filho, J. M., Edvan, R. L., de Oliveira, J. P. F., Nascimento, R. R. d., Santos, E. M., Alencar, E. J. S., Mazza, P. H. S., Oliveira, R. L., & Bezerra, L. R. (2023). Effect of Different Additives on the Quality of Rehydrated Corn Grain Silage: A Systematic Review. Ruminants, 3(4), 425-444. https://doi.org/10.3390/ruminants3040035