Strategies to Improve Physiological and Psychological Components of Resiliency in Firefighters
Abstract
:1. Introduction
2. Strategies to Improve Components of Resilience
2.1. Exercise
2.1.1. Exercise & Psychological Components of Resilience
2.1.2. Exercise and Physiological Components of Resilience
2.1.3. Intervention
2.2. Mindfulness
2.2.1. Mindfulness and Psychological Components of Resilience
2.2.2. Mindfulness and Physiological Components of Resilience
2.2.3. Intervention
2.3. Social Support
2.3.1. Social Support and Psychological Components of Resilience
2.3.2. Social Support and Physiological Components of Resilience
2.3.3. Intervention
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Straud, C.; Henderson, S.N.; Vega, L.; Black, R.; Van Hasselt, V. Resiliency and posttraumatic stress symptoms in firefighter paramedics: The mediating role of depression, anxiety, and sleep. Traumatology 2018, 24, 140. [Google Scholar] [CrossRef]
- Perroni, F.; Guidetti, L.; Cignitti, L.; Baldari, C. Psychophysiological responses of firefighters to emergencies: A review. Open Sports Sci. J. 2014, 7 (Suppl.-1, M3), 8–15. [Google Scholar] [CrossRef]
- Vogt, D.S.; King, D.W.; King, L.A. Risk pathways for PTSD: Making sense of the literature. In Handbook of PTSD: Science and Practice, 2nd ed.; Guilford Press: New York, NY, USA, 2014; pp. 146–165. [Google Scholar]
- Del Ben, K.S.; Scotti, J.R.; Chen, Y.C.; Fortson, B.L. Prevalence of posttraumatic stress disorder symptoms in firefighters. Work Stress 2006, 20, 37–48. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Washington, DC, USA, 2013; Volume 5. [Google Scholar]
- Silverman, M.N.; Deuster, P.A. Biological mechanisms underlying the role of physical fitness in health and resilience. Interface Focus. 2014, 4, 20140040. [Google Scholar] [CrossRef] [PubMed]
- Rutter, M. Psychosocial resilience and protective mechanisms. Am. J. Orthopsychiatry 1987, 57, 316–331. [Google Scholar] [CrossRef]
- Britt, T.W.; Sinclair, R.R.; McFadden, A.C. Introduction: The meaning and importance of military resilience. In Building Psychological Resilience in Military Personnel; American Psychological Association: Washington, DC, USA, 2013; pp. 3–17. [Google Scholar] [CrossRef]
- Connor, K.M.; Davidson, J.R. Development of a new resilience scale: The Connor-Davidson Resilience Scale (CD-RISC). Depress. Anxiety 2003, 18, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, G.A. Loss, trauma, and human resilience: Have we underestimated the human capacity to thrive after extremely aversive events? Am. Psychol. 2004, 59, 20–28. [Google Scholar] [CrossRef]
- Hu, T.; Zhang, D.; Wang, J. A meta-analysis of the trait resilience and mental health. Pers. Individ. Differ. 2015, 76, 18–27. [Google Scholar] [CrossRef]
- Bezdjian, S.; Schneider, K.G.; Burchett, D.; Baker, M.T.; Garb, H.N. Resilience in the United States Air Force: Psychometric properties of the Connor-Davidson Resilience Scale (CD-RISC). Psychol. Assess. 2017, 29, 479–485. [Google Scholar] [CrossRef]
- Shrivastava, A.; Desousa, A. Resilience: A psychobiological construct for psychiatric disorders. Indian J. Psychiatry 2016, 58, 38–43. [Google Scholar] [CrossRef]
- Kocalevent, R.D.; Hinz, A.; Brähler, E. Standardization of the depression screener patient health questionnaire (PHQ-9) in the general population. Gen. Hosp. Psychiatry 2013, 35, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Löwe, B.; Decker, O.; Müller, S.; Brähler, E.; Schellberg, D.; Herzog, W.; Herzberg, P.Y. Validation and standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the general population. Med. Care. 2008, 46, 266–274. [Google Scholar] [CrossRef]
- Weathers, F.W.; Litz, B.T.; Herman, D.S.; Huska, J.A.; Keane, T.M. The PTSD Checklist (PCL): Reliability, Validity, and Diagnostic Utility; Annual Convention of the International Society for Traumatic Stress Studies: San Antonio, TX, USA, 1993; Volume 462. [Google Scholar]
- Sapolsky, R.M. Stress hormones: Good and bad. Neurobiol. Dis. 2000, 7, 540–542. [Google Scholar] [CrossRef]
- Ozbay, F.; Johnson, D.C.; Dimoulas, E.; Morgan, C.A.; Charney, D.; Southwick, S. Social support and resilience to stress: From neurobiology to clinical practice. Psychiatry 2007, 4, 35–40. [Google Scholar] [PubMed]
- Russo, S.J.; Murrough, J.W.; Han, M.H.; Charney, D.S.; Nestler, E.J. Neurobiology of resilience. Nat. Neurosci. 2012, 15, 1475–1484. [Google Scholar] [CrossRef]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef]
- Charney, D.S. Psychobiological mechanisms of resilience and vulnerability: Implications for successful adaptation to extreme stress. Am. J. Psychiatry 2004, 161, 195–216. [Google Scholar] [CrossRef]
- Rasmusson, A.M.; Vythilingam, M.; Morgan, C.A., 3rd. The neuroendocrinology of posttraumatic stress disorder: New directions. CNS Spectr. 2003, 8, 651–667. [Google Scholar] [CrossRef]
- Ledford, A.K.; Dixon, D.; Luning, C.R.; Martin, B.J.; Miles, P.C.; Beckner, M.; Bennett, D.; Conley, J.; Nindl, B.C. Psychological and Physiological Predictors of Resilience in Navy SEAL Training. Behav. Med. 2020, 46, 290–301. [Google Scholar] [CrossRef]
- Taliaz, D.; Loya, A.; Gersner, R.; Haramati, S.; Chen, A.; Zangen, A. Resilience to chronic stress is mediated by hippocampal brain-derived neurotrophic factor. J. Neurosci. 2011, 31, 4475–4483. [Google Scholar] [CrossRef]
- Linz, R.; Puhlmann, L.M.C.; Apostolakou, F.; Mantzou, E.; Papassotiriou, I.; Chrousos, G.P.; Engert, V.; Singer, T. Acute psychosocial stress increases serum BDNF levels: An antagonistic relation to cortisol but no group differences after mental training. Neuropsychopharmacology 2019, 44, 1797–1804. [Google Scholar] [CrossRef]
- Karatsoreos, I.N.; McEwen, B.S. Psychobiological allostasis: Resistance, resilience and vulnerability. Trends Cogn. Sci. 2011, 15, 576–584. [Google Scholar] [CrossRef]
- Rothman, S.M.; Mattson, M.P. Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience 2013, 239, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public. Health Rep. 1985, 100, 126–131. [Google Scholar] [PubMed]
- Fahmy, H.; Tarun, D. Mental Health Atlas 2020; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Powers, S.K.; Deminice, R.; Ozdemir, M.; Yoshihara, T.; Bomkamp, M.P.; Hyatt, H. Exercise-induced oxidative stress: Friend or foe? J. Sport. Health Sci. 2020, 9, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Little, L.M.; Simmons, B.L.; Nelson, D.L. Health among leaders: Positive and negative affect, engagement and burnout, forgiveness and revenge. J. Manag. Stud. 2007, 44, 243–260. [Google Scholar] [CrossRef]
- American Psychological Association. Ethical Principles of Psychologists and Code of Conduct (2002, Amended Effective 1 June 2010, and 1 January 2017). Available online: https://www.apa.org/ethics/code/ (accessed on 30 July 2023).
- Heydari, A.; Ostadtaghizadeh, A.; Khorasani-Zavareh, D.; Ardalan, A.; Ebadi, A.; Mohammadfam, I.; Shafaei, H. Building Resilience in Firefighters: A Systematic Review. Iran. J. Public. Health 2022, 51, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.R.; McClave, S.A.; Jampolis, M.B.; Hurt, R.T.; Krueger, K.; Landes, S.; Collier, B. The health benefits of exercise and physical activity. Curr. Nutr. Rep. 2016, 5, 204–212. [Google Scholar] [CrossRef]
- Penedo, F.J.; Dahn, J.R. Exercise and well-being: A review of mental and physical health benefits associated with physical activity. Curr. Opin. Psychiatry 2005, 18, 189–193. [Google Scholar] [CrossRef]
- Childs, E.; de Wit, H. Regular exercise is associated with emotional resilience to acute stress in healthy adults. Front. Physiol. 2014, 5, 161. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Kuang, J.; Herold, F.; Ludyga, S.; Li, J.; Hall, D.L.; Taylor, A.; Healy, S.; Yeung, A.S.; et al. The roles of exercise tolerance and resilience in the effect of physical activity on emotional states among college students. Int. J. Clin. Health Psychol. 2022, 22, 100312. [Google Scholar] [CrossRef] [PubMed]
- Wild, J.; Greenberg, N.; Moulds, M.L.; Sharp, M.L.; Fear, N.; Harvey, S.; Wessely, S.; Bryant, R.A. Pre-incident Training to Build Resilience in First Responders: Recommendations on What to and What Not to Do. Psychiatry 2020, 83, 128–142. [Google Scholar] [CrossRef]
- SAMHSA; Center for Behavioral Health Statistics and Quality. National Survey on Drug Use and Health, 2008–2018. Available online: https://www.samhsa.gov/data/release/2018-national-survey-drug-use-and-health-nsduh-releases (accessed on 30 July 2023).
- Dowdall-Thomae, C.; Gilkey, J.; Larson, W.; Arend-Hicks, R. Elite firefighter/first responder mindsets and outcome coping efficacy. Int. J. Emerg. Ment. Health 2012, 14, 269–281. [Google Scholar]
- Fraess-Phillips, A.; Wagner, S.; Harris, L.R. Firefighters and traumatic stress: A review. Int. J. Emerg. Serv. 2017, 6, 67–80. [Google Scholar] [CrossRef]
- Carek, P.J.; Laibstain, S.E.; Carek, S.M. Exercise for the treatment of depression and anxiety. Int. J. Psychiatry Med. 2011, 41, 15–28. [Google Scholar] [CrossRef]
- Jayakody, K.; Gunadasa, S.; Hosker, C. Exercise for anxiety disorders: Systematic review. Br. J. Sports Med. 2014, 48, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Yang, J.; Lin, L.; Chen, S. Physical Exercise Ameliorates Anxiety, Depression and Sleep Quality in College Students: Experimental Evidence from Exercise Intensity and Frequency. Behav. Sci. 2022, 12, 61. [Google Scholar] [CrossRef]
- Gerber, M.; Pühse, U. Review article: Do exercise and fitness protect against stress-induced health complaints? A review of the literature. Scand. J. Public. Health 2009, 37, 801–819. [Google Scholar] [CrossRef]
- Rosenbaum, S.; Sherrington, C.; Tiedemann, A. Exercise augmentation compared with usual care for post-traumatic stress disorder: A randomized controlled trial. Acta Psychiatr. Scand. 2015, 131, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Ensari, I.; Greenlee, T.A.; Motl, R.W.; Petruzzello, S.J. Meta-analysis of acute exercise effects on state anxiety: An update of randomized controlled trials over the past 25 years. Depress. Anxiety 2015, 32, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Babyak, M.; Blumenthal, J.A.; Herman, S.; Khatri, P.; Doraiswamy, M.; Moore, K.; Craighead, W.E.; Baldewicz, T.T.; Krishnan, K.R. Exercise treatment for major depression: Maintenance of therapeutic benefit at 10 months. Psychosom. Med. 2000, 62, 633–638. [Google Scholar] [CrossRef]
- VanBruggen, M.D.; Hackney, A.C.; McMurray, R.G.; Ondrak, K.S. The relationship between serum and salivary cortisol levels in response to different intensities of exercise. Int. J. Sports Physiol. Perform. 2011, 6, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Zschucke, E.; Renneberg, B.; Dimeo, F.; Wüstenberg, T.; Ströhle, A. The stress-buffering effect of acute exercise: Evidence for HPA axis negative feedback. Psychoneuroendocrinology 2015, 51, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Beserra, A.H.N.; Kameda, P.; Deslandes, A.C.; Schuch, F.B.; Laks, J.; Moraes, H.S. Can physical exercise modulate cortisol level in subjects with depression? A systematic review and meta-analysis. Trends Psychiatry Psychother. 2018, 40, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Corazza, D.I.; Sebastião, É.; Pedroso, R.V.; Andreatto, C.; Gomes de Melo Coelho, R.; Gobbi, S.; Teodorov, E.; Ferreira Santos-Galduróz, R. Influence of chronic exercise on serum cortisol levels in older adults. Eurapa 2014, 11, 25–34. [Google Scholar] [CrossRef]
- Heaney, J.L.; Carroll, D.; Phillips, A.C. Physical activity, life events stress, cortisol, and DHEA: Preliminary findings that physical activity may buffer against the negative effects of stress. J. Aging Phys. Act. 2014, 22, 465–473. [Google Scholar] [CrossRef]
- Cole, C.R.; Blackstone, E.H.; Pashkow, F.J.; Snader, C.E.; Lauer, M.S. Heart-rate recovery immediately after exercise as a predictor of mortality. N. Engl. J. Med. 1999, 341, 1351–1357. [Google Scholar] [CrossRef]
- Jolly, M.A.; Brennan, D.M.; Cho, L. Impact of exercise on heart rate recovery. Circulation 2011, 124, 1520–1526. [Google Scholar] [CrossRef]
- Szuhany, K.L.; Bugatti, M.; Otto, M.W. A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 2015, 60, 56–64. [Google Scholar] [CrossRef]
- Dinoff, A.; Herrmann, N.; Swardfager, W.; Liu, C.S.; Sherman, C.; Chan, S.; Lanctôt, K.L. The Effect of Exercise Training on Resting Concentrations of Peripheral Brain-Derived Neurotrophic Factor (BDNF): A Meta-Analysis. PLoS ONE 2016, 11, e0163037. [Google Scholar] [CrossRef]
- Szuhany, K.L.; Otto, M.W. Assessing BDNF as a mediator of the effects of exercise on depression. J. Psychiatr. Res. 2020, 123, 114–118. [Google Scholar] [CrossRef]
- Traustadóttir, T.; Bosch, P.R.; Cantu, T.; Matt, K.S. Hypothalamic-pituitary-adrenal axis response and recovery from high-intensity exercise in women: Effects of aging and fitness. J. Clin. Endocrinol. Metab. 2004, 89, 3248–3254. [Google Scholar] [CrossRef]
- Kabat-Zinn, J. Full Catastrophe Living: Using the Wisdom of Your Body and Mind to Face Stress, Pain and Illness; Delacorte: New York, NY, USA, 1990. [Google Scholar]
- Schuman-Olivier, Z.; Trombka, M.; Lovas, D.A.; Brewer, J.A.; Vago, D.R.; Gawande, R.; Dunne, J.P.; Lazar, S.W.; Loucks, E.B.; Fulwiler, C. Mindfulness and Behavior Change. Harv. Rev. Psychiatry 2020, 28, 371–394. [Google Scholar] [CrossRef]
- Schultchen, D.; Messner, M.; Karabatsiakis, A.; Schillings, C.; Pollatos, O. Effects of an 8-week body scan intervention on individually perceived psychological stress and related steroid hormones in hair. Mindfulness 2010, 10, 2532–2543. [Google Scholar] [CrossRef]
- Park, J.; Lyles, R.H.; Bauer-Wu, S. Mindfulness meditation lowers muscle sympathetic nerve activity and blood pressure in African-American males with chronic kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 307, R93–R101. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, J.B.; Bergman, A.L.; Christopher, M.; Bowen, S.; Hunsinger, M. Role of resilience in mindfulness training for first responders. Mindfulness 2017, 8, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.W.; Ford, C.G.; Steffen, L.E. The role of mindfulness in reactivity to daily stress in urban firefighters. Mindfulness 2019, 10, 1603–1614. [Google Scholar] [CrossRef]
- Rice, V.; Boykin, G.; Jeter, A.; Villarreal, J.; Overby, C.; Alfred, P. The relationship between mindfulness and resiliency among active duty service members and military veterans. In Proceedings of the Human. Factors and Ergonomics Society Annual Meeting, San Diego, CA, USA, 1 October 2013; SAGE Publications: Sage, CA, USA; Los Angeles, CA, USA; Volume 57, pp. 1387–1391. [Google Scholar]
- Ramel, W.; Goldin, P.R.; Carmona, P.E.; McQuaid, J.R. The effects of mindfulness meditation on cognitive processes and affect in patients with past depression. Cogn. Ther. Res. 2004, 28, 433–455. [Google Scholar] [CrossRef]
- Barnes, S.M.; Lynn, S.J. Mindfulness skills and depressive symptoms: A longitudinal study. Imagin. Cogn. Pers. 2010, 30, 77–91. [Google Scholar] [CrossRef]
- Paul, N.A.; Stanton, S.J.; Greeson, J.M.; Smoski, M.J.; Wang, L. Psychological and neural mechanisms of trait mindfulness in reducing depression vulnerability. Soc. Cogn. Affect. Neurosci. 2013, 8, 56–64. [Google Scholar] [CrossRef]
- Barnhofer, T.; Duggan, D.S.; Griffith, J.W. Dispositional mindfulness moderates the relation between neuroticism and depressive symptoms. Pers. Individ. Dif. 2011, 51, 958–962. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumra, R. Relationship between mindfulness, depression, anxiety and stress: Mediating role of self-efficacy. Pers. Individ. Diff. 2022, 186, 111363. [Google Scholar] [CrossRef]
- Hoge, E.A.; Bui, E.; Marques, L.; Metcalf, C.A.; Morris, L.K.; Robinaugh, D.J.; Worthington, J.J.; Pollack, M.H.; Simon, N.M. Randomized controlled trial of mindfulness meditation for generalized anxiety disorder: Effects on anxiety and stress reactivity. J. Clin. Psychiatry 2013, 74, 786–7892. [Google Scholar] [CrossRef] [PubMed]
- Call, D.; Miron, L.; Orcutt, H. Effectiveness of brief mindfulness techniques in reducing symptoms of anxiety and stress. Mindfulness 2014, 5, 658–668. [Google Scholar] [CrossRef]
- Smith, B.W.; Ortiz, J.A.; Steffen, L.E.; Tooley, E.M.; Wiggins, K.T.; Yeater, E.A.; Montoya, J.D.; Bernard, M.L. Mindfulness is associated with fewer PTSD symptoms, depressive symptoms, physical symptoms, and alcohol problems in urban firefighters. J. Consult. Clin. Psychol. 2011, 79, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Stanley, I.H.; Boffa, J.W.; Tran, J.K.; Schmidt, N.B.; Joiner, T.E.; Vujanovic, A.A. Posttraumatic stress disorder symptoms and mindfulness facets in relation to suicide risk among firefighters. J. Clin. Psychol. 2019, 75, 696–709. [Google Scholar] [CrossRef]
- Lebeaut, A.; Zegel, M.; Healy, N.A.; Rogers, A.H.; Buser, S.J.; Vujanovic, A.A. PTSD Symptom Severity, Pain Intensity, and Pain-Related Disability Among Trauma-Exposed Firefighters: The Moderating Role of Mindfulness. Mindfulness 2022, 13, 786–798. [Google Scholar] [CrossRef]
- Golestani, E.; Sadri Damirchi, E.; Jabbari, S. The Role of Mindfulness in Predicting Symptoms of Post-traumatic stress Disorder, Job stress and Job burnout in Tabriz firefighters. Knowl. Res. Appl. Psych. 2021, 22, 174–184. [Google Scholar]
- Lipov, E. Post traumatic stress disorder (PTSD) as an over activation of sympathetic nervous system: An alternative view. J. Trauma. Treat. 2013, 3, 1222. [Google Scholar] [CrossRef]
- Harris, K.F.; Matthews, K.A. Interactions between autonomic nervous system activity and endothelial function: A model for the development of cardiovascular disease. Psychosom. Med. 2004, 66, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.L.; Hess, H.W.; Lucas, R.A.I.; Glaser, J.; Saran, R.; Bragg-Gresham, J.; Wegman, D.H.; Hansson, E.; Minson, C.T.; Schlader, Z.J. Occupational heat exposure and the risk of chronic kidney disease of nontraditional origin in the United States. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 321, R141–R151. [Google Scholar] [CrossRef] [PubMed]
- Matousek, R.H.; Dobkin, P.L.; Pruessner, J. Cortisol as a marker for improvement in mindfulness-based stress reduction. Complement. Ther. Clin. Pract. 2010, 16, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Brand, S.; Holsboer-Trachsler, E.; Naranjo, J.R.; Schmidt, S. Influence of mindfulness practice on cortisol and sleep in long-term and short-term meditators. Neuropsychobiology 2012, 65, 109–118. [Google Scholar] [CrossRef]
- Alhawatmeh, H.N.; Rababa, M.; Alfaqih, M.; Albataineh, R.; Hweidi, I.; Abu Awwad, A. The Benefits of Mindfulness Meditation on Trait Mindfulness, Perceived Stress, Cortisol, and C-Reactive Protein in Nursing Students: A Randomized Controlled Trial. Adv. Med. Educ. Pract. 2022, 13, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, M.A.; Pallesen, K.J.; Fjorback, L.O.; Juul, L. Effect of Mindfulness-Based Stress Reduction on dehydroepiandrosterone-sulfate in adults with self-reported stress. A randomized trial. Clin. Transl. Sci. 2021, 14, 2360–2369. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, R.E.; Zuckerman, M. Mindfulness as a moderator of the relationship between dehydroepiandrosterone and reported physical symptoms. Pers. Individ. Diff. 2008, 44, 1193–1202. [Google Scholar] [CrossRef]
- Gomutbutra, P.; Yingchankul, N.; Chattipakorn, N.; Chattipakorn, S.; Srisurapanont, M. The Effect of Mindfulness-Based Intervention on Brain-Derived Neurotrophic Factor (BDNF): A Systematic Review and Meta-Analysis of Controlled Trials. Front. Psychol. 2020, 11, 2209. [Google Scholar] [CrossRef]
- Gomutbutra, P.; Srikamjak, T.; Sapinun, L.; Kunaphanh, S.; Yingchankul, N.; Apaijai, N.; Shinlapawittayatorn, K.; Phuackchantuck, R.; Chattipakorn, N.; Chattipakorn, S. Effect of intensive weekend mindfulness-based intervention on BDNF, mitochondria function, and anxiety. A randomized, crossover clinical trial. Compr. Psychoneuroendocrinol. 2022, 11, 100137, Erratum in Compr. Psychoneuroendocrinol. 2022, 11, 100141. [Google Scholar] [CrossRef] [PubMed]
- Dada, T.; Mittal, D.; Mohanty, K.; Faiq, M.A.; Bhat, M.A.; Yadav, R.K.; Sihota, R.; Sidhu, T.; Velpandian, T.; Kalaivani, M.; et al. Mindfulness Meditation Reduces Intraocular Pressure, Lowers Stress Biomarkers and Modulates Gene Expression in Glaucoma: A Randomized Controlled Trial. J. Glaucoma 2018, 27, 1061–1067. [Google Scholar] [CrossRef]
- Southwick, S.M.; Sippel, L.; Krystal, J.; Charney, D.; Mayes, L.; Pietrzak, R. Why are some individuals more resilient than others: The role of social support. World Psychiatry 2016, 15, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Kshtriya, S.; Kobezak, H.M.; Popok, P.; Lawrence, J.; Lowe, S.R. Social support as a mediator of occupational stressors and mental health outcomes in first responders. J. Community Psychol. 2020, 48, 2252–2263. [Google Scholar] [CrossRef]
- Lee, J.S. Perceived social support functions as a resilience in buffering the impact of trauma exposure on PTSD symptoms via intrusive rumination and entrapment in firefighters. PLoS ONE 2019, 14, e0220454. [Google Scholar] [CrossRef]
- Stanley, I.H.; Hom, M.A.; Gai, A.R.; Joiner, T.E. Wildland firefighters and suicide risk: Examining the role of social disconnectedness. Psychiatry Res. 2018, 266, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.P.; Steptoe, A. Daily stressors and social support availability as predictors of depressed mood in male firefighters. Work Stress 1994, 8, 210–219. [Google Scholar] [CrossRef]
- Roy, M.P.; Steptoe, A.; Kirschbaum, C. Life events and social support as moderators of individual differences in cardiovascular and cortisol reactivity. J. Pers. Soc. Psychol. 1998, 75, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Cropley, M.; Plans, D.; Morelli, D.; Sütterlin, S.; Inceoglu, I.; Thomas, G.; Chu, C. The Association between Work-Related Rumination and Heart Rate Variability: A Field Study. Front. Hum. Neurosci. 2017, 11, 27. [Google Scholar] [CrossRef]
- Gerteis, A.K.; Schwerdtfeger, A.R. When rumination counts: Perceived social support and heart rate variability in daily life. Psychophysiology 2016, 53, 1034–1043. [Google Scholar] [CrossRef] [PubMed]
- Salinas, J.; Beiser, A.; Himali, J.J.; Satizabal, C.L.; Aparicio, H.J.; Weinstein, G.; Mateen, F.J.; Berkman, L.F.; Rosand, J.; Seshadri, S. Associations between social relationship measures, serum brain-derived neurotrophic factor, and risk of stroke and dementia. Alzheimers Dement. 2017, 3, 229–237. [Google Scholar] [CrossRef]
- Stanley, I.H.; Hom, M.A.; Chu, C.; Dougherty, S.P.; Gallyer, A.J.; Spencer-Thomas, S.; Shelef, L.; Fruchter, E.; Comtois, K.A.; Gutierrez, P.M.; et al. Perceptions of belongingness and social support attenuate PTSD symptom severity among firefighters: A multistudy investigation. Psychol. Serv. 2019, 16, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Setti, I.; Lourel, M.; Argentero, P. The role of affective commitment and perceived social support in protecting emergency workers against burnout and vicarious traumatization. Traumatology 2016, 22, 261–270. [Google Scholar] [CrossRef]
- Donovan, N. Peer support facilitates post-traumatic growth in first responders: A literature review. Trauma 2022, 24, 277–285. [Google Scholar] [CrossRef]
- Sattler, D.N.; Boyd, B.; Kirsch, J. Trauma-exposed firefighters: Relationships among posttraumatic growth, posttraumatic stress, resource availability, coping and critical incident stress debriefing experience. Stress Health 2014, 30, 356–365. [Google Scholar] [CrossRef] [PubMed]
Strategy | Suggested Intervention |
---|---|
Exercise | Evidence supports a dose-response relationship between exercise and numerous health benefits (e.g., improved resilience). Specifically, exercise at higher intensities (i.e., 60–95% maximal heart rate) and/or longer durations (i.e., 60 min) have been associated with the best outcomes. Thus, exercise programs should start with higher intensities (60–95% maximal heart rate) at lower frequencies (one day per week) and progressively increase exercise frequency (three days per week) and duration (60 min). Modifications to the training plan can be made if the program continuously leads to increased overall fitness and training status. |
Mindfulness | If time and resources allow it, an 8-week Mindfulness-Based Stress Reduction (MBSR) course [61] should be implemented. The standardized 8-week MBSR course should be conducted by a trained specialist and consists of one 2 h course per week, a day-long retreat, and daily homework to listen to a pre-recorded 45 min guided meditation. The practices used in the weekly course include breath-awareness, body-scanning, and gentle Hatha yoga. |
Social support | Critical Incidence Stress Debriefing (CISD), developed for first responders after traumatic events, should take place 24–72 h after the event in small groups led by a CISD-trained facilitator who shares the group background (i.e., CISD-trained firefighter). The session consists of seven phases: Assessment, Fact, Thought, Reaction, Symptom, Teaching, and Re-entry Phase. The focus of the session is to discuss the participant’s reactions and subjective emotions following the event rather than recounting the event, and it concludes by teaching healthy coping strategies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holland-Winkler, A.M.; Hamil, B.K.; Greene, D.R.; Kohler, A.A. Strategies to Improve Physiological and Psychological Components of Resiliency in Firefighters. Physiologia 2023, 3, 611-626. https://doi.org/10.3390/physiologia3040045
Holland-Winkler AM, Hamil BK, Greene DR, Kohler AA. Strategies to Improve Physiological and Psychological Components of Resiliency in Firefighters. Physiologia. 2023; 3(4):611-626. https://doi.org/10.3390/physiologia3040045
Chicago/Turabian StyleHolland-Winkler, A. Maleah, Blake K. Hamil, Daniel R. Greene, and Austin A. Kohler. 2023. "Strategies to Improve Physiological and Psychological Components of Resiliency in Firefighters" Physiologia 3, no. 4: 611-626. https://doi.org/10.3390/physiologia3040045
APA StyleHolland-Winkler, A. M., Hamil, B. K., Greene, D. R., & Kohler, A. A. (2023). Strategies to Improve Physiological and Psychological Components of Resiliency in Firefighters. Physiologia, 3(4), 611-626. https://doi.org/10.3390/physiologia3040045