Proteogenomic Approaches to Understand Gene Mutations and Protein Structural Alterations in Colon Cancer
Abstract
:1. Introduction
2. Colorectal Cancer and Proteogenomics
2.1. Mutations That Lead to CRC
2.2. Functional Alterations from Molecular Mutations
2.3. Protein Modifications in CRC
2.3.1. Post-Translational Modifications in CRC
2.3.2. Alterations in the Patterns of Glycoproteins and Proteases That Impact CRC Development
2.4. Proteogenomics Approaches in Cancer, Specifically in CRC
2.5. Information from Proteogenomic Approaches and Precision Oncology
2.6. Proteomics to Understand Structures of Proteins
2.7. Approach to Protein Structure Modeling, and In Silico Mutations
2.8. Protein Modeling to Assess the Tertiary Structure (3D) of Proteins in CRC
- (1)
- Homology modeling: This method also known as comparative modeling could be used when a protein with a crystal structure is available in the database [129]. The query protein must possess >30% sequence identity with the protein available in the database [130]. The homology model could be built using efficient tools like MODELLER [131]. Previously, a wide range of proteins associated with cancer has been studied by this method [132,133,134].
- (2)
- Modeling by threading/fold recognition: Information on the protein folds based on similar proteins is used in predicting the structure of the proteins the users want to model. I-TASSER online server [135,136,137] can be used for modeling where different databases are used and the workflow is user-friendly.
- (3)
- Ab initio strategy: This is a powerful approach to predict protein structures when an appropriate homolog structure is unavailable in the database. The model is initiated and built using the information on the most favorable energy conformations of the participating amino acids, and also calculates the potential chemical interactions among the amino acid sequences [138]. However, this technique can be time-consuming and computationally intensive [139]. I-TASSER can apply the ab initio modeling when an appropriate template is absent [135]. QUARK [140,141] and CONFOLD2 [142] are other useful web servers for generating ab initio protein structures from amino acid sequences. While QUARK uses Monte Carlo simulation under the influence of an atomic-level-knowledge-based force field, CONFOLD2 uses a subset of input contacts to understand the protein fold space guided by a soft square energy function.
2.9. Protein Docking of Mutated Proteins to the Substrates to Understand the Impact on Functions, the Need for Energy Minimization and Molecular Dynamics Simulation
2.10. Combining Hydrogen Exchange Mass Spectrometry and Protein Modeling to Understand 3D Structures
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the Global Cancer Incidence and Mortality in 2018: GLOBOCAN Sources and Methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islami, F.; Goding Sauer, A.; Miller, K.D.; Siegel, R.L.; Fedewa, S.A.; Jacobs, E.J.; McCullough, M.L.; Patel, A.V.; Ma, J.; Soerjomataram, I.; et al. Proportion and Number of Cancer Cases and Deaths Attributable to Potentially Modifiable Risk Factors in the United States. CA Cancer J. Clin. 2018, 68, 31–54. [Google Scholar] [CrossRef] [PubMed]
- Gausman, V.; Dornblaser, D.; Anand, S.; Hayes, R.B.; O’Connell, K.; Du, M.; Liang, P.S. Risk Factors Associated With Early-Onset Colorectal Cancer. Clin. Gastroenterol. Hepatol. 2020, 18, 2752–2759.e2. [Google Scholar] [CrossRef]
- Birt, D.F.; Phillips, G.J. Diet, Genes, and Microbes: Complexities of Colon Cancer Prevention. Toxicol. Pathol. 2014, 42, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Imperial, R.; Ahmed, Z.; Toor, O.M.; Erdoğan, C.; Khaliq, A.; Case, P.; Case, J.; Kennedy, K.; Cummings, L.S.; Melton, N.; et al. Comparative Proteogenomic Analysis of Right-Sided Colon Cancer, Left-Sided Colon Cancer and Rectal Cancer Reveals Distinct Mutational Profiles. Mol. Cancer 2018, 17, 177. [Google Scholar] [CrossRef] [Green Version]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, J.; Wang, X.; Zhu, J.; Liu, Q.; Shi, Z.; Chambers, M.C.; Zimmerman, L.J.; Shaddox, K.F.; Kim, S.; et al. Proteogenomic Characterization of Human Colon and Rectal Cancer. Nature 2014, 513, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Vasaikar, S.; Huang, C.; Wang, X.; Petyuk, V.A.; Savage, S.R.; Wen, B.; Dou, Y.; Zhang, Y.; Shi, Z.; Arshad, O.A.; et al. Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities. Cell 2019, 177, 1035–1049.e19. [Google Scholar] [CrossRef]
- Aguiar Junior, S.; de Oliveira, M.M.; Silva, D.R.M.E.; de Mello, C.A.L.; Calsavara, V.F.; Curado, M.P. Survival of patients with colorectal cancer in a cancer center. Arq. Gastroenterol. 2020, 57, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Sameer, A.S. Colorectal Cancer: Molecular Mutations and Polymorphisms. Front. Oncol. 2013, 3, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armaghany, T.; Wilson, J.D.; Chu, Q.; Mills, G. Genetic Alterations in Colorectal Cancer. Gastrointest. Cancer Res. 2012, 5, 19–27. [Google Scholar] [PubMed]
- Boland, C.R.; Goel, A. Microsatellite Instability in Colorectal Cancer. Gastroenterology 2010, 138, 2073–2087.e3. [Google Scholar] [CrossRef] [PubMed]
- Mathonnet, M.; Perraud, A.; Christou, N.; Akil, H.; Melin, C.; Battu, S.; Jauberteau, M.-O.; Denizot, Y. Hallmarks in Colorectal Cancer: Angiogenesis and Cancer Stem-like Cells. World J. Gastroenterol. 2014, 20, 4189–4196. [Google Scholar] [CrossRef] [PubMed]
- Fearon, E.R. Molecular Genetic Studies of the Adenoma-Carcinoma Sequence. Adv. Intern. Med. 1994, 39, 123–147. [Google Scholar] [PubMed]
- Schubbert, S.; Shannon, K.; Bollag, G. Hyperactive Ras in Developmental Disorders and Cancer. Nat. Rev. Cancer 2007, 7, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J.; Momand, J.; Finlay, C.A. The P53 Tumour Suppressor Gene. Nature 1991, 351, 453–456. [Google Scholar] [CrossRef]
- Soussi, T.; Béroud, C. Assessing TP53 Status in Human Tumours to Evaluate Clinical Outcome. Nat. Rev. Cancer 2001, 1, 233–240. [Google Scholar] [CrossRef]
- Wan, P.T.C.; Garnett, M.J.; Mark Roe, S.; Lee, S.; Niculescu-Duvaz, D.; Good, V.M.; Cancer Genome Project; Michael Jones, C.; Marshall, C.J.; Springer, C.J.; et al. Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell 2004, 116, 855–867. [Google Scholar] [CrossRef]
- Shi, Y. Structural Insights on Smad Function in TGFβ Signaling. BioEssays 2001, 23, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Attisano, L.; Wrana, J.L. Smads as Transcriptional Co-Modulators. Curr. Opin. Cell Biol. 2000, 12, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Massagué, J.; Blain, S.W.; Lo, R.S. TGFβ Signaling in Growth Control, Cancer, and Heritable Disorders. Cell 2000, 103, 295–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attisano, L.; Lee-Hoeflich, S.T. The Smads. Genome Biol. 2001, 2, REVIEWS3010. [Google Scholar] [CrossRef] [PubMed]
- Lammi, L.; Arte, S.; Somer, M.; Jarvinen, H.; Lahermo, P.; Thesleff, I.; Pirinen, S.; Nieminen, P. Mutations in AXIN2 Cause Familial Tooth Agenesis and Predispose to Colorectal Cancer. Am. J. Hum. Genet. 2004, 74, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Khosravi-Far, R.; Der, C.J. The Ras Signal Transduction Pathway. Cancer Metastasis Rev. 1994, 13, 67–89. [Google Scholar] [CrossRef]
- Fearon, E.R.; Vogelstein, B. A Genetic Model for Colorectal Tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Sionov, R.V.; Haupt, Y. The Cellular Response to P53: The Decision between Life and Death. Oncogene 1999, 18, 6145–6157. [Google Scholar] [CrossRef] [Green Version]
- Prives, C.; Hall, P.A. The P53 Pathway. J. Pathol. 1999, 187, 112–126. [Google Scholar] [CrossRef]
- Vousden, K.H.; Lu, X. Live or Let Die: The Cell’s Response to P53. Nat. Rev. Cancer 2002, 2, 594–604. [Google Scholar] [CrossRef]
- Lacroix, M.; Toillon, R.-A.; Leclercq, G. P53 and Breast Cancer, an Update. Endocr. Relat. Cancer 2006, 13, 293–325. [Google Scholar] [CrossRef] [PubMed]
- Rivlin, N.; Brosh, R.; Oren, M.; Rotter, V. Mutations in the P53 Tumor Suppressor Gene: Important Milestones at the Various Steps of Tumorigenesis. Genes Cancer 2011, 2, 466–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houben, R.; Becker, J.C.; Kappel, A.; Terheyden, P.; Bröcker, E.-B.; Goetz, R.; Rapp, U.R. Constitutive Activation of the Ras-Raf Signaling Pathway in Metastatic Melanoma Is Associated with Poor Prognosis. J. Carcinog. 2004, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polakis, P. Wnt Signaling and Cancer. Genes Dev. 2000, 14, 1837–1851. [Google Scholar] [CrossRef]
- Zhang, L.; Shay, J.W. Multiple Roles of APC and Its Therapeutic Implications in Colorectal Cancer. J. Natl. Cancer Inst. 2017, 109, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Saffroy, R.; Lemoine, A.; Debuire, B.; Brousse, P. Atlas of Genetics and Cytogenetics in Oncology and Haematology. 2004. Available online: https://www.semanticscholar.org/paper/Atlas-of-Genetics-and-Cytogenetics-in-Oncology-and-Saffroy-Lemoine/9e01730f96d96c58e43cd06c0317df77af65e306 (accessed on 15 August 2022).
- Behrens, J. The Role of the Wnt Signalling Pathway in Colorectal Tumorigenesis. Biochem. Soc. Trans. 2005, 33, 672–675. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ten Hagen, K.G. Pleiotropic Effects of O-Glycosylation in Colon Cancer. J. Biol. Chem. 2018, 293, 1315–1316. [Google Scholar] [CrossRef] [Green Version]
- Tikhonov, D.; Kulikova, L.; Kopylov, A.; Malsagova, K.; Stepanov, A.; Rudnev, V.; Kaysheva, A. Super Secondary Structures of Proteins with Post-Translational Modifications in Colon Cancer. Molecules 2020, 25, 3144. [Google Scholar] [CrossRef]
- Karve, T.M.; Cheema, A.K. Small Changes Huge Impact: The Role of Protein Posttranslational Modifications in Cellular Homeostasis and Disease. J. Amino Acids 2011, 2011, 207691. [Google Scholar] [CrossRef] [Green Version]
- Vidal, C.J. Post-Translational Modifications in Health and Disease; Springer: New York, NY, USA, 2010. [Google Scholar]
- Sharma, B.S.; Prabhakaran, V.; Desai, A.P.; Bajpai, J.; Verma, R.J.; Swain, P.K. Post-Translational Modifications (PTMs), from a Cancer Perspective: An Overview. Oncogene 2019, 2, 1–11. [Google Scholar] [CrossRef]
- Pinho, S.S.; Reis, C.A. Glycosylation in Cancer: Mechanisms and Clinical Implications. Nat. Rev. Cancer 2015, 15, 540–555. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, A.; Utratna, M.; O’Dwyer, M.E.; Joshi, L.; Kilcoyne, M. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics. Biomed Res. Int. 2015, 2015, 490531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kailemia, M.J.; Park, D.; Lebrilla, C.B. Glycans and Glycoproteins as Specific Biomarkers for Cancer. Anal. Bioanal. Chem. 2017, 409, 395–410. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.-L.; Hsu, W.-M.; Huang, M.-C.; Kadomatsu, K.; Nakagawara, A. Protein Glycosylation in Cancers and Its Potential Therapeutic Applications in Neuroblastoma. J. Hematol. Oncol. 2016, 9, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantaraamporn, J.; Champattanachai, V.; Khongmanee, A.; Verathamjamras, C.; Prasongsook, N.; Mingkwan, K.; Luevisadpibul, V.; Chutipongtanate, S.; Svasti, J. Glycoproteomic Analysis Reveals Aberrant Expression of Complement C9 and Fibronectin in the Plasma of Patients with Colorectal Cancer. Proteomes 2020, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Herszènyi, L.; Plebani, M.; Carraro, P.; De Paoli, M.; Roveroni, G.; Cardin, R.; Tulassay, Z.; Naccarato, R.; Farinati, F. The Role of Cysteine and Serine Proteases in Colorectal Carcinoma. Cancer 1999, 86, 1135–1142. [Google Scholar] [CrossRef]
- Rodriguez, H.; Zenklusen, J.C.; Staudt, L.M.; Doroshow, J.H.; Lowy, D.R. The next Horizon in Precision Oncology: Proteogenomics to Inform Cancer Diagnosis and Treatment. Cell 2021, 184, 1661–1670. [Google Scholar] [CrossRef]
- Rodon, J.; Soria, J.-C.; Berger, R.; Miller, W.H.; Rubin, E.; Kugel, A.; Tsimberidou, A.; Saintigny, P.; Ackerstein, A.; Braña, I.; et al. Genomic and Transcriptomic Profiling Expands Precision Cancer Medicine: The WINTHER Trial. Nat. Med. 2019, 25, 751–758. [Google Scholar] [CrossRef]
- Chin, L.; Hahn, W.C.; Getz, G.; Meyerson, M. Making Sense of Cancer Genomic Data. Genes Dev. 2011, 25, 534–555. [Google Scholar] [CrossRef] [Green Version]
- Macklin, A.; Khan, S.; Kislinger, T. Recent Advances in Mass Spectrometry Based Clinical Proteomics: Applications to Cancer Research. Clin. Proteom. 2020, 17, 17. [Google Scholar] [CrossRef]
- Claydon, A.J.; Beynon, R. Proteome Dynamics: Revisiting Turnover with a Global Perspective. Mol. Cell. Proteom. 2012, 11, 1551–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauvin, A.; Boisvert, F.-M. Clinical Proteomics in Colorectal Cancer, a Promising Tool for Improving Personalised Medicine. Proteomes 2018, 6, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauvin, A.; Wang, C.-S.; Geha, S.; Garde-Granger, P.; Mathieu, A.-A.; Lacasse, V.; Boisvert, F.-M. The Response to Neoadjuvant Chemoradiotherapy with 5-Fluorouracil in Locally Advanced Rectal Cancer Patients: A Predictive Proteomic Signature. Clin. Proteom. 2018, 15, 1–16. [Google Scholar] [CrossRef]
- Martin, P.; Noonan, S.; Mullen, M.P.; Scaife, C.; Tosetto, M.; Nolan, B.; Wynne, K.; Hyland, J.; Sheahan, K.; Elia, G.; et al. Predicting Response to Vascular Endothelial Growth Factor Inhibitor and Chemotherapy in Metastatic Colorectal Cancer. BMC Cancer 2014, 14, 887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croner, R.S.; Sevim, M.; Metodiev, M.V.; Jo, P.; Ghadimi, M.; Schellerer, V.; Brunner, M.; Geppert, C.; Rau, T.; Stürzl, M.; et al. Identification of Predictive Markers for Response to Neoadjuvant Chemoradiation in Rectal Carcinomas by Proteomic Isotope Coded Protein Label (ICPL) Analysis. Int. J. Mol. Sci. 2016, 17, 209. [Google Scholar] [CrossRef] [Green Version]
- Gong, F.-M.; Peng, X.-C.; Tan, B.-X.; Ge, J.; Chen, X.; Chen, Y.; Xu, F.; Bi, F.; Hou, J.-M.; Liu, J.-Y. Comparative Proteomic Analysis of Irinotecan-Sensitive Colorectal Carcinoma Cell Line and Its Chemoresistant Counterpart. Anticancer Drugs 2011, 22, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, C.; Yu, T.; Chen, T. Proteomic Analysis of Protein Ubiquitination Events in Human Primary and Metastatic Colon Adenocarcinoma Tissues. Front. Oncol. 2020, 10, 1684. [Google Scholar] [CrossRef]
- Venkitachalam, S.; Revoredo, L.; Varadan, V.; Fecteau, R.E.; Ravi, L.; Lutterbaugh, J.; Markowitz, S.D.; Willis, J.E.; Gerken, T.A.; Guda, K. Biochemical and Functional Characterization of Glycosylation-Associated Mutational Landscapes in Colon Cancer. Sci. Rep. 2016, 6, 23642. [Google Scholar] [CrossRef] [Green Version]
- Nesvizhskii, A.I. Proteogenomics: Concepts, Applications and Computational Strategies. Nat. Methods 2014, 11, 1114–1125. [Google Scholar] [CrossRef]
- Mudge, J.M.; Frankish, A.; Harrow, J. Functional Transcriptomics in the Post-ENCODE Era. Genome Res. 2013, 23, 1961–1973. [Google Scholar] [CrossRef]
- Mann, M.; Kulak, N.A.; Nagaraj, N.; Cox, J. The Coming Age of Complete, Accurate, and Ubiquitous Proteomes. Mol. Cell 2013, 49, 583–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, D.N.; Pappin, D.J.; Creasy, D.M.; Cottrell, J.S. Probability-Based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data. Electrophoresis 1999, 20, 3551–3567. [Google Scholar] [CrossRef]
- Ludvigsen, M.; Thorlacius-Ussing, L.; Vorum, H.; Moyer, M.P.; Stender, M.T.; Thorlacius-Ussing, O.; Honoré, B. Proteomic Characterization of Colorectal Cancer Cells versus Normal-Derived Colon Mucosa Cells: Approaching Identification of Novel Diagnostic Protein Biomarkers in Colorectal Cancer. Int. J. Mol. Sci. 2020, 21, 3466. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-Y.; Lee, K.-C.; Tung, S.-Y.; Huang, W.-S.; Teng, C.-C.; Lee, K.-F.; Hsieh, M.-C.; Kuo, H.-C. 2D-DIGE-MS Proteomics Approaches for Identification of Gelsolin and Peroxiredoxin 4 with Lymph Node Metastasis in Colorectal Cancer. Cancers 2022, 14, 3189. [Google Scholar] [CrossRef]
- Hodson, R. Precision Oncology. Nature 2020, 585, S1. [Google Scholar] [CrossRef]
- Di Nicolantonio, F.; Vitiello, P.P.; Marsoni, S.; Siena, S.; Tabernero, J.; Trusolino, L.; Bernards, R.; Bardelli, A. Precision Oncology in Metastatic Colorectal Cancer—From Biology to Medicine. Nat. Rev. Clin. Oncol. 2021, 18, 506–525. [Google Scholar] [CrossRef]
- Ma, Y.-S.; Huang, T.; Zhong, X.-M.; Zhang, H.-W.; Cong, X.-L.; Xu, H.; Lu, G.-X.; Yu, F.; Xue, S.-B.; Lv, Z.-W.; et al. Proteogenomic Characterization and Comprehensive Integrative Genomic Analysis of Human Colorectal Cancer Liver Metastasis. Mol. Cancer 2018, 17, 139. [Google Scholar] [CrossRef] [Green Version]
- Archer, T.C.; Ehrenberger, T.; Mundt, F.; Gold, M.P.; Krug, K.; Mah, C.K.; Mahoney, E.L.; Daniel, C.J.; LeNail, A.; Ramamoorthy, D.; et al. Proteomics, Post-Translational Modifications, and Integrative Analyses Reveal Molecular Heterogeneity within Medulloblastoma Subgroups. Cancer Cell 2018, 34, 396–410.e8. [Google Scholar] [CrossRef] [Green Version]
- Mertins, P.; Mani, D.R.; Ruggles, K.V.; Gillette, M.A.; Clauser, K.R.; Wang, P.; Wang, X.; Qiao, J.W.; Cao, S.; Petralia, F.; et al. Proteogenomics Connects Somatic Mutations to Signalling in Breast Cancer. Nature 2016, 534, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Mundt, F.; Rajput, S.; Li, S.; Ruggles, K.V.; Mooradian, A.D.; Mertins, P.; Gillette, M.A.; Krug, K.; Guo, Z.; Hoog, J.; et al. Mooradian Mass Spectrometry–Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast CancersProteomic. Cancer Res. 2018, 78, 2732–2746. [Google Scholar] [CrossRef]
- Huang, K.-L.; Li, S.; Mertins, P.; Cao, S.; Gunawardena, H.P.; Ruggles, K.V.; Mani, D.R.; Clauser, K.R.; Tanioka, M.; Usary, J.; et al. Proteogenomic Integration Reveals Therapeutic Targets in Breast Cancer Xenografts. Nat. Commun. 2017, 8, 14864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsunuma, R.; Chan, D.W.; Kim, B.-J.; Singh, P.; Han, A.; Saltzman, A.B.; Cheng, C.; Lei, J.T.; Wang, J.; Roberto da Silva, L.; et al. DPYSL3 Modulates Mitosis, Migration, and Epithelial-to-Mesenchymal Transition in Claudin-Low Breast Cancer. Proc. Natl. Acad. Sci. USA 2018, 115, E11978–E11987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, J.T.; Zhang, B. Proteogenomics Drives Therapeutic Hypothesis Generation for Precision Oncology. Br. J. Cancer 2021, 125, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Albulescu, R.; Jose Petrescu, A.; Sarbu, M.; Grigore, A.; Ica, R.; Munteanu, C.V.A.; Albulescu, A.; Militaru, I.V.; Zamfir, A.-D.; Petrescu, S.; et al. Mass Spectrometry for Cancer Biomarkers. In Proteomics Technologies and Applications; IntechOpen: London, UK, 2019; ISBN 9781789846102. [Google Scholar]
- Melchior, K.; Tholey, A.; Heisel, S.; Keller, A.; Lenhof, H.-P.; Meese, E.; Huber, C.G. Proteomic Study of Human Glioblastoma Multiforme Tissue Employing Complementary Two-Dimensional Liquid Chromatography- and Mass Spectrometry-Based Approaches. J. Proteome Res. 2009, 8, 4604–4614. [Google Scholar] [CrossRef]
- Jimenez, L.; Yu, H.; McKenzie, A.J.; Franklin, J.L.; Patton, J.G.; Liu, Q.; Weaver, A.M. Quantitative Proteomic Analysis of Small and Large Extracellular Vesicles (EVs) Reveals Enrichment of Adhesion Proteins in Small EVs. J. Proteome Res. 2019, 18, 947–959. [Google Scholar] [CrossRef]
- Lee, C.-H.; Im, E.-J.; Moon, P.-G.; Baek, M.-C. Discovery of a Diagnostic Biomarker for Colon Cancer through Proteomic Profiling of Small Extracellular Vesicles. BMC Cancer 2018, 18, 1058. [Google Scholar] [CrossRef] [Green Version]
- Moghadamchargari, Z.; Huddleston, J.; Shirzadeh, M.; Zheng, X.; Clemmer, D.E.; M Raushel, F.; Russell, D.H.; Laganowsky, A. Intrinsic GTPase Activity of K-RAS Monitored by Native Mass Spectrometry. Biochemistry 2019, 58, 3396–3405. [Google Scholar] [CrossRef]
- Tokmina-Lukaszewska, M.; Patterson, A.; Berry, L.; Scott, L.; Balasubramanian, N.; Bothner, B. The Role of Mass Spectrometry in Structural Studies of Flavin-Based Electron Bifurcating Enzymes. Front. Microbiol. 2018, 9, 1397. [Google Scholar] [CrossRef]
- Kirshenbaum, N.; Michaelevski, I.; Sharon, M. Analyzing Large Protein Complexes by Structural Mass Spectrometry. J. Vis. Exp. 2010, 40, PMC3149987. [Google Scholar] [CrossRef] [Green Version]
- Laganowsky, A.; Reading, E.; Hopper, J.T.S.; Robinson, C.V. Mass Spectrometry of Intact Membrane Protein Complexes. Nat. Protoc. 2013, 8, 639–651. [Google Scholar] [CrossRef]
- Hofmann, M.H.; Gerlach, D.; Misale, S.; Petronczki, M.; Kraut, N. Expanding the Reach of Precision Oncology by Drugging All KRAS Mutants. Cancer Discov. 2022, 12, 924–937. [Google Scholar] [CrossRef] [PubMed]
- Ratner, N.; Miller, S.J. A RASopathy Gene Commonly Mutated in Cancer: The Neurofibromatosis Type 1 Tumour Suppressor. Nat. Rev. Cancer 2015, 15, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Targeting, K. G12C: From Inhibitory Mechanism to Modulation of Antitumor Effects in Patients. Cell 2020, 183, 850–859. [Google Scholar]
- Liu, H.; Wang, D.; Zhang, Q.; Zhao, Y.; Mamonova, T.; Wang, L.; Zhang, C.; Li, S.; Friedman, P.A.; Xiao, K. Parallel Post-Translational Modification Scanning Enhancing Hydrogen-Deuterium Exchange-Mass Spectrometry Coverage of Key Structural Regions. Anal. Chem. 2019, 91, 6976–6980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Marchi, T.; Pyl, P.T.; Sjöström, M.; Klasson, S.; Sartor, H.; Tran, L.; Pekar, G.; Malmström, J.; Malmström, L.; Niméus, E. Proteogenomic Workflow Reveals Molecular Phenotypes Related to Breast Cancer Mammographic Appearance. J. Proteome Res. 2021, 20, 2983–3001. [Google Scholar] [CrossRef] [PubMed]
- Krug, K.; Jaehnig, E.J.; Satpathy, S.; Blumenberg, L.; Karpova, A.; Anurag, M.; Miles, G.; Mertins, P.; Geffen, Y.; Tang, L.C.; et al. Proteogenomic Landscape of Breast Cancer Tumorigenesis and Targeted Therapy. Cell 2020, 183, 1436–1456.e31. [Google Scholar] [CrossRef]
- Mertins, P.; Tang, L.C.; Krug, K.; Clark, D.J.; Gritsenko, M.A.; Chen, L.; Clauser, K.R.; Clauss, T.R.; Shah, P.; Gillette, M.A.; et al. Reproducible Workflow for Multiplexed Deep-Scale Proteome and Phosphoproteome Analysis of Tumor Tissues by Liquid Chromatography–Mass Spectrometry. Nat. Protoc. 2018, 13, 1632–1661. [Google Scholar] [CrossRef]
- Chen, L.; Liu, S.; Tao, Y. Regulating Tumor Suppressor Genes: Post-Translational Modifications. Signal Transduct. Target. Ther. 2020, 5, 90. [Google Scholar] [CrossRef]
- Wang, B.; Ye, Y.; Yang, X.; Liu, B.; Wang, Z.; Chen, S.; Jiang, K.; Zhang, W.; Jiang, H.; Mustonen, H.; et al. SIRT2-Dependent IDH1 Deacetylation Inhibits Colorectal Cancer and Liver Metastases. EMBO Rep. 2020, 21, e48183. [Google Scholar] [CrossRef]
- D’Arcy, P.; Wang, X.; Linder, S. Deubiquitinase Inhibition as a Cancer Therapeutic Strategy. Pharmacol. Ther. 2015, 147, 32–54. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.-I.; Hong, H.K.; Yeo, S.-Y.; Kim, S.-H.; Cho, Y.B.; Kim, K.K. Ubiquitin-Specific Protease 21 Promotes Colorectal Cancer Metastasis by Acting as a Fra-1 Deubiquitinase. Cancers 2020, 12, 207. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Kim, B.-G.; Han, W.H.; Lee, J.H.; Cho, J.-Y.; Park, W.S.; Maurice, M.M.; Han, J.-K.; Lee, M.J.; Finley, D.; et al. Deubiquitination of Dishevelled by Usp14 Is Required for Wnt Signaling. Oncogenesis 2013, 2, e64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, S.-I.; Kim, H.H.; Yoon, J.H.; Park, W.S.; Hahn, M.-J.; Kim, H.C.; Chung, C.H.; Kim, K.K. Ubiquitin Specific Protease 4 Positively Regulates the WNT/β-Catenin Signaling in Colorectal Cancer. Mol. Oncol. 2015, 9, 1834–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, P.; Yang, X.; Kong, Q.; Li, C.; Yang, S.; Li, Y.; Mao, B. The Ubiquitin Ligase RNF220 Enhances Canonical Wnt Signaling through USP7-Mediated Deubiquitination of β-Catenin. Mol. Cell. Biol. 2014, 34, 4355–4366. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Gorina, S.; Jeffrey, P.D.; Pavletich, N.P. Crystal Structure of a P53 Tumor Suppressor-DNA Complex: Understanding Tumorigenic Mutations. Science 1994, 265, 346–355. [Google Scholar] [CrossRef]
- Xing, Y.; Clements, W.K.; Le Trong, I.; Hinds, T.R.; Stenkamp, R.; Kimelman, D.; Xu, W. Crystal Structure of a Beta-Catenin/APC Complex Reveals a Critical Role for APC Phosphorylation in APC Function. Mol. Cell 2004, 15, 523–533. [Google Scholar] [CrossRef]
- Xing, Y.; Clements, W.K.; Kimelman, D.; Xu, W. Crystal Structure of a Beta-Catenin/Axin Complex Suggests a Mechanism for the Beta-Catenin Destruction Complex. Genes Dev. 2003, 17, 2753–2764. [Google Scholar] [CrossRef] [Green Version]
- Pantsar, T. The Current Understanding of KRAS Protein Structure and Dynamics. Comput. Struct. Biotechnol. J. 2020, 18, 189–198. [Google Scholar] [CrossRef]
- Ode, H.; Matsuyama, S.; Hata, M.; Neya, S.; Kakizawa, J.; Sugiura, W.; Hoshino, T. Computational Characterization of Structural Role of the Non-Active Site Mutation M36I of Human Immunodeficiency Virus Type 1 Protease. J. Mol. Biol. 2007, 370, 598–607. [Google Scholar] [CrossRef] [Green Version]
- Lorch, M.; Mason, J.M.; Sessions, R.B.; Clarke, A.R. Effects of Mutations on the Thermodynamics of a Protein Folding Reaction: Implications for the Mechanism of Formation of the Intermediate and Transition States. Biochemistry 2000, 39, 3480–3485. [Google Scholar] [CrossRef]
- Lorch, M.; Mason, J.M.; Clarke, A.R.; Parker, M.J. Effects of Core Mutations on the Folding of a Beta-Sheet Protein: Implications for Backbone Organization in the I-State. Biochemistry 1999, 38, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Alfalah, M.; Keiser, M.; Leeb, T.; Zimmer, K.-P.; Naim, H.Y. Compound Heterozygous Mutations Affect Protein Folding and Function in Patients with Congenital Sucrase-Isomaltase Deficiency. Gastroenterology 2009, 136, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Koukouritaki, S.B.; Poch, M.T.; Henderson, M.C.; Siddens, L.K.; Krueger, S.K.; VanDyke, J.E.; Williams, D.E.; Pajewski, N.M.; Wang, T.; Hines, R.N. Identification and Functional Analysis of Common Human Flavin-Containing Monooxygenase 3 Genetic Variants. J. Pharmacol. Exp. Ther. 2007, 320, 266–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cristofaro, R.; Carotti, A.; Akhavan, S.; Palla, R.; Peyvandi, F.; Altomare, C.; Mannucci, P.M. The Natural Mutation by Deletion of Lys9 in the Thrombin A-Chain Affects the PKa Value of Catalytic Residues, the Overall Enzyme’s Stability and Conformational Transitions Linked to Na Binding. FEBS J. 2006, 273, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Ruas, M.; Gregory, F.; Moulin, S.; Delia, D.; Manoukian, S.; Rowe, J.; Brookes, S.; Peters, G. A CDKN2A Mutation in Familial Melanoma That Abrogates Binding of P16INK4a to CDK4 but Not CDK6. Cancer Res. 2007, 67, 9134–9141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ung, M.-U.; Lu, B.; McCammon, J.A. E230Q Mutation of the Catalytic Subunit of CAMP-Dependent Protein Kinase Affects Local Structure and the Binding of Peptide Inhibitor. Biopolymers 2006, 81, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Rignall, T.R.; Baker, J.O.; McCarter, S.L.; Adney, W.S.; Vinzant, T.B.; Decker, S.R.; Himmel, M.E. Effect of Single Active-Site Cleft Mutation on Product Specificity in a Thermostable Bacterial Cellulase. Biotechnol. Fuels Chem. 2002, 98, 383–394. [Google Scholar]
- Hardt, M.; Laine, R.A. Mutation of Active Site Residues in the Chitin-Binding Domain ChBDChiA1 from Chitinase A1 of Bacillus Circulans Alters Substrate Specificity: Use of a Green Fluorescent Protein Binding Assay. Arch. Biochem. Biophys. 2004, 426, 286–297. [Google Scholar] [CrossRef]
- Tiede, S.; Cantz, M.; Spranger, J.; Braulke, T. Missense Mutation in TheN-Acetylglucosamine-1-Phosphotransferase Gene (GNPTA) in a Patient with Mucolipidosis II Induces Changes in the Size and Cellular Distribution of GNPTG. Hum. Mutat. 2006, 27, 830–831. [Google Scholar] [CrossRef]
- Krumbholz, M.; Koehler, K.; Huebner, A. Cellular Localization of 17 Natural Mutant Variants of ALADIN Protein in Triple A Syndrome—Shedding Light on an Unexpected Splice Mutation. Biochem. Cell Biol. 2006, 84, 243–249. [Google Scholar] [CrossRef]
- Kiel, C.; Serrano, L. Complexities in Quantitative Systems Analysis of Signaling Networks. Comput. Syst. Biol. 2014, 65–88. [Google Scholar]
- Cabrera, H.S.; Medina, I.C.; Tayo, L.L. In Silico Screening of Inhibitors of P53-MDM2 Protein Complex through Homology Modelling and Molecular Docking. AIP Conf. Proc. 2018, 2045, 020075. [Google Scholar]
- e Zahra, S.N.; Khattak, N.A.; Mir, A. Comparative Modeling and Docking Studies of P16ink4/Cyclin D1/Rb Pathway Genes in Lung Cancer Revealed Functionally Interactive Residue of RB1 and Its Functional Partner E2F1. Theor. Biol. Med. Model. 2013, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Roy, A.S.; Islam, M.S. In Silico Analysis Predicting Effects of Deleterious SNPs of Human RASSF5 Gene on Its Structure and Functions. Sci. Rep. 2020, 10, 14542. [Google Scholar] [CrossRef] [PubMed]
- Govindarasu, M.; Ganeshan, S.; Ansari, M.A.; Alomary, M.N.; AlYahya, S.; Alghamdi, S.; Almehmadi, M.; Rajakumar, G.; Thiruvengadam, M.; Vaiyapuri, M. In Silico Modeling and Molecular Docking Insights of Kaempferitrin for Colon Cancer-Related Molecular Targets. J. Saudi Chem. Soc. 2021, 25, 101319. [Google Scholar] [CrossRef]
- Rosita, A.S.; Begum, T.N. Molecular Docking Analysis of the TNIK Receptor Protein with a Potential Inhibitor from the NPACT Databas. Bioinformation 2020, 16, 387–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvaraj, J.; Ponnulakshmi, R.; Abilasha, S.; Nalini, D.; Vijayalakshmi, P.; Vishnupriya, V.; Mohan, S.K. Docking Analysis of Importin-11 Homology Model with the Phyto Compounds towards Colorectal Cancer Treatment. Bioinformation 2020, 16, 153–159. [Google Scholar] [CrossRef]
- Edelman, L.B.; Eddy, J.A.; Price, N.D. In Silico Models of Cancer. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010, 2, 438–459. [Google Scholar] [CrossRef]
- Ang, C.S.; Baker, M.S.; Nice, E.C. Chapter Thirteen—Mass Spectrometry-Based Analysis for the Discovery and Validation of Potential Colorectal Cancer Stool Biomarkers. In Methods in Enzymology; Shukla, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 586, pp. 247–274. [Google Scholar]
- Atak, A.; Khurana, S.; Gollapalli, K.; Reddy, P.J.; Levy, R.; Ben-Salmon, S.; Hollander, D.; Donyo, M.; Heit, A.; Hotz-Wagenblatt, A.; et al. Quantitative Mass Spectrometry Analysis Reveals a Panel of Nine Proteins as Diagnostic Markers for Colon Adenocarcinomas. Oncotarget 2018, 9, 13530–13544. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.-L.; Chan, D.W. Enzymes and Related Proteins as Cancer Biomarkers: A Proteomic Approach. Clin. Chim. Acta 2007, 381, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Luttrell, J., 4th; Zhang, N.; Khan, S.; Shi, N.; Wang, M.X.; Kang, J.-Q.; Wang, Z.; Xu, D. Exploring Human Diseases and Biological Mechanisms by Protein Structure Prediction and Modeling. Adv. Exp. Med. Biol. 2016, 939, 39–61. [Google Scholar] [PubMed]
- Ocak, S.; Chaurand, P.; Massion, P.P. Mass Spectrometry-Based Proteomic Profiling of Lung Cancer. Proc. Am. Thorac. Soc. 2009, 6, 159–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhlman, B.; Bradley, P. Advances in Protein Structure Prediction and Design. Nat. Rev. Mol. Cell Biol. 2019, 20, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Belsom, A.; Rappsilber, J. Protein Tertiary Structure by Crosslinking/Mass Spectrometry. Trends Biochem. Sci. 2018, 43, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, W.R. An Introduction to Sequence Similarity (“homology”) Searching. Curr. Protoc. Bioinform. 2013, 42, 3.1.1–3.1.8. [Google Scholar] [CrossRef] [Green Version]
- Webb, B.; Sali, A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinform. 2016, 54, 5–6. [Google Scholar] [CrossRef] [Green Version]
- Hazai, E.; Bikádi, Z. Homology Modeling of Breast Cancer Resistance Protein (ABCG2). J. Struct. Biol. 2008, 162, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Shehadi, I.A.; Rashdan, H.R.M.; Abdelmonsef, A.H. Homology Modeling and Virtual Screening Studies of Antigen MLAA-42 Protein: Identification of Novel Drug Candidates against Leukemia-An In Silico Approach. Comput. Math. Methods Med. 2020, 2020, 8196147. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, G.; Hwang, E.C.; Kang, T.W.; Kwon, D.D.; Park, K.; Lee, J.-J.; Lakshmanan, V.-K. Computational Modeling of Complete HOXB13 Protein for Predicting the Functional Effect of SNPs and the Associated Role in Hereditary Prostate Cancer. Sci. Rep. 2017, 7, 43830. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein Structure and Function Prediction. Nat. Methods 2014, 12, 7–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A Unified Platform for Automated Protein Structure and Function Prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y. I-TASSER Server for Protein 3D Structure Prediction. BMC Bioinform. 2008, 9, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardin, C.; Pogorelov, T.V.; Luthey-Schulten, Z. Ab Initio Protein Structure Prediction. Curr. Opin. Struct. Biol. 2002, 12, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, S.; Park, H.; Kim, D.E.; DiMaio, F.; Baker, D. Protein Structure Prediction Using Rosetta in CASP12. Proteins 2018, 86 (Suppl. 1), 113–121. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhang, Y. Ab Initio Protein Structure Assembly Using Continuous Structure Fragments and Optimized Knowledge-Based Force Field. Proteins 2012, 80, 1715–1735. [Google Scholar] [CrossRef] [Green Version]
- Mortuza, S.M.; Zheng, W.; Zhang, C.; Li, Y.; Pearce, R.; Zhang, Y. Improving Fragment-Based Ab Initio Protein Structure Assembly Using Low-Accuracy Contact-Map Predictions. Nat. Commun. 2021, 12, 5011. [Google Scholar] [CrossRef]
- Adhikari, B.; Cheng, J. CONFOLD2: Improved Contact-Driven Ab Initio Protein Structure Modeling. BMC Bioinform. 2018, 19, 22. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Wu, S.; Zhang, Y. Ab Initio Protein Structure Prediction. In From Protein Structure to Function with Bioinformatics; Springer: Dordrecht, The Netherlands, 2008; ISBN 9781402090578. [Google Scholar]
- Rost, B.; Schneider, R.; Sander, C. Protein Fold Recognition by Prediction-Based Threading. J. Mol. Biol. 1997, 270, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. Progress and Challenges in Protein Structure Prediction. Curr. Opin. Struct. Biol. 2008, 18, 342–348. [Google Scholar] [CrossRef] [Green Version]
- Warnecke, A.; Sandalova, T.; Achour, A.; Harris, R.A. PyTMs: A Useful PyMOL Plugin for Modeling Common Post-Translational Modifications. BMC Bioinform. 2014, 15, 370. [Google Scholar] [CrossRef] [PubMed]
- Berney, C.R.; Fisher, R.J.; Yang, J.; Russell, P.J.; Crowe, P.J. Protein Markers in Colorectal Cancer: Predictors of Liver Metastasis. Ann. Surg. 1999, 230, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Zhang, Z.; Jia, H.; Ma, J.; Wu, C.; Xue, P.; Cai, W.; Zhang, X.; Sun, J. CAMTA1-PPP3CA-NFATc4 Multi-Protein Complex Mediates the Resistance of Colorectal Cancer to Oxaliplatin. Cell Death Discov. 2022, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro Web Server for Protein-Protein Docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Liu, F.; Wang, W. Regulation of the DNA Damage Response by P53 Cofactors. Biophys. J. 2012, 102, 2251–2260. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.; Denk, S.; Wiegering, A. Targeting Protein Synthesis in Colorectal Cancer. Cancers 2020, 12, 1298. [Google Scholar] [CrossRef]
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, a Protein-Small Molecule Docking Web Service Based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Kosinski, J.; von Appen, A.; Ori, A.; Karius, K.; Müller, C.W.; Beck, M. Xlink Analyzer: Software for Analysis and Visualization of Cross-Linking Data in the Context of Three-Dimensional Structures. J. Struct. Biol. 2015, 189, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-L.; Zhou, J.; Chen, Z.-R.; Chng, W.-J. P53 Mutations in Colorectal Cancer—Molecular Pathogenesis and Pharmacological Reactivation. World J. Gastroenterol. 2015, 21, 84–93. [Google Scholar] [CrossRef]
- Xie, J.; Zheng, J.; Hong, X.; Tong, X.; Liu, X.; Song, Q.; Liu, S.; Liu, S. Protein-DNA Complex Structure Modeling Based on Structural Template. Biochem. Biophys. Res. Commun. 2021, 577, 152–157. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, J.; Zhou, Y.; Yang, Y. Predicting DNA-Binding Proteins and Binding Residues by Complex Structure Prediction and Application to Human Proteome. PLoS ONE 2014, 9, e96694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Xie, J.; Hong, X.; Liu, S. RMalign: An RNA Structural Alignment Tool Based on a Novel Scoring Function RMscore. BMC Genom. 2019, 20, 276. [Google Scholar] [CrossRef] [Green Version]
- Lazar, I.M.; Karcini, A.; Ahuja, S.; Estrada-Palma, C. Proteogenomic Analysis of Protein Sequence Alterations in Breast Cancer Cells. Sci. Rep. 2019, 9, 10381. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, M.; Sadeghi-Aliabadi, H.; Hassanzadeh, F.; Amanlou, M. Prediction of Dual Agents as an Activator of Mutant P53 and Inhibitor of Hsp90 by Docking, Molecular Dynamic Simulation and Virtual Screening. J. Mol. Graph. Model. 2015, 61, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.S.; Mhoumadi, Y.; Verma, C.S. Roles of Computational Modelling in Understanding P53 Structure, Biology, and Its Therapeutic Targeting. J. Mol. Cell Biol. 2019, 11, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An Environment for Comparative Protein Modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, K.; Kar, S.; Das, R.N. Chapter 5—Computational Chemistry. In Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment; Roy, K., Kar, S., Das, R.N., Eds.; Academic Press: Boston, UK, 2015; ISBN 9780128015056. [Google Scholar]
- Sarkar, S.; Gupta, S.; Chakraborty, W.; Senapati, S.; Gachhui, R. Homology Modeling, Molecular Docking and Molecular Dynamics Studies of the Catalytic Domain of Chitin Deacetylase from Cryptococcus Laurentii Strain RY1. Int. J. Biol. Macromol. 2017, 104, 1682–1691. [Google Scholar] [CrossRef] [PubMed]
- Hospital, A.; Goñi, J.R.; Orozco, M.; Gelpí, J.L. Molecular Dynamics Simulations: Advances and Applications. Adv. Appl. Bioinform. Chem. 2015, 8, 37–47. [Google Scholar] [PubMed] [Green Version]
- Case, D.A.; Darden, T.A.; Cheatham, T.E.; Simmerling, C.; Wang, J. Others AMBER 12 San Francisco: University of California. 2012. Available online: https://ambermd.org/doc12/Amber12.pdf (accessed on 21 August 2022).
- Nelson, M.T.; Humphrey, W.; Gursoy, A.; Dalke, A.; Kalé, L.V.; Skeel, R.D.; Schulten, K. NAMD: A Parallel, Object-Oriented Molecular Dynamics Program. Int. J. Supercomput. Appl. High Perform. Comput. 1996, 10, 251–268. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef]
- Brooks, B.R.; Brooks, C.L., 3rd; Mackerell, A.D., Jr.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef] [Green Version]
- Weis, D.D. Hydrogen Exchange Mass Spectrometry of Proteins: Fundamentals, Methods, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 9781118616499. [Google Scholar]
- Vallat, B.; Webb, B.; Westbrook, J.; Sali, A.; Berman, H.M. Archiving and Disseminating Integrative Structure Models. J. Biomol. NMR 2019, 73, 385–398. [Google Scholar] [CrossRef] [Green Version]
- Dokholyan, N.V. Experimentally-Driven Protein Structure Modeling. J. Proteom. 2020, 220, 103777. [Google Scholar] [CrossRef]
- Huang, L.; So, P.-K.; Yao, Z.-P. Protein Dynamics Revealed by Hydrogen/Deuterium Exchange Mass Spectrometry: Correlation between Experiments and Simulation. Rapid Commun. Mass Spectrom. 2019, 33 (Suppl. 3), 83–89. [Google Scholar] [CrossRef]
- Makepeace, K.A.T.; Brodie, N.I.; Popov, K.I.; Gudavicius, G.; Nelson, C.J.; Petrotchenko, E.V.; Dokholyan, N.V.; Borchers, C.H. Ligand-Induced Disorder-to-Order Transitions Characterized by Structural Proteomics and Molecular Dynamics Simulations. J. Proteom. 2020, 211, 103544. [Google Scholar] [CrossRef]
- Frame, N.M.; Kumanan, M.; Wales, T.E.; Bandara, A.; Fändrich, M.; Straub, J.E.; Engen, J.R.; Gursky, O. Structural Basis for Lipid Binding and Function by an Evolutionarily Conserved Protein, Serum Amyloid A. J. Mol. Biol. 2020, 432, 1978–1995. [Google Scholar] [CrossRef]
- Paço, L.; Zarate-Perez, F.; Clouser, A.F.; Atkins, W.M.; Hackett, J.C. Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase. Biochemistry 2020, 59, 2999–3009. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, S.; Widjaja, M.A.; Gomez, J.S.; Crowhurst, K.A.; Abrol, R. The Complex Role of the N-Terminus and Acidic Residues of HdeA as PH-Dependent Switches in Its Chaperone Function. Biophys. Chem. 2020, 264, 106406. [Google Scholar] [CrossRef] [PubMed]
- Devaurs, D.; Antunes, D.A.; Kavraki, L.E. Computational Analysis of Complement Inhibitor Compstatin Using Molecular Dynamics. J. Mol. Model. 2020, 26, 231. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Martens, C.; Shekhar, M.; Pant, S.; Pellowe, G.A.; Lau, A.M.; Findlay, H.E.; Harris, N.J.; Tajkhorshid, E.; Booth, P.J.; et al. Hydrogen-Deuterium Exchange Mass Spectrometry Captures Distinct Dynamics upon Substrate and Inhibitor Binding to a Transporter. Nat. Commun. 2020, 11, 6162. [Google Scholar] [CrossRef]
- Redhair, M.; Hackett, J.C.; Pelletier, R.D.; Atkins, W.M. Dynamics and Location of the Allosteric Midazolam Site in Cytochrome P4503A4 in Lipid Nanodiscs. Biochemistry 2020, 59, 766–779. [Google Scholar] [CrossRef]
- Huang, L.; So, P.-K.; Chen, Y.W.; Leung, Y.-C.; Yao, Z.-P. Conformational Dynamics of the Helix 10 Region as an Allosteric Site in Class A β-Lactamase Inhibitory Binding. J. Am. Chem. Soc. 2020, 142, 13756–13767. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, Y.; Simms, J.; Warner, M.L.; Poyner, D.R.; Chung, K.Y.; Pioszak, A.A. Calcitonin Receptor N-Glycosylation Enhances Peptide Hormone Affinity by Controlling Receptor Dynamics. FASEB J. 2020, 34, 1. [Google Scholar]
- Medina, E.; Villalobos, P.; Hamilton, G.L.; Komives, E.A.; Sanabria, H.; Ramírez-Sarmiento, C.A.; Babul, J. Intrinsically Disordered Regions of the DNA-Binding Domain of Human FoxP1 Facilitate Domain Swapping. J. Mol. Biol. 2020, 432, 5411–5429. [Google Scholar] [CrossRef]
- Devaurs, D.; Antunes, D.A.; Borysik, A.J. Computational Modeling of Molecular Structures Guided by Hydrogen-Exchange Data. J. Am. Soc. Mass Spectrom. 2022, 33, 215–237. [Google Scholar] [CrossRef]
- Gygi, S.P.; Rochon, Y.; Franza, B.R.; Aebersold, R. Correlation between Protein and MRNA Abundance in Yeast. Mol. Cell. Biol. 1999, 19, 1720–1730. [Google Scholar] [CrossRef] [Green Version]
- Vogel, C.; Marcotte, E.M. Insights into the Regulation of Protein Abundance from Proteomic and Transcriptomic Analyses. Nat. Rev. Genet. 2012, 13, 227–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faulkner, S.; Dun, M.D.; Hondermarck, H. Proteogenomics: Emergence and Promise. Cell. Mol. Life Sci. 2015, 72, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Rawla, P.; Sunkara, T.; Barsouk, A. Epidemiology of Colorectal Cancer: Incidence, Mortality, Survival, and Risk Factors. Prz. Gastroenterol. 2019, 14, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.; Mastalier, B. Genetics of Colorectal Cancer. J. Med. Life 2014, 7, 507–511. [Google Scholar]
Genes | Locations | Function | Mutation Outcomes |
---|---|---|---|
KRAS | 12p12 | Proto-oncogenes have intrinsic GTPase activity | Trigger the transduction of differentiative signals, even without any extracellular stimuli [12,16,17] |
TP53 | short (p) arm of chromosome 17 | Ensures cell cycle arrest and apoptosis to maintain genomic integrity | Results in the formation of a stable protein that no more can bind the DNA and activates target genes [12,18,19] |
APC | 5q21 | Controls transcription of several cell proliferation genes | Increases transcription of β-Catenin targets including cyclin D, ephrins, caspases, and C-myc [12] |
BRAF | 3p22-p21.3 | Proto-oncogene | Results in being constitutionally active in a RAS independent manner [12,20] |
SMAD4 | long arm (q) of chromosome 18 at band 21.1 | Regulate transcription of target genes, and act as a tumor-suppressor gene | Unable to regulate gene transcription, disrupt TGF-β signaling [12,21,22,23,24] |
β-Catenin | 3p22-p21.3 | Transactivate target genes that inhibit apoptosis or encourage cell proliferation | Wnt-signaling activation [12] |
AXIN1 and AXIN2 | 16p13.3 and 17q24.1 | Down-regulate WNT pathway | Unable to regulate targeted pathways [12,25] |
Protein Modeling System | Advantages | Disadvantages | Reference |
---|---|---|---|
Homology modeling | High-resolution structures can be generated | Physicochemical principle of protein modeling cannot be deciphered | [143] |
Modeling by threading/fold recognition | Works better for proteins when templates available are of distant homologies | The structures are less reliable than homology modeling | [144] |
Ab initio strategy | Answers on how the protein takes a specific structure out of many structural possibilities | Less reliable for larger protein structures composed of more than 150 residues | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, S. Proteogenomic Approaches to Understand Gene Mutations and Protein Structural Alterations in Colon Cancer. Physiologia 2023, 3, 11-29. https://doi.org/10.3390/physiologia3010002
Sarkar S. Proteogenomic Approaches to Understand Gene Mutations and Protein Structural Alterations in Colon Cancer. Physiologia. 2023; 3(1):11-29. https://doi.org/10.3390/physiologia3010002
Chicago/Turabian StyleSarkar, Soumyadev. 2023. "Proteogenomic Approaches to Understand Gene Mutations and Protein Structural Alterations in Colon Cancer" Physiologia 3, no. 1: 11-29. https://doi.org/10.3390/physiologia3010002
APA StyleSarkar, S. (2023). Proteogenomic Approaches to Understand Gene Mutations and Protein Structural Alterations in Colon Cancer. Physiologia, 3(1), 11-29. https://doi.org/10.3390/physiologia3010002