Addition of Exogenous Fibrolytic Enzymes to the Feed of Confined Steers Modulates Fat Profile in Meat
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Enzymatic Blend
2.2. Animals, Installation and Experimental Design
2.3. Data and Sample Collection
2.4. Feed Composition Analysis
2.5. Hemogram
2.6. Serum Biochemistries
2.7. Determination of Short Chain Fatty Acids (SCFA)
2.8. Apparent Digestibility Coefficient
2.9. Fatty Acid (FA) Profile in Meat and Feed
2.10. Statistical Analysis
3. Results
3.1. Performance
3.2. Hemogram and Biochemistry Seric
3.3. VFAs in Ruminal Liquid
3.4. Apparent Digestibility Coefficient (ADC)
3.5. Meat Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silvestre, A.M.; Millen, D.D. The 2019 Brazilian survey on nutritional practices provided by feedlot cattle consulting nutritionists. Rev. Bras. Zootec. 2021, 50, e20200189. [Google Scholar] [CrossRef]
- Schären, M.; Drong, C.; Kiri, K.; Riede, S.; Gardener, M.; Meyer, U.; Hummel, J.; Urich, T.; Breves, G.; Dänicke, S. Differential effects of monensin and a blend of essential oils on rumen microbiota composition of transition dairy cows. J. Dairy Sci. 2017, 100, 2765–2783. [Google Scholar] [CrossRef]
- Burroughs, W.; Woods, W.; Ewing, S.A.; Greig, J.; Theurer, B. Enzyme Additions to Fattening Cattle Rations. J. Anim. Sci. 1960, 19, 458–464. [Google Scholar] [CrossRef]
- Bedford, M.R.; Partridge, G.G. Enzymes in Farm Animal Nutrition; CABI Digital Library: Wallingford, UK, 2001. [Google Scholar]
- Kung, L.; Cohen, M.A.; Rode, L.M.; Treacher, R.J. The Effect of Fibrolytic Enzymes Sprayed onto Forages and Fed in a Total Mixed Ratio to Lactating Dairy Cows. J. Dairy Sci. 2002, 85, 2396–2402. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.A.; Oosting, S.J.; Popp, J.D.; Mir, Z.; Yanke, L.J.; Hristov, A.N.; Treacher, R.J.; Cheng, K.-J. Effect of exogenous enzymes on digestibility of barley silage and growth performance of feedlot cattle. Can. J. Anim. Sci. 1999, 79, 353–360. [Google Scholar] [CrossRef]
- Refat, B.; Christensen, D.A.; McKinnon, J.J.; Yang, W.; Beattie, A.D.; McAllister, T.A.; Eun, J.-S.; Abdel-Rahman, G.A.; Yu, P. Effect of fibrolytic enzymes on lactational performance. feeding behavior. and digestibility in high-producing dairy cows fed a barley silage–based diet. J. Dairy Sci. 2018, 101, 7971–7979. [Google Scholar] [CrossRef]
- Saleem, A.M.; Ribeiro, G.O.; Sanderson, H.; Alipour, D.; Brand, T.; Hünerberg, M.; Yang, W.Z.; Santos, L.V.; McAllister, T.A. Effect of exogenous fibrolytic enzymes and ammonia fiber expansion on the fermentation of wheat straw in an artificial rumen system (RUSITEC). J. Anim. Sci. 2019, 97, 3535–3549. [Google Scholar] [CrossRef]
- Bureenok, S.; Pitiwittayakul, N.; Saenmahayak, B.; Saithi, S.; Yuangklang, C.; Cai, Y.; Schonewille, J.T. Effects of fibrolytic enzyme supplementation on feed intake. digestibility and rumen fermentation characteristics in goats fed with Leucaena silage. Small Rumin. Res. 2024, 231, 107200. [Google Scholar] [CrossRef]
- Liu, Z.K.; Li, Y.; Zhao, C.C.; Liu, Z.J.; Wang, L.M.; Li, X.Y.; Pellikaan, W.F.; Yao, J.H.; Cao, Y.C. Effects of a combination of fibrolytic and amylolytic enzymes on ruminal enzyme activities, bacterial diversity, blood profile and milk production in dairy cows. Animal 2022, 16, 100595. [Google Scholar] [CrossRef]
- Adesogan, A.T.; Ma, Z.X.; Romero, J.J.; Arriola, K.G. Ruminant Nutrition Symposium: Improving cell wall digestion and animal performance with fibrolytic enzymes. J. Anim. Sci. 2014, 92, 1317–1330. [Google Scholar] [CrossRef]
- de Campos Valadares Filho, S.; Saraiva, D.T.; del Bianco Benedeti, P.; de Sales Silva, F.A.; Chizzotti, M.L. (Eds.) Exigências Nutricionais de Zebuínos Puros e Cruzados, 3rd ed.; Produção Independente: Viçosa, Brazil, 2016. [Google Scholar]
- Silva, D.J.; Queiroz, A.C. Food Analysis (Chemical and Biological Methods), 3rd ed.; UFV: Viçosa, Brazil, 2002; 235p. [Google Scholar]
- AOAC. Official Analysis Methods, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Brunetto, A.L.; Giacomelli, C.M.; Favero, J.F.; Bissacotti, B.F.; Copeti, P.M.; Morsch, V.M.; de C. de Oliveira, F.; Wagner, R.; Alves, R.; Pereira, W.A.; et al. Phytogenic blend in the diet of growing Holstein steers: Effects on performance, digestibility, rumen volatile fatty acid profile, and immune and antioxidant responses. Anim. Feed Sci. Technol. 2023, 297, 115595. [Google Scholar] [CrossRef]
- Cochran, R.C.; Adams, D.C.; Wallace, J.D.; Galyean, M.L. Predicting digestibility of different diets with internal markers: Evaluation of four potential markes. J. Anim. Sci. 1986, 63, 1476–1483. [Google Scholar] [CrossRef]
- Huhtanen, P.; Kaustell, K.; Jaakkola, S. The use of internal markers to predict total digestibility and duodenal flow of nutrients in cattle given six different diets. Anim. Feed Sci. Technol. 1994, 48, 211–227. [Google Scholar] [CrossRef]
- Senger, C.C.D.; Kozloski, G.V.; Sanchez, L.M.B.; Mesquita, F.R.; Alves, T.P.; Castagnino, D.S. Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Anim. Feed Sci. Technol. 2008, 146, 169–174. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Hartman, L.; Lago, R.C. Rapid preparation of fatty acid methyl esters from lipids. Lab Pract. 1973, 494, 475–477. [Google Scholar]
- Visentainer, J.V.; Franco, M.R.B. Ácidos Graxos em Óleos e Gorduras: Identificação e Quantificaçao, 1st ed.; Varela: Sao Paulo, Brazil, 2006. [Google Scholar]
- Abid, K.; Jabri, J.; Beckers, Y.; Yaich, H.; Malek, A.; Rekhis, J.; Kamoun, M. Influence of adding fibrolytic enzymes on the ruminal fermentation of date palm by-products. Arch. Anim. Breed. 2019, 62, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Elghandour, M.M.Y.; Kholif, A.E.; Hernández, J.; Mariezcurrena, M.D.; López, S.; Camacho, L.M.; Márquez, O.; Salem, A.Z.M. Influence of the addition of exogenous xylanase with or without pre-incubation on the in vitro ruminal fermentation of three fibrous feeds. Czech J. Anim. Sci. 2016, 61, 262–272. [Google Scholar] [CrossRef]
- Giraldo, L.A.; Ranilla, M.J.; Tejido, M.L.; Carro, M.D. Influence of exogenous fibrolytic enzymes and fumarate on methane production. microbial growth and fermentation in Rusitec fermenters. Br. J. Nutr. 2007, 98, 753–761. [Google Scholar] [CrossRef]
- Eun, J.-S.; Beauchemin, K.A.; Hong, S.-H.; Bauer, M.W. Exogenous enzymes added to untreated or ammoniated rice straw: Effects on in vitro fermentation characteristics and degradability. Anim. Feed Sci. Technol. 2006, 131, 87–102. [Google Scholar] [CrossRef]
- Mohamed, M.A.E.; Yangchun, C.; Bodinga, B.M.; Lixin, Z.; Zekun, Y.; Lihui, L.; Yao, J.; Soomro, R.N.; Abbasi, I.H.R.; Wen, L. Effect of Exogenous Fibrolytic Enzymes on Ruminal Fermentation and Gas Production by RUSITEC. in vitro Abomasum and Ileum Digestibility. Int. J. Pharmacol. 2017, 13, 1020–1028. [Google Scholar] [CrossRef]
- Wang, Y.; Ramirez-Bribiesca, J.E.; Yanke, L.J.; Tsang, A.; McAllister, T.A. Effect of Exogenous Fibrolytic Enzyme Application on the Microbial Attachment and Digestion of Barley Straw In Vitro. Asian-Australas. J. Anim. Sci. 2011, 25, 66–74. [Google Scholar] [CrossRef]
- Webb, E.C.; Hassen, A.; Van der Walt, L.; Pophiwa, P. Effects of palm oil supplementation and fibrolytic enzymes in high forage diets on growth. carcass characteristics and fatty acid profiles of lambs. Small Rumin. Res. 2022, 210, 106652. [Google Scholar] [CrossRef]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Cassatella, M.A.; Costantini, C.; Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 2011, 11, 519–531. [Google Scholar] [CrossRef]
- Bassel, L.L.; Caswell, J.L. Bovine neutrophils in health and disease. Cell Tissue Res. 2018, 371, 617–637. [Google Scholar] [CrossRef]
- Rinaldi, M.; Ceciliani, F.; Lecchi, C.; Moroni, P.; Bannerman, D.D. Differential effects of α1-acid glycoprotein on bovine neutrophil respiratory burst activity and IL-8 production. Vet. Immunol. Immunopathol. 2008, 126, 199–210. [Google Scholar] [CrossRef]
- Aleri, J.W.; Hine, B.C.; Pyman, M.F.; Mansell, P.D.; Wales, W.J.; Mallard, B.; Fisher, A.D. Periparturient immunosuppression and strategies to improve dairy cow health during the periparturient period. Res. Vet. Sci. 2016, 108, 8–17. [Google Scholar] [CrossRef]
- Caswell, J.L.; Middleton, D.M.; Sorden, S.D.; Gordon, J.R. Expression of the Neutrophil Chemoattractant Interleukin-8 in the Lesions of Bovine Pneumonic Pasteurellosis. Vet. Pathol. 1998, 35, 124–131. [Google Scholar] [CrossRef]
- Ingvartsen, K.L.; Moyes, K.M. Factors contributing to immunosuppression in the dairy cow during the periparturient period. Jpn. J. Vet. Res. 2015, 63 (Suppl. S1), S15–S24. [Google Scholar] [PubMed]
- Zhang, J.; Wang, C.; Liu, Q.; Guo, G.; Huo, W.; Pei, C.; Jiang, Q. Influence of fibrolytic enzymes mixture on performance, nutrient digestion, rumen fermentation and microbiota in Holstein bulls. J. Anim. Feed Sci. 2022, 31, 46–54. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, S.; Lin, B. Effect of commercial fibrolytic enzymes application to normal- and slightly lower energy diets on lactational performance, digestibility and plasma nutrients in high-producing dairy cows. Front. Vet. Sci. 2024, 11, 1302034. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition. fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Simon, A.L.; Copetti, P.M.; Lago, R.V.P.; Vitt, M.G.; Nascimento, A.L.; e Silva, L.E.L.; Wagner, R.; Klein, B.; Martins, C.S.; Kozloski, G.V.; et al. Inclusion of exogenous enzymes in feedlot cattle diets: Impacts on physiology. rumen fermentation. digestibility and fatty acid profile in rumen and meat. Biotechnol. Rep. 2024, 41, e00824. [Google Scholar] [CrossRef] [PubMed]
- Chikwanha, O.C.; Vahmani, P.; Muchenje, V.; Dugan, M.E.R.; Mapiye, C. Nutritional enhancement of sheep meat fatty acid profile for human health and wellbeing. Food Res. Int. 2018, 104, 25–38. [Google Scholar] [CrossRef]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- Mensink, R.P.; Katan, M.B. Effect of dietary fatty acids on serum lipids and lipoproteins. A meta-analysis of 27 trials. Arterioscler. Thromb. A J. Vasc. Biol. 1992, 12, 911–919. [Google Scholar] [CrossRef]
- Bermudez, B.; Lopez, S.; Ortega, A.; Varela, L.M.; Pacheco, Y.M.; Abia, R.; Muriana, F.J. Oleic Acid in Olive Oil: From a Metabolic Framework Toward a Clinical Perspective. Curr. Pharm. Des. 2011, 17, 831–843. [Google Scholar] [CrossRef]
- Perez-Martinez, P.; Garcia-Rios, A.; Delgado-Lista, J.; Perez-Jimenez, F.; Lopez-Miranda, J. Mediterranean Diet Rich in Olive Oil and Obesity. Metabolic Syndrome and Diabetes Mellitus. Curr. Pharm. Des. 2011, 17, 769–777. [Google Scholar] [CrossRef] [PubMed]
Variables, % | TMR: Control | TMR: Treatment |
---|---|---|
Dry matter (%) | 90.25 | 90.44 |
Organic matter, % MS | 93.38 | 93.36 |
Crude protein, % MS | 15.78 | 15.76 |
Ether extract, % MS | 2.87 | 3.07 |
Ash, % MS | 6.62 | 6.64 |
NDF, % MS | 28.80 | 25.68 |
Fatty acid, % | ||
C14:0 (Myristic) | 0.313 | 0.331 |
C14:1 (Myristoleic) | 0.003 | 0.022 |
C15:0 (Pentadecanoic) | 0.174 | 0.192 |
C16:0 (Palmitic) | 21.84 | 21.78 |
C16:1 (Palmitoleic) | 0.300 | 0.318 |
C17:0 (Heptadecanoic) | 0.295 | 0.313 |
C18:0 (Stearic) | 4.679 | 4.682 |
C18:1n9t (Elaidic) | 0.346 | 0.364 |
C18:1n9c (Oleic) | 32.09 | 32.00 |
C18:2n6c (Linoleic) | 34.47 | 34.37 |
C20:0 (Arachidic) | 0.793 | 0.810 |
C20:1n9 (cis-11-Eicosenoic) | 0.304 | 0.321 |
C18:3n3 (a-Linolenic) | 2.407 | 2.417 |
C20:2 (cis-11,14-Eicosadienoic) | 0.121 | 0.139 |
C22:0 (Behenic) | 0.789 | 0.806 |
C22:1n9 (Erucic) | 0.071 | 0.089 |
∑ Saturated fatty acids (SFA) | 29.88 | 29.95 |
∑ Unsaturated fatty acids (UFA) | 70.12 | 70.05 |
Variables | Control | Treatment | SEM | p: Treat | p: Treat × Day |
---|---|---|---|---|---|
Body weight, kg | 0.80 | 0.72 | |||
Initial | 208 | 216 | 4.62 | ||
Final | 389 | 399 | 4.29 | ||
Average daily gain, kg | 1.56 | 1.57 | 0.25 | 0.94 | - |
Feed intake, kg DM | 8.18 | 8.39 | 0.18 | 0.66 | 0.48 |
Feed convertion | 5.23 | 5.34 | 0.15 | 0.79 | - |
Feed efficiency | 0.19 | 0.18 | 0.02 | 0.91 | - |
Variables | Control | Treatment | SEM | p: Treat | p: Treat × Day |
---|---|---|---|---|---|
Hemogram | |||||
Leukocytes (×103 µL) | 10.1 | 9.19 | 0.74 | 0.63 | 0.31 |
Granulocyte (×103 µL) | 0.59 | 0.05 | |||
D20 | 1.30 | 1.29 | 0.21 | ||
D60 | 1.67 | 1.38 | 0.21 | ||
D120 | 3.77 a | 2.56 b | 0.25 | ||
Lymphocytes (×103 µL) | 6.33 | 6.23 | 0.52 | 0.87 | 0.91 |
Monocyte (×103 µL) | 1.47 | 1.30 | 0.41 | 0.72 | 0.80 |
Erythrocyte (×106 µL) | 7.13 | 6.98 | 0.08 | 0.89 | 0.73 |
Hemoglobin | 11.4 | 11.5 | 0.36 | 0.95 | 0.97 |
Hematocrit, % | 30.1 | 30.3 | 0.76 | 0.92 | 0.95 |
Platelet (×103 µL) | 241 | 268 | 9.74 | 0.41 | 0.13 |
Seric biochemistry | |||||
Amylase (U/L) | 0.25 | 0.05 | |||
D20 | 88.1 | 97.3 | 4.74 | ||
D60 | 106 | 105 | 4.68 | ||
D120 | 116 b | 131 a | 4.71 | ||
Globulin (g/dL) | 4.13 | 4.06 | 0.35 | 0.74 | 0.81 |
Albumin (g/dL) | 2.71 | 2.69 | 0.12 | 0.91 | 0.85 |
Total protein (g/dL) | 6.85 | 6.75 | 0.39 | 0.88 | 0.79 |
Fructosamine (mg/dL) | 2.11 | 2.12 | 0.09 | 0.96 | 0.98 |
Cholesterol (mg/dL) | 87.6 | 98.9 | 1.25 | 0.05 | 0.11 |
Uric acid (mg/dL) | 0.88 | 0.90 | 0.06 | 0.96 | 0.92 |
Urea (mg/dL) | 15.9 | 16.1 | 0.63 | 0.97 | 0.99 |
Variables | Control | Treatment | SEM | p: Treat | p: Treat × Day |
---|---|---|---|---|---|
Volatile fatty acids (mmol/L) | 0.05 | 0.01 | |||
D20 | 75.6 | 70.2 | 2.29 | ||
D60 | 87.5 b | 102.7 a | 2.88 | ||
D120 | 79.0 b | 90.9 a | 1.76 | ||
Quantity results | |||||
Acetic acid (mmol/L) | 0.05 | 0.01 | |||
D20 | 52.6 | 48.3 | 1.50 | ||
D60 | 53.6 b | 66.7 a | 1.52 | ||
D120 | 51.2 b | 61.3 a | 1.33 | ||
Butyric acid (mmol/L) | 0.35 | 0.05 | |||
D20 | 7.79 a | 6.11 b | 0.28 | ||
D60 | 11.9 | 13.8 | 0.68 | ||
D120 | 9.46 | 10.7 | 0.36 | ||
Isovaleric acid (mmol/L) | 0.68 | 0.02 | |||
D20 | 1.24 | 1.02 | 0.17 | ||
D60 | 2.59 | 2.64 | 0.18 | ||
D120 | 1.00 b | 1.37 a | 0.09 | ||
Propionic acid (mmol/L) | 15.8 | 16.3 | 0.66 | 0.83 | 0.46 |
Valeric acid (mmol/L) | 1.05 | 0.91 | 0.05 | 0.65 | 0.71 |
Proportion results | |||||
Acetic acid (%) | 0.05 | 0.03 | |||
D20 | 69.5 | 69.1 | 0.42 | ||
D60 | 61.6 b | 65.1 a | 0.47 | ||
D120 | 64.0 b | 67.7 a | 0.39 | ||
Propionic acid (%) | 0.70 | 0.05 | |||
D20 | 16.9 b | 19.1 a | 0.66 | ||
D60 | 20.8 | 17.9 | 0.81 | ||
D120 | 20.8 | 18.3 | 0.48 | ||
Butyric acid (%) | 0.86 | 0.03 | |||
D20 | 10.3 a | 8.73 b | 0.22 | ||
D60 | 13.4 | 13.4 | 0.51 | ||
D120 | 11.9 | 11.7 | 0.33 | ||
Isovaleric acid (%) | 1.91 | 1.84 | 0.11 | 0.55 | 0.69 |
Valeric acid (%) | 0.12 | 0.01 | |||
D20 | 1.56 | 1.53 | 0.01 | ||
D60 | 1.29 a | 0.87 b | 0.08 | ||
D120 | 1.04 a | 0.85 b | 0.05 | ||
Acetic/propionic | 0.79 | 0.01 | |||
D20 | 4.28 | 3.72 | 0.29 | ||
D60 | 3.13 b | 3.66 a | 0.14 | ||
D120 | 3.14 b | 3.73 a | 0.11 |
Variables | Control | Treatment | SEM | p: Treat |
---|---|---|---|---|
Dry matter | 0.41 | 0.49 | 0.05 | 0.10 |
Organic matter | 0.46 | 0.50 | 0.04 | 0.40 |
Crude protein | 0.45 | 0.48 | 0.03 | 0.42 |
Ether extract | 0.52 | 0.50 | 0.02 | 0.85 |
NDF | 0.29 | 0.37 | 0.05 | 0.07 |
Variables | Control | Treatment | SEM | p-Value |
---|---|---|---|---|
Total lipids (g/kg) | 12.2 b | 14.7 a | 0.64 | 0.02 |
Fatty acid (%) | ||||
C14:0 (Myristic) | 2.07 a | 1.66 b | 0.072 | 0.02 |
C14:1 (Myristoleic) | 0.37 | 0.32 | 0.024 | 0.35 |
C15:0 (Pentadecanoic) | 0.22 | 0.21 | 0.005 | 0.96 |
C16:0 (Palmitic) | 30.00 a | 25.75 b | 0.166 | 0.01 |
C16:1 (Palmitoleic) | 3.71 | 3.33 | 0.104 | 0.43 |
C17:0 (Heptadecanoic) | 1.27 | 1.44 | 0.176 | 0.65 |
C18:0 (Stearic) | 15.22 | 15.15 | 0.128 | 0.97 |
C18:1n9t (Elaidic) | 1.83 | 1.71 | 0.096 | 0.82 |
C18:1n9c (Oleic) | 34.08 b | 37.66 a | 0.276 | 0.01 |
C18:2n6c (Linoleic) | 7.18 | 8.12 | 0.436 | 0.73 |
C20:0 (Arachidic) | 0.07 | 0.07 | 0.002 | 0.99 |
C18:3n6 (Linolenic) | 0.05 | 0.06 | 0.003 | 0.95 |
C20:1n9 (cis-11-Eicosenoic) | 0.16 | 0.17 | 0.003 | 0.96 |
C18:3n3 (a-Linolenic) | 0.32 | 0.35 | 0.018 | 0.26 |
C21:0 (Henicosanoic) | 0.29 | 0.32 | 0.012 | 0.15 |
C20:2 (cis-11.14-Eicosadienoic) | 0.10 | 0.11 | 0.005 | 0.95 |
C20:3n6 (cis-8,11,14-Eicosatrienoic) | 0.47 | 0.51 | 0.029 | 0.36 |
C20:4n6 (Arachidonic) | 2.27 b | 2.69 a | 0.055 | 0.01 |
C22:2 (cis-13,16-Docosadienoic) | 0.03 | 0.03 | 0.002 | 0.99 |
C24:0 (Lignoceric) | 0.04 | 0.04 | 0.002 | 0.99 |
C20:5n3 (cis-5,8,11,14,17-Eicosapentaenoic) | 0.16 | 0.19 | 0.012 | 0.16 |
C24:1n9 (Nervonic) | 0.04 | 0.04 | 0.003 | 0.98 |
C22:6n3 (cis-4.7.10.13.16.19-Docosahexaenoic) | 0.05 | 0.06 | 0.006 | 0.95 |
Other variables | ||||
∑ Saturated fatty acids (SFA) | 49.17 a | 43.64 b | 0.388 | 0.01 |
∑ Unsaturated fatty acids (UFA) | 50.83 b | 55.36 a | 0.388 | 0.01 |
∑ Monounsaturated fatty acids (MUFA) | 40.19 b | 43.24 a | 0.270 | 0.05 |
∑ Polyunsaturated fatty acids (PUFA) | 10.64 b | 12.12 a | 0.249 | 0.09 |
UFA/SFA | 1.04 b | 1.27 a | 0.011 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lago, R.V.P.; da Cruz, J.M.; Wolschick, G.J.; Signor, M.H.; Breancini, M.; Klein, B.; Silva, L.E.L.; Wagner, R.; Hamerski, M.E.P.; Kozloski, G.V.; et al. Addition of Exogenous Fibrolytic Enzymes to the Feed of Confined Steers Modulates Fat Profile in Meat. Ruminants 2025, 5, 23. https://doi.org/10.3390/ruminants5020023
Lago RVP, da Cruz JM, Wolschick GJ, Signor MH, Breancini M, Klein B, Silva LEL, Wagner R, Hamerski MEP, Kozloski GV, et al. Addition of Exogenous Fibrolytic Enzymes to the Feed of Confined Steers Modulates Fat Profile in Meat. Ruminants. 2025; 5(2):23. https://doi.org/10.3390/ruminants5020023
Chicago/Turabian StyleLago, Rafael Vinicius Pansera, Joana Morais da Cruz, Gabriel J. Wolschick, Mateus H. Signor, Michel Breancini, Bruna Klein, Luiz Eduardo Lobo Silva, Roger Wagner, Maria Eduarda Pieniz Hamerski, Gilberto V. Kozloski, and et al. 2025. "Addition of Exogenous Fibrolytic Enzymes to the Feed of Confined Steers Modulates Fat Profile in Meat" Ruminants 5, no. 2: 23. https://doi.org/10.3390/ruminants5020023
APA StyleLago, R. V. P., da Cruz, J. M., Wolschick, G. J., Signor, M. H., Breancini, M., Klein, B., Silva, L. E. L., Wagner, R., Hamerski, M. E. P., Kozloski, G. V., & da Silva, A. S. (2025). Addition of Exogenous Fibrolytic Enzymes to the Feed of Confined Steers Modulates Fat Profile in Meat. Ruminants, 5(2), 23. https://doi.org/10.3390/ruminants5020023