Development of Equations to Predict Percentage Empty Body and Carcass Chemical Composition Adjusted for Breed Type and Sex in Growing/Finishing Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Database Creation
2.2. Statistical Analyses
3. Results
3.1. Prediction of Empty Body Chemical Components
3.2. Prediction of Carcass Chemical Components
3.3. Prediction of Empty Body from Carcass Chemical Components
4. Discussion
4.1. Comparison with Previously Published Equations
4.2. Effects of Breed Type and Sex
4.3. Comparison with Garrett and Hinman Equations
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
British | Cattle originating in Great Britain |
ContCross | Cattle originating in Continental Europe |
Dairy | Cattle with primary purpose of milk production |
CCC | Concordance correlation coefficient |
MB | Mean bias |
RMSE | Root mean squared error |
R2 | Coefficient of determination |
MAE | Mean absolute error |
References
- Guiroy, P.J.; Fox, D.G.; Tedeschi, L.O.; Baker, M.J.; Cravey, M.D. Predicting Individual Feed Requirements of Cattle Fed in Groups. J. Anim. Sci. 2001, 79, 1983–1995. [Google Scholar] [CrossRef] [PubMed]
- Fox, D.G.; Tedeschi, L.O.; Tylutki, T.P.; Russell, J.B.; Van Amburgh, M.E.; Chase, L.E.; Pell, A.N.; Overton, T.R. The Cornell Net Carbohydrate and Protein System Model for Evaluating Herd Nutrition and Nutrient Excretion. Anim. Feed Sci. Technol. 2004, 112, 29–78. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Fox, D.G.; Guiroy, P.J. A Decision Support System to Improve Individual Cattle Management. 1. A Mechanistic, Dynamic Model for Animal Growth. Agric. Syst. 2004, 79, 171–204. [Google Scholar] [CrossRef]
- Ferrell, C.L. Energy Metabolism. In The Ruminant Animal: Digestive Physiology and Nutrition; Church, D.C., Ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1988; pp. 250–268. [Google Scholar]
- Ferrell, C.L.; Crouse, J.D.; Field, R.A.; Chant, J.L. Effects of Sex, Diet and Stage of Growth upon Energy Utilization by Lambs. J. Anim. Sci. 1979, 49, 790–801. [Google Scholar] [CrossRef]
- Thompson, W.R.; Meiske, J.C.; Goodrich, R.D.; Rust, J.R.; Byers, F.M. Influence of Body Composition on Energy Requirements of Beef Cows during Winter. J. Anim. Sci. 1983, 56, 1241–1252. [Google Scholar] [CrossRef]
- Tess, M.W.; Dickerson, G.E.; Nienaber, J.A.; Ferrell, C.L. The Effects of Body Composition on Fasting Heat Production in Pigs. J. Anim. Sci. 1984, 58, 99–110. [Google Scholar] [CrossRef]
- Solis, J.C.; Byers, F.M.; Schelling, G.T.; Long, C.R.; Greene, L.W. Maintenance Requirements and Energetic Efficiency of Cows of Different Breed Types. J. Anim. Sci. 1988, 66, 764–773. [Google Scholar] [CrossRef]
- DiCostanzo, A.; Meiske, J.C.; Plegge, S.D.; Peters, T.M.; Goodrich, R.D. Within-Herd Variation in Energy Utilization for Maintenance and Gain in Beef Cows. J. Anim. Sci. 1990, 68, 2156–2165. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Beef Cattle, 5th ed.; National Academies Press: Washington, DC, USA, 1976; ISBN 0-309-02419-6. [Google Scholar]
- National Research Council. Nutrient Requirements of Beef Cattle, 6th ed.; National Academies Press: Washington, DC, USA, 1984; ISBN 978-0-309-03447-0. [Google Scholar]
- National Research Council. Nutrient Requirements of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2000; ISBN 978-0-309-38813-9. [Google Scholar]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition, 8th ed.; Animal Nutrition Series; The National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-31702-3. [Google Scholar]
- Owens, F.N.; Dubeski, P.; Hanson, C.F. Factors That Alter the Growth and Development of Ruminants. J. Anim. Sci. 1993, 71, 3138–3150. [Google Scholar] [CrossRef]
- Owens, F.N.; Gill, D.R.; Secrist, D.S.; Coleman, S.W. Review of Some Aspects of Growth and Development of Feedlot Cattle. J. Anim. Sci. 1995, 73, 3152–3172. [Google Scholar] [CrossRef]
- Short, R.E.; Grings, E.E.; MacNeil, M.D.; Heitschmidt, R.K.; Williams, C.B.; Bennett, G.L. Effects of Sire Growth Potential, Growing-Finishing Strategy, and Time on Feed on Performance, Composition, and Efficiency of Steers. J. Anim. Sci. 1999, 77, 2406–2417. [Google Scholar] [CrossRef]
- Coleman, S.W.; Evans, B.C.; Guenther, J.J. Body and Carcass Composition of Angus and Charolais Steers as Affected by Age and Nutrition. J. Anim. Sci. 1993, 71, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Old, C.A.; Garrett, W.N. Effects of Energy Intake on Energetic Efficiency and Body Composition of Beef Steers Differing in Size at Maturity. J. Anim. Sci. 1987, 65, 1371–1380. [Google Scholar] [CrossRef]
- Buckley, B.A. Relationship of Body Composition and Fasting Heat Production in Three Biological Types of Growing Beef Heifers. Ph.D. Dissertation, University of Nebraska, Lincoln, NE, USA, 1985. [Google Scholar]
- Bidner, T.D.; Wyatt, W.E.; Humes, P.E.; Franke, D.E.; Blouin, D.C. Influence of Brahman-Derivative Breeds and Angus on Carcass Traits, Physical Composition, and Palatability. J. Anim. Sci. 2002, 80, 2126–2133. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.B.; Lawson, J.E. Carcass and Empty Body Composition of Hereford and Angus Bulls from Lines Selected for Rapid Growth on High-Energy or Low-Energy Diets. Can. J. Anim. Sci. 1989, 69, 583–594. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Jenkins, T.G. Body Composition and Energy Utilization by Steers of Diverse Genotypes Fed a High-Concentrate Diet during the Finishing Period: I. Angus, Belgian Blue, Hereford, and Piedmontese Sires. J. Anim. Sci. 1998, 76, 637–646. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Jenkins, T.G. Body Composition and Energy Utilization by Steers of Diverse Genotypes Fed a High-Concentrate Diet during the Finishing Period: II. Angus, Boran, Brahman, Hereford, and Tuli Sires. J. Anim. Sci. 1998, 76, 647–657. [Google Scholar] [CrossRef]
- Lunt, D.K.; Smith, G.C.; Murphey, C.E.; Savell, J.W.; Carpenter, Z.L.; Petersen, H.D. Carcass Characteristics and Composition of Brahman, Angus and Brahman x Angus Steers Fed for Different Times-on-Feed. Meat Sci. 1985, 14, 137–152. [Google Scholar] [CrossRef]
- Cole, J.W.; Ramsey, C.B.; Hobbs, C.S.; Temple, R.S. Effects of Type and Breed of British, Zebu, and Dairy Cattle on Production, Carcass Composition, and Palatability. J. Dairy Sci. 1964, 47, 1138–1144. [Google Scholar] [CrossRef]
- Fortin, A.; Reid, J.T.; Maiga, A.M.; Sim, D.W.; Wellington, G.H. Effect of Level of Energy Intake and Influence of Breed and Sex on Growth of Fat Tissue and Distribution in the Bovine Carcass. J. Anim. Sci. 1981, 53, 982–991. [Google Scholar] [CrossRef]
- Fortin, A.; Simpfendorfer, S.; Reid, J.T.; Ayala, H.J.; Anrique, R.; Kertz, A.F. Effect of Level of Energy Intake and Influence of Breed and Sex on the Chemical Composition of Cattle. J. Anim. Sci. 1980, 51, 604–614. [Google Scholar] [CrossRef]
- Fortin, A.; Reid, J.T.; Simpfendorfer, S.; Ayala, H.J.; Anrique, R.; Kertz, A.F.; Maiga, A.M.; Sim, D.W.; Wellington, G.H. Chemical Composition and Carcass Specific Gravity in Cattle: Effect of Level of Energy Intake and Influence of Breed and Sex. Can. J. Anim. Sci. 1981, 61, 871–882. [Google Scholar] [CrossRef]
- Garrett, W.N.; Hinman, N. Re-Evaluation of the Relationship between Carcass Density and Body Composition of Beef Steers. J. Anim. Sci. 1969, 28, 1–5. [Google Scholar] [CrossRef]
- Gil, E.A.; Johnson, R.R.; Cahill, V.R.; McClure, K.E.; Klosterman, E.W. An Evaluation of Carcass Specific Volume, Dye Dilution and Empty Body Parameters as Predictors of Beef Carcass Composition over a Wide Range of Fatness. J. Anim. Sci. 1970, 31, 459–469. [Google Scholar] [CrossRef]
- Ferrell, C.L.; Garrett, W.N.; Hinman, N. Estimation of Body Composition in Pregnant and Non-Pregnant Heifers. J. Anim. Sci. 1976, 42, 1158–1166. [Google Scholar] [CrossRef]
- Preston, R.L.; Vance, R.D.; Cahill, V.R.; Kock, S.W. Carcass Specific Gravity and Carcass Composition in Cattle and the Effect of Bone Proportionality on This Relationship. J. Anim. Sci. 1974, 38, 47–51. [Google Scholar] [CrossRef]
- Arthaud, V.H.; Mandigo, R.W.; Koch, R.M.; Kotula, A.W. Carcass Composition, Quality and Palatability Attributes of Bulls and Steers Fed Different Energy Levels and Killed at Four Ages2. J. Anim. Sci. 1977, 44, 53–64. [Google Scholar] [CrossRef]
- Jacobs, J.A.; Hurst, C.E.; Miller, J.C.; Howes, A.D.; Gregory, T.L.; Ringkob, T.P. Bulls versus Steers. I. Carcass Composition, Wholesale Yields and Retail Values. J. Anim. Sci. 1977, 45, 695–698. [Google Scholar] [CrossRef]
- Keane, M.G.; Drennan, M.J. Lifetime Growth and Carcass Composition of Heifers and Steers Non-Implanted or Sequentially Implanted with Anabolic Agents. Anim. Sci. 1987, 45, 359–369. [Google Scholar] [CrossRef]
- Steen, R.W.J.; Kilpatrick, D.J. Effects of Plane of Nutrition and Slaughter Weight on the Carcass Composition of Serially Slaughtered Bulls, Steers and Heifers of Three Breed Crosses. Livest. Prod. Sci. 1995, 43, 205–213. [Google Scholar] [CrossRef]
- Blanco, M.; Ripoll, G.; Delavaud, C.; Casasús, I. Performance, Carcass and Meat Quality of Young Bulls, Steers and Heifers Slaughtered at a Common Body Weight. Livest. Sci. 2020, 240, 104156. [Google Scholar] [CrossRef]
- Lancaster, P.A. Assessment of Equations to Predict Body Weight and Chemical Composition in Growing/Finishing Cattle and Effects of Publication Year, Sex, and Breed Type on the Deviation from Observed Values. Animals 2022, 12, 3554. [Google Scholar] [CrossRef] [PubMed]
- Makowski, D.; Wiernik, B.M.; Patil, I.; Lüdecke, D.; Ben-Shachar, M.S. Correlation: Methods for Correlation Analysis 2022. Available online: https://cran.r-project.org/web/packages/correlation/index.html (accessed on 12 March 2025).
- R Core Team. R: A Language and Environment for Statistical Computing 2022; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Lenth, R.V. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. 2023. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 12 March 2025).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S., 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0. [Google Scholar]
- Stevenson, M.; Sergeant, E.; Nunes, T.; Heuer, C.; Marshall, J.; Sanchez, J.; Thornton, R.; Reiczigel, J.; Robison-Cox, J.; Sebastiani, P.; et al. epiR: Tools for the Analysis of Epidemiological Data 2023. Available online: https://cran.r-project.org/web/packages/epiR/index.html (accessed on 12 March 2025).
- Embry, I.; Hoos, A.; Diehl, T.H. Ie2misc: Irucka Embry’s Miscellaneous USGS Functions 2023. Available online: https://cran.r-project.org/web/packages/ie2misc/index.html (accessed on 12 March 2025).
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models; McGraw-Hill: New York, NY, USA, 2005; ISBN 978-0-07-238688-2. [Google Scholar]
- Seber, G.A.F.; Wild, C.J. Least Squares. In Methods in Experimental Physics; Stanford, J.L., Vardeman, S.B., Eds.; Statistical Methods for Physical Science; Academic Press: San Diego, CA, USA, 1994; Volume 28, pp. 245–281. [Google Scholar]
- Pringle, T.D.; Williams, S.E.; Lamb, B.S.; Johnson, D.D.; West, R.L. Carcass Characteristics, the Calpain Proteinase System, and Aged Tenderness of Angus and Brahman Crossbred Steers. J. Anim. Sci. 1997, 75, 2955–2961. [Google Scholar] [CrossRef] [PubMed]
- Huffman, R.D.; Williams, S.E.; Hargrove, D.D.; Johnson, D.D.; Marshall, T.T. Effects of Percentage Brahman and Angus Breeding, Age-Season of Feeding and Slaughter End Point on Feedlot Performance and Carcass Characteristics. J. Anim. Sci. 1990, 68, 2243–2252. [Google Scholar] [CrossRef]
- Talamantes, M.A.; Long, C.R.; Smith, G.C.; Jenkins, T.G.; Ellis, W.C.; Cartwright, T.C. Characterization of Cattle of a Five-Breed Diallel: VI. Fat Deposition Patterns of Serially Slaughtered Bulls. J. Anim. Sci. 1986, 62, 1259–1266. [Google Scholar] [CrossRef]
- Gonzalez, L.A.; Burgess, J.; Imaz, A.; Tedeschi, L.O. Determining the Body Weight to Body Fat Conversion Factor for Angus, Charolais, and Brahman Growing Steers. J. Anim. Sci. 2023, 101, 82–83. [Google Scholar] [CrossRef]
- Berg, R.T.; Andersen, B.B.; Liboriussen, T. Growth of Bovine Tissues 1. Genetic Influences on Growth Patterns of Muscle, Fat and Bone in Young Bulls. Anim. Sci. 1978, 26, 245–258. [Google Scholar] [CrossRef]
- Basarab, J.A.; Price, M.A.; Aalhus, J.L.; Okine, E.K.; Snelling, W.M.; Lyle, K.L. Residual Feed Intake and Body Composition in Young Growing Cattle. Can. J. Anim. Sci. 2003, 83, 189–204. [Google Scholar] [CrossRef]
- Chizzotti, M.L.; Valadares Filho, S.C.; Tedeschi, L.O.; Chizzotti, F.H.M.; Carstens, G.E. Energy and Protein Requirements for Growth and Maintenance of F1 Nellore × Red Angus Bulls, Steers, and Heifers1. J. Anim. Sci. 2007, 85, 1971–1981. [Google Scholar] [CrossRef]
- de Castro Menezes, G.C.; de Campos Valadares Filho, S.; Ruas, J.R.M.; Detmann, E.; de Castro Menezes, A.; Zanett, D.; Mariz, L.D.S.; Rennó, L.N.; da Silva Junior, J.M. Meat Production in a Feedlot System of Zebu—Holstein Steers and Heifers with Dairy Genetics: Productive and Biological Analyses. Sci. World J. 2014, 2014, e371968. [Google Scholar] [CrossRef]
- Kraybill, H.F.; Bitter, H.L.; Hankins, O.G. Body Composition of Cattle. II. Determination of Fat and Water Content from Measurement of Body Specific Gravity. J. Appl. Physiol. 1952, 4, 575–583. [Google Scholar] [CrossRef]
- Birnie, J.W.; Agnew, R.E.; Gordon, F.J. The Influence of Body Condition on the Fasting Energy Metabolism of Nonpregnant, Nonlactating Dairy Cows. J. Dairy Sci. 2000, 83, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Koong, L.J.; Ferrell, C.L.; Nienaber, J.A. Assessment of Interrelationships among Levels of Intake and Production, Organ Size and Fasting Heat Production in Growing Animals. J. Nutr. 1985, 115, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, C.L.; Koong, L.J.; Nienaber, J.A. Effect of Previous Nutrition on Body Composition and Maintenance Energy Costs of Growing Lambs. Br. J. Nutr. 1986, 56, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, C.L. Contribution of Visceral Organs to Animal Energy Expenditure. J. Anim. Sci. 1988, 66, 23–34. [Google Scholar] [CrossRef]
- Burrin, D.G.; Ferrell, C.L.; Britton, R.A.; Bauer, M.L. Level of Nutrition and Visceral Organ Size and Metabolic Activity in Sheep. Br. J. Nutr. 1990, 64, 439–448. [Google Scholar] [CrossRef]
- Drouillard, J.S.; Klopfenstein, T.J.; Britton, R.A.; Bauer, M.L.; Gramlich, S.M.; Wester, T.J.; Ferrell, C.L. Growth, Body Composition, and Visceral Organ Mass and Metabolism in Lambs during and after Metabolizable Protein or Net Energy Restrictions. J. Anim. Sci. 1991, 69, 3357–3375. [Google Scholar] [CrossRef]
- Jenkins, T.G.; Ferrell, C.L. Changes in Proportions of Empty Body Depots and Constituents for Nine Breeds of Cattle under Various Feed Availabilities. J. Anim. Sci. 1997, 75, 95–104. [Google Scholar] [CrossRef]
- Hersom, M.J.; Krehbiel, C.R.; Horn, G.W. Effect of Live Weight Gain of Steers during Winter Grazing: II. Visceral Organ Mass, Cellularity, and Oxygen Consumption. J. Anim. Sci. 2004, 82, 184–197. [Google Scholar] [CrossRef]
- McCurdy, M.P.; Krehbiel, C.R.; Horn, G.W.; Lancaster, P.A.; Wagner, J.J. Effects of Winter Growing Program on Visceral Organ Mass, Composition, and Oxygen Consumption of Beef Steers during Growing and Finishing. J. Anim. Sci. 2010, 88, 1554–1563. [Google Scholar] [CrossRef] [PubMed]
- Sainz, R.D.; Bentley, B.E. Visceral Organ Mass and Cellularity in Growth-Restricted and Refed Beef Steers. J. Anim. Sci. 1997, 75, 1229–1236. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.G.; Ferrell, C.L. Productivity through Weaning of Nine Breeds of Cattle under Varying Feed Availabilities: I. Initial Evaluation. J. Anim. Sci. 1994, 72, 2787–2797. [Google Scholar] [CrossRef] [PubMed]
Component 1 | N | Mean | SD | Min | Max |
---|---|---|---|---|---|
Empty Body | |||||
Fat, % | 287 | 18.05 | 8.84 | 2.00 | 40.33 |
Water, % | 287 | 59.87 | 7.49 | 43.46 | 74.40 |
Protein, % | 287 | 17.77 | 1.67 | 13.00 | 21.10 |
Ash, % | 287 | 4.33 | 0.90 | 1.73 | 6.64 |
Carcass | |||||
Fat, % | 220 | 23.38 | 9.86 | 1.80 | 44.51 |
Water, % | 220 | 55.12 | 7.79 | 39.32 | 74.30 |
Protein, % | 220 | 16.95 | 2.09 | 12.37 | 22.20 |
Ash, % | 220 | 4.50 | 1.01 | 1.76 | 8.17 |
Empty Body–Carcass | |||||
Empty Body fat, % | 148 | 20.25 | 8.59 | 2.00 | 40.33 |
Empty Body water, % | 148 | 58.07 | 7.04 | 43.46 | 73.40 |
Empty Body protein, % | 148 | 17.65 | 1.80 | 13.00 | 21.10 |
Empty Body ash, % | 148 | 4.05 | 0.93 | 1.73 | 6.59 |
Carcass fat, % | 148 | 21.26 | 9.37 | 1.80 | 44.51 |
Carcass water, % | 148 | 56.91 | 7.41 | 40.20 | 74.30 |
Carcass protein, % | 148 | 17.18 | 2.07 | 12.37 | 21.57 |
Carcass ash, % | 148 | 4.62 | 1.15 | 1.76 | 8.17 |
Component | Fat | Water | Protein | Ash |
---|---|---|---|---|
Fat | 0.99 * | −0.98 * | −0.79 * | −0.21 * |
Water | −0.98 * | 0.99 * | 0.69 * | 0.09 |
Protein | −0.85 * | 0.76 * | 0.96 * | 0.20 * |
Ash | −0.44 * | 0.33 * | 0.35 * | 0.97 * |
Slope Coefficients (±SE) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Component 1 | Breed Type | Sex | Intercept (±SE) | Water | Fat | Protein | Water2 | Fat2 | Protein2 |
Fat | British | Heifers | 109.488 ± 14.513 *Aa | −1.808 ± 0.493 *Ba | - | - | 0.00467 ± 0.0042 Ab | - | - |
Steers | 63.674 ± 9.181 *Ab | −0.281 ± 0.326 Bb | −0.00798 ± 0.0029 *Aa | ||||||
ContCross | Heifers | 121.907 ± 15.586 *Aa | −2.281 ± 0.520 *Ba | 0.00886 ± 0.0043 *Ab | |||||
Steers | 76.093 ± 12.161 *Ab | −0.754 ± 0.422 Bb | −0.00379 ± 0.0036 Aa | ||||||
Dairy | Heifers | 191.552 ± 17.282 *Ba | −4.657 ± 0.563 *Aa | 0.02908 ± 0.0046 *Bb | |||||
Steers | 145.738 ± 12.881 *Bb | −3.130 ± 0.407 *Ab | 0.01643 ± 0.0032 *Ba | ||||||
Water | British | Heifers/Steers | 76.904 ± 0.387 *B | - | −1.092 ± 0.040 * | - | - | 0.00659 ± 0.0010 * | - |
ContCross | 76.291 ± 0.386 *A | ||||||||
Dairy | 77.146 ± 0.332 *B | ||||||||
Protein 2 | British | Heifers | 82.663 ± 0.603 *y | - | −0.831 ± 0.009 *2 | - | - | - | - |
Steers | 81.624 ± 0.520 *xy | ||||||||
ContCross | Heifers | 82.730 ± 0.521 *y | |||||||
Steers | 80.816 ± 0.523 *x | ||||||||
Dairy | Heifers | 81.015 ± 0.496 *x | |||||||
Steers | 81.638 ± 0.345 *xy | ||||||||
Ash 2 | British | Heifers | 63.297 ± 6.052 *Ba | - | −0.638 ± 0.061 *Ab2 | −0.548 ± 0.074 *Ab2 | - | - | - |
Steers | 93.912 ± 2.436 *Bb | −0.940 ± 0.025 *Aa2 | −0.925 ± 0.030 *Aa2 | ||||||
ContCross | Heifers | 69.437 ± 5.444 *Ba | −0.699 ± 0.055 *Ab2 | −0.624 ± 0.067 *Ab2 | |||||
Steers | 100.052 ± 3.669 *Bb | −1.001 ± 0.038 *Aa2 | −1.001 ± 0.045 *Aa2 | ||||||
Dairy | Heifers | 38.305 ± 6.203 *Aa | −0.368 ± 0.063 *Bb2 | −0.244 ± 0.077 *Bb2 | |||||
Steers | 68.920 ± 2.961 *Ab | −0.670 ± 0.031 *Ba2 | −0.622 ± 0.036 *Ba2 |
RMSE (SD) 2 | R2 (SD) | MAPE (SD) | AIC (SD) | |||||
---|---|---|---|---|---|---|---|---|
Component | Proposed | Garrett & Hinman | Proposed | Garrett & Hinman | Proposed | Garrett & Hinman | Proposed | Garrett & Hinman |
Empty Body | ||||||||
Fat | 1.534 (0.402) | 1.729 (0.391) | 0.978 (0.009) | 0.975 (0.011) | 7.651 (1.484) | 10.912 (3.129) | 134.9 (60.5) | 143.9 (56.1) |
Water | 1.354 (0.323) | 1.481 (0.360) | 0.977 (0.008) | 0.974 (0.011) | 1.926 (0.492) | 2.166 (0.566) | 123.6 (49.2) | 130.7 (51.4) |
Protein | 1.854 (0.433) | 0.791 (0.177) | 0.980 (0.010) | 0.753 (0.224) | 3.357 (0.845) | 3.462 (0.793) | 89.2 (43.2) | 96.9 (45.1) |
Ash | 0.674 (0.174) | 0.761 (0.208) | 0.945 (0.031) | 0.287 (0.228) | 4.318 (0.597) | 16.972 (9.573) | −4.5 (25.2) | 95.7 (46.2) |
Carcass | ||||||||
Fat | 1.774 (0.573) | 1.869 (0.500) | 0.972 (0.018) | 0.971 (0.017) | 6.900 (1.888) | 8.036 (2.972) | 123.5 (60.4) | 126.1 (60.8) |
Water | 1.293 (0.398) | 1.434 (0.437) | 0.973 (0.014) | 0.971 (0.017) | 1.899 (0.599) | 2.160 (0.592) | 108.0 (55.1) | 111.7 (57.6) |
Protein | 1.624 (0.747) | 0.716 (0.293) | 0.981 (0.014) | 0.884 (0.116) | 3.392 (1.116) | 3.099 (1.189) | 65.4 (47.0) | 70.8 (47.9) |
Ash | 0.816 (0.455) | 0.946 (0.237) | 0.930 (0.065) | 0.170 (0.170) | 4.729 (1.391) | 19.030 (7.400) | 3.3 (19.5) | 82.0 (43.4) |
Empty Body–Carcass | ||||||||
Fat | 1.569 (0.379) | 1.217 (0.397) | 0.984 (0.005) | 0.981 (0.009) | 2.842 (0.447) | 4.868 (1.223) | 44.5 (19.3) | 66.0 (24.3) |
Water | 1.332 (0.300) | 1.069 (0.269) | 0.963 (0.022) | 0.980 (0.009) | 1.782 (0.225) | 1.528 (0.451) | 57.3 (21.8) | 63.4 (27.4) |
Protein | 1.515 (0.445) | 0.528 (0.059) | 0.981 (0.008) | 0.923 (0.016) | 3.253 (1.153) | 2.569 (0.327) | 38.5 (20.1) | 36.4 (13.7) |
Ash | 0.501 (0.142) | 0.252 (0.057) | 0.943 (0.047) | 0.879 (0.123) | 4.273 (1.178) | 5.117 (0.635) | −10.1 (8.4) | −1.7 (11.5) |
Slope Coefficients (±SE) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Component 1 | Breed Type | Sex | Intercept (±SE) | Water | Fat | Protein | Water2 | Fat2 | Protein2 |
Fat | British | Heifers/Steers | 111.436 ± 6.365 * | −1.979 ± 0.224 * | - | - | 0.00670 ± 0.0019 * | - | - |
ContCross | |||||||||
Dairy | |||||||||
Water | British | Heifers/Steers | 75.782 ± 0.420 * | - | −1.065 ± 0.043 * | - | - | 0.00636 ± 0.0010 * | - |
ContCross | |||||||||
Dairy | |||||||||
Protein 2 | British | Heifers | 78.939 ± 2.604 *x | - | −0.730 ± 0.124 *y2 | - | - | −0.00085 ± 0.0014 x1 | - |
Steers | 99.221 ± 5.438 *y | −1.591 ± 0.203 *x2 | 0.00756 ± 0.0018 *y1 | ||||||
ContCross | Heifers | 79.910 ± 1.815 *x | −0.761 ± 0.118 *y2 | −0.00049 ± 0.0017 x1 | |||||
Steers | 81.925 ± 6.137 *xy | −0.903 ± 0.281 *xy2 | 0.00124 ± 0.0031 xy1 | ||||||
Dairy | Heifers | 84.952 ± 2.276 *xy | −1.136 ± 0.145 *xy2 | 0.00407 ± 0.0021 xy1 | |||||
Steers | 81.070 ± 1.986 *x | −0.895 ± 0.109 *y2 | 0.00096 ± 0.0013 x1 | ||||||
Ash 2 | British | Heifers | 55.642 ± 7.954 *x | - | 0.708 ± 0.192 *z2 | Heifers: −2.103 ± 0.318 *a2 Steers: −0.917 ± 0.173 *b2 | - | Heifers: −0.01237 ± 0.00203 *a2 Steers: −0.00054 ± 0.00118 b2 | 0.02104 ± 0.0035 *z2 |
Steers | 89.475 ± 2.674 *z | −0.846 ± 0.132 *w2 | 0.00045 ± 0.0023 w2 | ||||||
ContCross | Heifers | 51.378 ± 8.582 *x | 0.791 ± 0.164 *z2 | 0.02140 ± 0.0031 *z2 | |||||
Steers | 81.499 ± 8.590 *xyz | −0.745 ± 0.152 *wx2 | 0.00220 ± 0.0023 wx2 | ||||||
Dairy | Heifers | 95.513 ± 8.310 *yz | 0.153 ± 0.143 y2 | 0.01370 ± 0.0029 *y2 | |||||
Steers | 72.987 ± 5.495 *xy | −0.624 ± 0.101 *x2 | 0.00367 ± 0.00165 *x2 |
Slope Coefficients (±SE) | |||||
---|---|---|---|---|---|
Component 1 | Breed Type | Sex | Intercept (±SE) | Carcass Comp. | Carcass Comp.2 |
Fat 2 | British | Heifers/Steers | −1.552 ± 1.008 A | 1.072 ± 0.044 *2 | −0.00128 ± 0.0005 *2 |
ContCross | −0.756 ± 0.937 A | ||||
Dairy | 0.223 ± 0.938 B | ||||
Water | British | Heifers | 3.159 ± 10.423 z | 1.033 ± 0.365 *y | −0.00115 ± 0.0031 z |
Steers | −4.250 ± 11.387 yz | 1.228 ± 0.430 *yz | −0.00228 ± 0.0040 yz | ||
ContCross | Heifers | −3.974 ± 18.322 yz | 1.158 ± 0.593 yz | −0.00156 ± 0.0047 yz | |
Steers | 79.262 ± 29.579 *z | −1.685 ± 1.043 y | 0.02278 ± 0.0091 *z | ||
Dairy | Heifers | −9.700 ± 19.849 yz | 1.346 ± 0.638 *yz | −0.00284 ± 0.0051 yz | |
Steers | −73.923 ± 22.125 *y | 3.532 ± 0.708 *z | −0.02093 ± 0.0056 *y | ||
Protein 2 | British | Heifers | 3.360 ± 0.706 *z | 0.985 ± 0.014 *2 | - |
Steers | 2.920 ± 0.551 *z | ||||
ContCross | Heifers | 2.356 ± 0.900 *yz | |||
Steers | 2.277 ± 0.835 *yz | ||||
Dairy | Heifers | 1.280 ± 0.775 y | |||
Steers | 3.015 ± 0.900 *z | ||||
Ash 2 | British | Heifers | 2.164 ± 0.895 *yz | Heifers: 0.544 ± 0.151 *a2 Steers: 0.999 ± 0.057 *b2 | Heifers: 0.01100 ± 0.0059 b2 Steers: −0.00826 ± 0.0025 *a2 |
Steers | 0.027 ± 0.317 y | ||||
ContCross | Heifers | 1.967 ± 0.942 *yz | |||
Steers | 0.493 ± 0.362 z | ||||
Dairy | Heifers | 2.078 ± 0.970 *yz | |||
Steers | 0.539 ± 0.351 z |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lancaster, P.A. Development of Equations to Predict Percentage Empty Body and Carcass Chemical Composition Adjusted for Breed Type and Sex in Growing/Finishing Cattle. Ruminants 2025, 5, 14. https://doi.org/10.3390/ruminants5020014
Lancaster PA. Development of Equations to Predict Percentage Empty Body and Carcass Chemical Composition Adjusted for Breed Type and Sex in Growing/Finishing Cattle. Ruminants. 2025; 5(2):14. https://doi.org/10.3390/ruminants5020014
Chicago/Turabian StyleLancaster, Phillip A. 2025. "Development of Equations to Predict Percentage Empty Body and Carcass Chemical Composition Adjusted for Breed Type and Sex in Growing/Finishing Cattle" Ruminants 5, no. 2: 14. https://doi.org/10.3390/ruminants5020014
APA StyleLancaster, P. A. (2025). Development of Equations to Predict Percentage Empty Body and Carcass Chemical Composition Adjusted for Breed Type and Sex in Growing/Finishing Cattle. Ruminants, 5(2), 14. https://doi.org/10.3390/ruminants5020014