Response of Olive Trees (Olea europaea L.) cv. Kalinioti to Nitrogen Fertilizer Application
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Measurements
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernández-Escobar, R. Use and abuse of nitrogen in olive fertilization. Acta Hortic. 2011, 888, 249–257. [Google Scholar] [CrossRef]
- Kirkby, E. Introduction, Definition and Classification of Nutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier Ltd.: Amsterdam, The Netherland, 2012; pp. 3–5. [Google Scholar]
- Ferreira, J.; García-Ortiz, A.; Frias, L.; Fernández, A. Los Nutrientes N, P, K en la fertilización del olivar. Olea 1986, 17, 141–152. [Google Scholar]
- Morales-Sillero, A.; Fernández, J.; Ordovás, J.; Suárez, M.; Pérez, J.A.; Liñán, J.; López, E.P.; Girón, I.; Troncoso, A. Plant-soil interactions in a fertigated ‘Manzanilla de sevilla’olive orchard. Plant Soil 2009, 319, 147–162. [Google Scholar] [CrossRef]
- Haberman, A.; Dag, A.; Shtern, N.; Zipori, I.; Erel, R.; Ben-Gal, A.; Yermiyahu, U. Significance of proper nitrogen fertilization for olive productivity in intensive cultivation. Sci. Horti. 2019, 246, 710–717. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; García-Novelo, J.M.; Molina-Soria, C.; Parra, M.A. An approach to nitrogen balance in olive orchards. Sci. Hortic. 2012, 135, 219–226. [Google Scholar] [CrossRef]
- Centeno, A.; García Martos, J.M.; Gómez-del-Campo, M. Effects of nitrogen fertilization and nitrification inhibitor product on vegetative growth, production and oil quality in ‘Arbequina’hedgerow and ‘Picual’vase-trained orchards. Grasas Aceites 2017, 68, 215. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Marin, L.; Sánchez-Zamora, M.A.; García-Novelo, J.M.; Molina-Soria, C.; Parra, M.A. Long-term effects of N fertilization on cropping and growth of olive trees and on N accumulation in soil profile. Eur. J. Agron. 2009, 31, 223–232. [Google Scholar] [CrossRef]
- Boussadia, O.; Steppe, K.; Zgallai, H.; Ben El Hadj, S.; Braham, M.; Lemeur, R.; Van Labeke, M.C. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ‘Meski’ and ‘Koroneiki’. Sci. Hortic. 2010, 123, 336–342. [Google Scholar] [CrossRef]
- Fernández-Escobar, R. Olive Nutritional Status and Tolerance to Biotic and Abiotic Stresses. Front. Plant Sci. 2019, 10, 1151. [Google Scholar] [CrossRef]
- Reale, L.; Nasini, L.; Cerri, M.; Regni, L.; Ferranti, F.; Proietti, P. The influence of light on olive (Olea europaea L.) fruit development is cultivar dependent. Front. Plant Sci. 2019, 10, 385. [Google Scholar] [CrossRef]
- Erel, R.; Kerem, Z.; Ben-Gal, A.; Dag, A.; Schwartz, A.; Zipori, I.; Basheer, L.; Yermiyahu, U. Olive (Olea eurpaea L.) Tree Nitrogen Status Is a Key Factor for Olive Oil Quality. J. Agric. Food Chem. 2013, 61, 11261–11272. [Google Scholar] [CrossRef] [PubMed]
- Erel, R.; Dag, A.; Ben-Gal, A.; Schwartz, A.; Yermiyahu, U. Flowering and fruit set of olive trees in response to nitrogen, phosphorus, and potassium. J. Am. Soc. Hortic. Sci. 2008, 133, 639–647. [Google Scholar] [CrossRef]
- Erel, R.; Yermiyahu, U.; Van Opstal, J.; Ben-Gal, A.; Schwartz, A.; Dag, A. The importance of olive (Olea europaea L.) tree nutritional status on its productivity. Sci. Hortic. 2013, 159, 8–18. [Google Scholar] [CrossRef]
- Dag, A.; Ben-David, E.; Kerem, Z.; Ben-Gal, A.; Erel, R.; Basheer, L.; Yermiyahu, U. Olive oil composition as a function of nitrogen, phosphorus and potassium plant nutrition. J. Sci. Food Agric. 2009, 89, 1871–1878. [Google Scholar] [CrossRef]
- Zipori, I.; Erel, R.; Yermiyahu, U.; Ben-Gal, A.; Dag, A. Sustainable Management of Olive Orchard Nutrition: A Review. Agriculture 2020, 10, 11. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Marín, L. Nitrogen fertilization in olive orchards. Acta Hortic. 1999, 474, 333–336. [Google Scholar] [CrossRef]
- López-Granados, F.; Jurado-Expósito, M.; Álamob, S.; Garcıa-Torres, L. Leaf nutrient spatial variability and site-specific fertilization maps within olive (Olea europaea L.) orchards. Eur. J. Agron. 2004, 21, 209–222. [Google Scholar] [CrossRef]
- Sfakiotakis, E. Courses in Olive Growing; Typo MAN: Thesaloniki, Greece, 1993. [Google Scholar]
- Fernández-Escobar, R.; Parra, M.A.; Navarro, C.; Arquero, O. Foliar diagnosis as a guide to olive fertilization. Span. J. Agric. Res. 2009, 7, 212–223. [Google Scholar] [CrossRef]
- Ferreira, I.; Arrobas, M.; Moutinho Pereira, J.; Correia, C.; Rodrigues, M. The effect of nitrogen applications on the growth of young olive trees and nitrogen use efficiency. Turk. J. Agric. For. 2020, 44, 278–289. [Google Scholar] [CrossRef]
- Ferraj, B.; Teqja, Z.; Susaj, L.; Fasllia, N.; Gjeta, Z.; Vata, N.; Balliu, A. Effects of different soil management practices on production and quality of olive groves in Southern Albania. J. Food Agric. Environ. 2011, 9, 430–433. [Google Scholar]
- Weinbaum, S.A.; Picchioni, G.A.; Muraoka, T.T.; Ferguson, L.; Brown, P.H. Fertilizer nitrogen and boron uptake, storage, and allocation vary during the alternate-bearing cycle in pistachio trees. J. Am. Soc. Hortic. Sci. 1994, 119, 24–31. [Google Scholar] [CrossRef]
- Marın, L.; Fernández-Escobar, R. Optimization of nitrogen fertilization in olive orchards. Acta Hortic. 1997, 448, 411–414. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Benlloch, M.; Herrera, E.; Garcıa-Novelo, J.M. Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching. Sci. Hortic. 2004, 101, 39–49. [Google Scholar] [CrossRef]
- Xiloyannis, C.; Celano, G.; Palese, A.M.; Dichio, B.; Nuzzo, V. Mineral nutrient uptake from the soil in irrigated olive trees, cultivar Coratina, over six years after planting. Acta Hortic. 2002, 586, 453–456. [Google Scholar] [CrossRef]
- Bustan, A.; Avni, A.; Yermiyahu, U.; Ben-Gal, A.; Riov, J.; Erel, R.; Zipori, I.; Dag, A. Interactions between fruit load and macroelement concentrations in fertigated olive (Olea europaea L.) trees under arid saline conditions. Sci. Hortic. 2013, 152, 44–55. [Google Scholar] [CrossRef]
- Erel, R.; Yermiyahu, U.; Yasuor, H.; Chamus, D.C.; Schwartz, A.; Ben-Gal, A.; Dag, A. Phosphorous nutritional level, carbohydrate reserves and flower quality in olives. PLoS ONE 2016, 11, e0167591. [Google Scholar] [CrossRef] [PubMed]
- Haberman, A.; Dag, A.; Erel, R.; Zipori, I.; Shtern, N.; Ben-Gal, A.; Yermiyahu, U. Long-Term Impact of Phosphorous Fertilization on Yield and Alternate Bearing in Intensive Irrigated Olive Cultivation. Plants 2021, 10, 1821. [Google Scholar] [CrossRef]
- Connell, J.; Vossen, P.M. Fertility management for oil olives. In First Press, Newsletter of Olive Oil production and Evaluation. University of California Cooperative Extension: Santa Rosa, CA, USA, 2006; Volume 1, pp. 1–2. [Google Scholar]
- Sotiropoulos, S.; Chatzissavvidis, C.; Papadakis, I.; Kavvadias, V.; Paschalidis, C.; Antonopoulou, C.; Koriki, A. Inorganic and organic foliar fertilization in olives. Hortic. Sci. 2023, 50, 1–11. [Google Scholar] [CrossRef]
- Fernández-Escobar, R.; Sÿnchez-Zamora, M.A.; Uceda, M.; Beltran, G. The effect of nitrogen overfertilization on olive tree growth and oil quality. Acta Hortic. 2002, 586, 429–431. [Google Scholar] [CrossRef]
- López-Villalta, L.C.; Muñoz-Cobo, M.P. Production techniques. In World Olive Encyclopedia; International Olive Council: Sabadell, Spain, 1996; pp. 145–190. [Google Scholar]
- Therios, I. Olives: Crop Production Science in Horticulture; CABI Publishing; Wallingford, UK, 2009; p. 409.
- Fernández-Escobar, R. Fertilization. In Production Techniques in Olive Growing; International Olive Council: Madrid, Spain, 2007; pp. 145–168. ISBN 9788493166366. [Google Scholar]
- Therios, I. Mineral nutrition of olive trees. In Proceedings of the 2nd Intl. Seminar Recent Advances Olive Industry, Mazara del Vallo, Italy, 5–10 November 2006; pp. 403–410. [Google Scholar]
- Fernández-Escobar, R. Fertilización. In El Cultivo del Olivo; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; Editorial Mundi-Prensa: Madrid, Spain, 1997; pp. 239–257. [Google Scholar]
- Silva, E.; Gonçalves, A.; Martins, S.; Pinto, L.; Rocha, L.; Ferreira, H.; Moutinho-Pereira, J.; Rodrigues, M.Â.; Correia, C.M. Moderate Nitrogen Rates Applied to a Rainfed Olive Grove Seem to Provide an Interesting Balance between Variables Associated with Olive and Oil Quality. Horticulturae 2023, 9, 110. [Google Scholar] [CrossRef]
- Rodrigues, M.; Coelho, V.; Arrobas, M.; Gouveia, E.; Raimundo, S.; Correia, C.M.; Bento, A. The effect of nitrogen fertilization on the incidence of olive fruit fly, olive leaf spot and olive anthracnose in two olive cultivars grown in rainfed conditions. Sci. Hortic. 2019, 256, 108658. [Google Scholar] [CrossRef]
- Nicolì, F.; Negro, C.; Vergine, M.; Aprile, A.; Nutricati, E.; Sabella, E.; Miceli, A.; Luvisi, A.; De Bellis, L. Evaluation of Phytochemical and Antioxidant Properties of 15 Italian Olea europaea L. Cultivar Leaves. Molecules 2019, 24, 1998. [Google Scholar] [CrossRef] [PubMed]
- Skodra, C.; Titeli, V.S.; Michailidis, M.; Bazakos, C.; Ganopoulos, I.; Molassiotis, A.; Tanou, G. Olive Fruit Development and Ripening: Break on through to the “-Omics” Side. Int. J. Mol. Sci. 2021, 22, 5806. [Google Scholar] [CrossRef] [PubMed]
- Ângelo Rodrigues, M.; Pavão, F.; Lopes, J.I.; Gomes, V.; Arrobas, M.; Moutinho-Pereira, J.; Ruivo, S.; Cabanas, J.E.; Correia, C.M. Olive Yields and Tree Nutritional Status during a Four-Year Period without Nitrogen and Boron Fertilization. Commun. Soil Sci. Plant Anal. 2011, 42, 803–814. [Google Scholar] [CrossRef]
- Elbadawy, N.; Hegazi, E.; Yehia, T.; Abourayya, M.; Mahmoud, T. Effect of Nitrogen Fertilizer on Yield, Fruit Quality and Oil Content in Manzanillo Olive Trees. J. Arid. Land Stud. 2016, 26, 175–177. [Google Scholar] [CrossRef]
- Erel, R.; Yermiyahu, U.; Yasuor, H.; Ben-Gal, A.; Zipori, I.; Dag, A. Elevated fruit nitrogen impairs oil biosynthesis in olive (Olea europaea L.). Front. Plant Sci. 2023, 14, 1180391. [Google Scholar] [CrossRef] [PubMed]
- Chatzissavvidis, C.A.; Therios, I.N.; Antonopoulou, C. Seasonal variation of nutrient concentration in two olive (Olea europaea L.) cultivars irrigated with high boron water. J. Hortic. Sci. Biotechnol. 2004, 79, 683–688. [Google Scholar] [CrossRef]
- Lavee, S.; Rallo, L.; Rapoport, H.; Troncoso, A. The floral biology of the olive: Effect of flower number, type and distribution on fruitset. Sci. Hortic. 1996, 66, 149–158. [Google Scholar] [CrossRef]
- Lavee, S.; Rallo, L.; Rapoport, H.; Troncoso, A. The floral biology of the olive: II. The effect of inflorescence load and distribution per shoot on fruit set and load. Sci. Hortic. 1999, 82, 181–192. [Google Scholar] [CrossRef]
- Freeman, M.; Uriu, K.; Hartmann, H.T. Diagnosing and correcting nutrient problems. In Olive Production Manual, 2nd ed.; Sibbett, G.S., Ferguson, L., Eds.; University of California Agricultural and Natural Resources Publication: Davis, CA, USA, 2005. [Google Scholar]
- Fernández-Escobar, R.; Braz Frade, R.; Lopez Campayo, M.; Beltrán Maza, G. Effect of nitrogen fertilization on fruit maturation of olive trees. Acta Hortic. 2014, 1057, 101–105. [Google Scholar] [CrossRef]
- Heckrath, G.; Brookes, P.C.; Poulton, P.R.; Goulding, K.W.T. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. J. Environ. Qual. 1995, 24, 904–910. [Google Scholar] [CrossRef]
- Ferreira, J. Explotacionos Ollittareras Colaboradoras; No. 5; Ministerio de Agricultura: Madrid, Spain, 1979. [Google Scholar]
- Roose, M.L.; Atkin, D.; Kupper, R.S. Yield and tree size of four citrus cultivars on 21 rootstocks in California. J. Am. Soc. Hortic. Sci. 1989, 114, 678–684. [Google Scholar] [CrossRef]
- Donaire, J.P.; Sanchez-Raya, A.J.; Lopez-George, J.L.; Recalde, L. Etudes physiologiques et biochimiques de l’olive. I. Variation de la concentration de divers metabolites pendant son cycle evolutive. Agrochimica 1977, 21, 311–321. [Google Scholar]
- Koukoulakis, S.P.; Papadopoulos, A. The Interpretation of Foliar Analysis; Stamoulis Ed.: Athens, Greece, 2003; p. 516. [Google Scholar]
- Allen, S.E.; Grimshaw, H.M.; Parkinson, J.A.; Quarmby, C. Chemical Analysis of Ecological Materials; Allen, E., Ed.; Blackwell Scientific Publications: Oxford, UK; London, UK, 1974; p. 565. [Google Scholar]
- Jackson, M.L. Phosphorus determinations for soils. Vanadomolybdo-phosphoric yellow color method in nitric acid system. In Soil Chemical Analysis; Jackson, M.L., Ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1970; pp. 151–154. [Google Scholar]
Treatments (2) | Yield (kg/tree) | Shoot Length (cm) | Canopy Volume (m3) |
---|---|---|---|
Control | 37.09d (1) | 9.2g | 18.2c |
1 kg NH4NO3/tree | 39.2d | 11.4f | 19.4c |
2 kg NH4NO3/tree | 45dc | 12.8e | 19.8bc |
3 kg NH4NO3/tree | 54b | 16.9d | 21.5b |
4 kg NH4NO3/tree | 62.5a | 19.3c | 21.0bc |
5 kg NH4NO3/tree | 49.0c | 24.7b | 24.7a |
6 kg NH4NO3/tree | 46.4cd | 30.2a | 25.8a |
ANOVA table F value (3) | 13.54 ** | 5741.4 *** | 101.86 *** |
Treatments (2) | Initial Fruit Set (May–June) (%) | Final Fruit Set (November) (%) |
---|---|---|
Control | 3.07e (1) (3) | 0.7d |
1 Kg NH4NO3/tree | 3.55d | 1.13d |
2 Kg NH4NO3/tree | 5.32c | 1.79c |
3 Kg NH4N03/tree | 6.09b | 2.53b |
4 Kg NH4N03/tree | 7.63a | 3.03a |
5 Kg NH4N03/tree | 5.91b | 1.71c |
6 Kg NH4N03/tree | 5.19c | 1.65c |
ANOVA table F value (3) | 1275.31 *** | 184.877 *** |
1–5 November | 20–25 November | 5–10 December | 20–25 December | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W100 | OC | M.I. | W100 | OC | M.I. | W100 | OC | M.I. | W100 | OC | M.I. | |
Treatments (2) | g | % | % | g | % | % | g | % | % | g | % | % |
Control | 336b (1) | 21.8 | 2.13a | 360a | 24.2 | 3.05a | 389a | 27.1 | 3.66a | 384a | 26.2 | 3.37a |
1 kg NH4NO3/tree | 325b | 21.3 | 2.10a | 353a | 23.8 | 3.15a | 375a | 26.8 | 3.75a | 375a | 26.5 | 3.44a |
2 kg NH4NO3/tree | 321b | 21.2 | 2.18a | 342ab | 24.5 | 3.21a | 370a | 27.2 | 3.82a | 369a | 26.7 | 3.48a |
3 kg NH4NO3/tree | 318b | 21.0 | 2.12a | 329b | 23.7 | 3.28a | 365ab | 27.5 | 3.78a | 361a | 26.0 | 3.51a |
4 kg NH4NO3/tree | 381a | 20.9 | 2.10a | 309c | 23.5 | 3.15a | 337b | 26.3 | 3.66a | 331b | 25.8 | 3.55a |
5 kg NH4NO3/tree | 315c | 20.8 | 1.95ab | 345ab | 24.1 | 2.75ab | 374a | 26.8 | 3.16b | 370a | 25.9 | 3.00b |
6 kg NH4NO3/tree | 312c | 21.1 NS | 1.87b | 340ab | 23.7 NS | 2.71b | 378a | 27.0 NS | 3.11b | 373a | 26.1 NS | 3.01b |
ANOVA table, F value (3) | 664.30 *** | 1.99 NS | 10.72 ** | 211.20 * | 1.66 NS | 43.12 *** | 179.17 * | 1.59 NS | 39.14 ** | 202.18 *** | 1.41 NS | 35.05 ** |
Treatments (2) | Ν (%, d.w.) | Ρ (%, d.w.) | Κ (%, d.w.) |
---|---|---|---|
Control | 1.23e (1) | 0.123 | 0.78a |
1 kg NH4NO3/tree | 1.34e | 0.125 | 0.75a |
2 kg NH4NO3/tree | 1.55d | 0.128 | 0.77a |
3 kg NH4NO3/tree | 1.89c | 0.131 | 0.73a |
4 kg NH4NO3/tree | 2.01b | 0.129 | 0.69ab |
5 kg NH4NO3/tree | 2.29a | 0.120 | 0.61b |
6 kg NH4NO3/tree | 2.38a | 0.115 NS | 0.57b |
ANOVA table, F value (3) | 401.4 *** | 1.892 NS | 16.812 *** |
Average Values | Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
High Temp. (°C) | 13.3 | 13.9 | 16.7 | 19.4 | 24.4 | 31.7 | 34.4 | 33.9 | 28.3 | 23.3 | 18.3 | 13.9 |
Temp. (°C) | 6.7 | 7.2 | 11.7 | 15.0 | 20.6 | 24.4 | 27.2 | 28.3 | 21.7 | 18.3 | 12.2 | 8.3 |
Low Temp. (°C) | 2.8 | 3.3 | 5.6 | 9.4 | 13.9 | 16.7 | 20.0 | 19.4 | 16.7 | 11.7 | 7.8 | 4.4 |
precipitation (mm) | 87.6 | 89.4 | 70.6 | 47.5 | 31.2 | 16.5 | 8.1 | 21.3 | 61.0 | 96.5 | 132.1 | 119.4 |
Relative humidity (%) | 76 | 74 | 75 | 75 | 65 | 52 | 51 | 56 | 66 | 73 | 75 | 76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsias, D.; Kavvadias, V.; Pappas, C. Response of Olive Trees (Olea europaea L.) cv. Kalinioti to Nitrogen Fertilizer Application. Physiologia 2024, 4, 43-53. https://doi.org/10.3390/physiologia4010002
Kotsias D, Kavvadias V, Pappas C. Response of Olive Trees (Olea europaea L.) cv. Kalinioti to Nitrogen Fertilizer Application. Physiologia. 2024; 4(1):43-53. https://doi.org/10.3390/physiologia4010002
Chicago/Turabian StyleKotsias, Dimitris, Victor Kavvadias, and Christos Pappas. 2024. "Response of Olive Trees (Olea europaea L.) cv. Kalinioti to Nitrogen Fertilizer Application" Physiologia 4, no. 1: 43-53. https://doi.org/10.3390/physiologia4010002
APA StyleKotsias, D., Kavvadias, V., & Pappas, C. (2024). Response of Olive Trees (Olea europaea L.) cv. Kalinioti to Nitrogen Fertilizer Application. Physiologia, 4(1), 43-53. https://doi.org/10.3390/physiologia4010002