The Role of Resistance and Plyometric Training in Firefighter Safety and Performance: A Narrative Review
Abstract
:1. Introduction
2. Threats to Efficient Physical Performance and Safety
2.1. Range of Motion and Balance Impairment
2.2. Fatigue
2.3. Body Composition
3. Use of Physical Training to Overcome Threats to Performance and Safety
3.1. Plyometric Training
3.2. Resistance Training
4. Implementing and Modifying Training Strategies
4.1. Plyometric Training Strategies
4.2. Resistance Training Strategies
4.3. Exercise Selection and Sequence
4.4. Sets, Repetitions, and Intensity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Nazari, G.; MacDermid, J.C.; Sinden, K.E.; Overend, T.J. The relationship between physical fitness and simulated firefighting task performance. Rehabil. Res. Pract. 2018, 2018, 3234176. [Google Scholar] [CrossRef] [PubMed]
- Sothmann, M.S.; Saupe, K.; Jasenof, D.; Blaney, J. Heart rate response of firefighters to actual emergencies: Implications for cardiorespiratory fitness. J. Occup. Med. 1992, 34, 797–800. [Google Scholar] [CrossRef] [PubMed]
- von Heimburg, E.D.; Rasmussen, A.K.; Medbø, J.I. Physiological responses of firefighters and performance predictors during a simulated rescue of hospital patients. Ergonomics 2006, 49, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Williams-Bell, F.M.; Villar, R.; Sharratt, M.T.; Hughson, R.L. Physiological demands of the firefighter Candidate Physical Ability Test. Med. Sci. Sports Exerc. 2009, 41, 653–662. [Google Scholar] [CrossRef]
- Campbell, R.; Hall, S. United States Firefighter Injuries. NFPA Res. 2023. [Google Scholar]
- Games, K.E.; Csiernik, A.J.; Winkelmann, Z.K.; True, J.R.; Eberman, L.E. Personal protective ensembles’ effect on dynamic balance in firefighters. Work 2019, 62, 507–514. [Google Scholar] [CrossRef]
- White, S.C.; Hostler, D. The effect of firefighter protective garments, self-contained breathing apparatus and exertion in the heat on postural sway. Ergonomics 2017, 60, 1137–1145. [Google Scholar] [CrossRef]
- Park, H.; Kim, S.; Morris, K.; Moukperian, M.; Moon, Y.; Stull, J. Effect of firefighters’ personal protective equipment on gait. Appl. Ergon. 2015, 48, 42–48. [Google Scholar] [CrossRef]
- Smith, D.L. Firefighter fitness: Improving performance and preventing injuries and fatalities. Curr. Sports Med. Rep. 2011, 10, 167–172. [Google Scholar] [CrossRef]
- Ras, J.; Kengne, A.P.; Smith, D.L.; Soteriades, E.S.; Leach, L. Association between cardiovascular disease risk factors and cardiorespiratory fitness in firefighters: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2023, 20, 2816. [Google Scholar] [CrossRef]
- NFPA. Standard on Protective Ensembles for Structural Fire Fighting and Proximity Fire Fighting. NFPA 2018. [Google Scholar]
- Lee, J.Y.; Bakri, I.; Kim, J.H.; Son, S.Y.; Tochihara, Y. The impact of firefighter personal protective equipment and treadmill protocol on maximal oxygen uptake. J. Occup. Environ. Hyg. 2013, 10, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Lesniak, A.Y.; Bergstrom, H.C.; Clasey, J.L.; Stromberg, A.J.; Abel, M.G. The effect of personal protective equipment on firefighter occupational performance. J. Strength Cond. Res. 2020, 34, 2165–2172. [Google Scholar] [CrossRef] [PubMed]
- Simpson, K.M.; Munro, B.J.; Steele, J.R. Effects of prolonged load carriage on ground reaction forces, lower limb kinematics and spatio-temporal parameters in female recreational hikers. Ergonomics 2012, 55, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Dorman, L.E.; Havenith, G. The effects of protective clothing on energy consumption during different activities. Eur. J. Appl. Physiol. 2009, 105, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Sobeih, T.M.; Davis, K.G.; Succop, P.A.; Jetter, W.A.; Bhattacharya, A. Postural balance changes in on-duty firefighters: Effect of gear and long work shifts. J. Occup. Environ. Med. 2006, 48, 68–75. [Google Scholar] [CrossRef]
- Liu, J.; Huang, Y.; Zhang, Y.; Wang, X.; Yang, J. Effects of personal protective clothing on firefighters’ gait analyzed using a three-dimensional motion capture system. Int. J. Occup. Saf. Ergon. 2023, 29, 1220–1230. [Google Scholar] [CrossRef]
- Shamsoddini, A.; Hollisaz, M.T. Biomechanics of running: A special reference to the comparisons of wearing boots and running shoes. PLoS ONE 2022, 17, e0270496. [Google Scholar] [CrossRef]
- Vu, V.; Walker, A.; Ball, N.; Spratford, W. Ankle restrictive firefighting boots alter the lumbar biomechanics during landing tasks. Appl. Ergon. 2017, 65, 123–129. [Google Scholar] [CrossRef]
- Ota, S.; Ueda, M.; Aimoto, K.; Suzuki, Y.; Sigward, S.M. Acute influence of restricted ankle dorsiflexion angle on knee joint mechanics during gait. Knee 2014, 21, 669–675. [Google Scholar] [CrossRef]
- Park, K.; Rosengren, K.S.; Horn, G.P.; Smith, D.L.; Hsiao-Wecksler, E.T. Assessing gait changes in firefighters due to fatigue and protective clothing. Saf. Sci. 2011, 49, 719–726. [Google Scholar] [CrossRef]
- Kesler, R.M.; Deetjen, G.S.; Bradley, F.F.; Angelini, M.J.; Petrucci, M.N.; Rosengren, K.S.; Horn, G.P.; Hsiao-Wecksler, E.T. Impact of SCBA size and firefighting work cycle on firefighter functional balance. Appl. Ergon. 2018, 69, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Hur, P.; Park, K.; Rosengren, K.S.; Horn, G.P.; Hsiao-Wecksler, E.T. Effects of air bottle design on postural control of firefighters. Appl. Ergon. 2015, 48, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.W.; Kuo, A.D. Mechanics and energetics of load carriage during human walking. J. Exp. Biol. 2014, 217, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Knapik, J.; Harman, E.; Reynolds, K. Load carriage using packs: A review of physiological, biomechanical and medical aspects. Appl. Ergon. 1996, 27, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Legg, S.J.; Ramsey, T.; Knowles, D.J. The metabolic cost of backpack and shoulder load carriage. Ergonomics 1992, 35, 1063–1068. [Google Scholar] [CrossRef] [PubMed]
- Sghaier, N.; Turpin, N.; Moretto, P. Center of mass behavior during forward and backward walking. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 281–283. [Google Scholar]
- Chung, M.K.; Lee, Y.J.; Lee, I.; Choi, K.I. Physiological workload evaluation of carrying soft drink beverage boxes on the back. Appl. Ergon. 2005, 36, 569–574. [Google Scholar] [CrossRef]
- Krammer, S.M.; Drew, M.D.; Brown, T.N. Effects of prolonged load carriage on angular jerk of frontal and sagittal knee motion. Gait Posture 2021, 84, 221–226. [Google Scholar] [CrossRef]
- Orr, R.; Pope, R.; Lopes, T.J.A.; Leyk, D.; Blacker, S.; Bustillo-Aguirre, B.S.; Knapik, J.J. Soldier load carriage, injuries, rehabilitation and physical conditioning: An international approach. Int. J. Environ. Res. Public Health 2021, 18, 4010. [Google Scholar] [CrossRef]
- Phillips, D.B.; Stickland, M.K.; Lesser, I.A.; Petersen, S.R. The effects of heavy load carriage on physiological responses to graded exercise. Eur. J. Appl. Physiol. 2016, 116, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Yeo, J.C. Effects of load carriage and fatigue on gait characteristics. J. Biomech. 2011, 44, 1259–1263. [Google Scholar] [CrossRef] [PubMed]
- Ruby, B.; Iii, G.; Armstrong, D.; Gaskill, S. Wildland firefighter load carriage: Effects on transit time and physiological responses during simulated escape to safety zone. Int. J. Wildl. Fire 2003, 12, 111–116. [Google Scholar] [CrossRef]
- Soule, R.G.; Pandolf, K.B.; Goldman, R.F. Energy expenditure of heavy load carriage. Ergonomics 1978, 21, 373–381. [Google Scholar] [CrossRef]
- Taylor, N.A.; Lewis, M.C.; Notley, S.R.; Peoples, G.E. A fractionation of the physiological burden of the personal protective equipment worn by firefighters. Eur. J. Appl. Physiol. 2012, 112, 2913–2921. [Google Scholar] [CrossRef]
- Gentzler, M.; Stader, S. Posture stress on firefighters and emergency medical technicians (EMTs) associated with repetitive reaching, bending, lifting, and pulling tasks. Work 2010, 37, 227–239. [Google Scholar] [CrossRef]
- Pedersen, A.V.; Stokke, R.; Mamen, A. Effects of extra load position on energy expenditure in treadmill running. Eur. J. Appl. Physiol. 2007, 102, 27–31. [Google Scholar] [CrossRef]
- Blacker, S.D.; Fallowfield, J.L.; Bilzon, J.L.; Willems, M.E. Neuromuscular function following prolonged load carriage on level and downhill gradients. Aviat. Space Environ. Med. 2010, 81, 745–753. [Google Scholar] [CrossRef]
- Holt, K.G.; Wagenaar, R.C.; LaFiandra, M.E.; Kubo, M.; Obusek, J.P. Increased musculoskeletal stiffness during load carriage at increasing walking speeds maintains constant vertical excursion of the body center of mass. J. Biomech. 2003, 36, 465–471. [Google Scholar] [CrossRef]
- Kong, P.W.; Suyama, J.; Cham, R.; Hostler, D. The relationship between physical activity and thermal protective clothing on functional balance in firefighters. Res. Q. Exerc. Sport 2012, 83, 546–552. [Google Scholar] [CrossRef]
- Rice, H.; Fallowfield, J.; Allsopp, A.; Dixon, S. Influence of a 12.8-km military load carriage activity on lower limb gait mechanics and muscle activity. Ergonomics 2017, 60, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.W.; Beauchamp, G.; Suyama, J.; Hostler, D. Effect of fatigue and hypohydration on gait characteristics during treadmill exercise in the heat while wearing firefighter thermal protective clothing. Gait Posture 2010, 31, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Leyk, D.; Rohde, U.; Erley, O.; Gorges, W.; Wunderlich, M.; Rüther, T.; Essfeld, D. Recovery of hand grip strength and hand steadiness after exhausting manual stretcher carriage. Eur. J. Appl. Physiol. 2006, 96, 593–599. [Google Scholar] [CrossRef]
- Horn, G.P.; Gutzmer, S.; Fahs, C.A.; Petruzzello, S.J.; Goldstein, E.; Fahey, G.C.; Fernhall, B.; Smith, D.L. Physiological recovery from firefighting activities in rehabilitation and beyond. Prehosp. Emerg. Care 2011, 15, 214–225. [Google Scholar] [CrossRef]
- Taylor, N.A.S.; Lewis, M.C.; Notley, S.R.; Peoples, G.E. The oxygen cost of wearing firefighters’ personal protective equipment: Ralph was right! In Proceedings of the ICEE 2011 XIV International Conference on Environmental Ergonomics, Nafplio, Greece, 10–15 July 2011; pp. 236–239. [Google Scholar]
- Renberg, J.; Lignier, M.J.; Wiggen, Ø.N.; Færevik, H.; Helgerud, J.; Sandsund, M. Heat tolerance during uncompensable heat stress in men and women wearing firefighter personal protective equipment. Appl. Ergon. 2022, 101, 103702. [Google Scholar] [CrossRef] [PubMed]
- Nybo, L.; Rasmussen, P.; Sawka, M.N. Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Compr. Physiol. 2014, 4, 657–689. [Google Scholar] [CrossRef]
- Kaipust, C.M.; Jahnke, S.A.; Poston, W.S.C.; Jitnarin, N.; Haddock, C.K.; Delclos, G.L.; Day, R.S. Sleep, obesity, and injury among US male career firefighters. J. Occup. Environ. Med. 2019, 61, e150–e154. [Google Scholar] [CrossRef] [PubMed]
- Poston, W.S.; Haddock, C.K.; Jahnke, S.A.; Jitnarin, N.; Tuley, B.C.; Kales, S.N. The prevalence of overweight, obesity, and substandard fitness in a population-based firefighter cohort. J. Occup. Environ. Med. 2011, 53, 266–273. [Google Scholar] [CrossRef]
- Jahnke, S.A.; Poston, W.S.; Haddock, C.K.; Jitnarin, N. Obesity and incident injury among career firefighters in the central United States. Obesity 2013, 21, 1505–1508. [Google Scholar] [CrossRef]
- Poston, W.S.; Jitnarin, N.; Haddock, C.K.; Jahnke, S.A.; Tuley, B.C. Obesity and injury-related absenteeism in a population-based firefighter cohort. Obesity 2011, 19, 2076–2081. [Google Scholar] [CrossRef]
- Desrochers, P.C.; Kim, D.; Keegan, L.; Gill, S.V. Association between the Functional Gait Assessment and spatiotemporal gait parameters in individuals with obesity compared to normal weight controls: A proof-of-concept study. J. Musculoskelet. Neuronal Interact. 2021, 21, 335–342. [Google Scholar] [PubMed]
- Gill, S.V. Effects of obesity class on flat ground walking and obstacle negotiation. J. Musculoskelet. Neuronal Interact. 2019, 19, 448–454. [Google Scholar] [PubMed]
- Barros, B.; Oliveira, M.; Morais, S. Firefighters’ occupational exposure: Contribution from biomarkers of effect to assess health risks. Environ. Int. 2021, 156, 106704. [Google Scholar] [CrossRef] [PubMed]
- Andrews, K.L.; Gallagher, S.; Herring, M.P. The effects of exercise interventions on health and fitness of firefighters: A meta-analysis. Scand. J. Med. Sci. Sports 2019, 29, 780–790. [Google Scholar] [CrossRef]
- Teixeira, T.; Almeida, L.; Dias, I.; Baptista, J.S.; Santos, J.; Vaz, M.; Guedes, J. Occupational chemical exposure and health status of wildland firefighters at the firefront: A systematic review. Safety 2024, 10, 60. [Google Scholar] [CrossRef]
- Perroni, F.; Guidetti, L.; Cignitti, L.; Baldari, C. Psychophysiological responses of firefighters to emergencies: A review. Open Sports Sci. J. 2014, 7, 8–15. [Google Scholar] [CrossRef]
- Loewen, B.; Melton, B.A.F.; Ryan, G.A.; Snarr, R.L. Evidence-based exercise for structural firefighters—A brief review. TSAC Rep. 2020, 57, 4–9. [Google Scholar]
- Kons, R.L.; Orssatto, L.B.R.; Ache-Dias, J.; De Pauw, K.; Meeusen, R.; Trajano, G.S.; Dal Pupo, J.; Detanico, D. Effects of plyometric training on physical performance: An umbrella review. Sports Med.—Open 2023, 9, 4. [Google Scholar] [CrossRef]
- Komi, P.V.; Gollhofer, A. Stretch reflexes can have an important role in force enhancement during SSC exercise. J. Appl. Biomech. 1997, 13, 451–460. [Google Scholar] [CrossRef]
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef]
- Potteiger, J.A.; Lockwood, R.H.; Haub, M.D.; Dolezal, B.A.; Almuzaini, K.S.; Schroeder, J.M.; Zebas, C.J. Muscle power and fiber characteristics following 8 weeks of plyometric training. J. Strength Cond. Res. 1999, 13, 275–279. [Google Scholar]
- Thomas, K.; French, D.; Hayes, P.R. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. J. Strength Cond. Res. 2009, 23, 332–335. [Google Scholar] [CrossRef] [PubMed]
- Fouré, A.; Nordez, A.; Cornu, C. Effects of plyometric training on passive stiffness of gastrocnemii muscles and Achilles tendon. Eur. J. Appl. Physiol. 2012, 112, 2849–2857. [Google Scholar] [CrossRef] [PubMed]
- Topal, D.; Sarı, M.Z.; Gündoğdu, A.; Özkaya, Y.G. Resistant plyometric training increases muscle strength in young male basketball players. Spor Eğitim Derg. 2023, 7, 287–293. [Google Scholar] [CrossRef]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- Ramírez-Campillo, R.; Gallardo, F.; Henriquez-Olguín, C.; Meylan, C.M.; Martínez, C.; Álvarez, C.; Caniuqueo, A.; Cadore, E.L.; Izquierdo, M. Effect of vertical, horizontal, and combined plyometric training on explosive, balance, and endurance performance of young soccer players. J. Strength Cond. Res. 2015, 29, 1784–1795. [Google Scholar] [CrossRef]
- Ache-Dias, J.; Dellagrana, R.A.; Teixeira, A.S.; Dal Pupo, J.; Moro, A.R.P. Effect of jumping interval training on neuromuscular and physiological parameters: A randomized controlled study. Appl. Physiol. Nutr. Metab. 2015, 41, 20–25. [Google Scholar] [CrossRef]
- Andrade, D.C.; Beltrán, A.R.; Labarca-Valenzuela, C.; Manzo-Botarelli, O.; Trujillo, E.; Otero-Farias, P.; Álvarez, C.; Garcia-Hermoso, A.; Toledo, C.; Del Rio, R. Effects of plyometric training on explosive and endurance performance at sea level and at high altitude. Front. Physiol. 2018, 9, 1415. [Google Scholar] [CrossRef]
- Al Attar, W.S.A.; Bakhsh, J.M.; Khaledi, E.H.; Ghulam, H.; Sanders, R.H. Injury prevention programs that include plyometric exercises reduce the incidence of anterior cruciate ligament injury: A systematic review of cluster randomised trials. J. Physiother. 2022, 68, 255–261. [Google Scholar] [CrossRef]
- Gutiérrez-Arroyo, J.; García-Heras, F.; Carballo-Leyenda, B.; Villa-Vicente, J.G.; Rodríguez-Medina, J.; Rodríguez-Marroyo, J.A. Effect of a high-intensity circuit training program on the physical fitness of wildland firefighters. Int. J. Environ. Res. Public Health 2023, 20, 2073. [Google Scholar] [CrossRef]
- Duehring, M.D.; Feldmann, C.R.; Ebben, W.P. Strength and conditioning practices of United States high school strength and conditioning coaches. J. Strength Cond. Res. 2009, 23, 2188–2203. [Google Scholar] [CrossRef] [PubMed]
- Case, M.J.; Knudson, D.V.; Downey, D.L. Barbell squat relative strength as an identifier for lower extremity injury in collegiate athletes. J. Strength Cond. Res. 2020, 34, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A.; French, D.N. Resistance training for health and performance. Curr. Sports Med. Rep. 2002, 1, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Lauersen, J.B.; Bertelsen, D.M.; Andersen, L.B. The effectiveness of exercise interventions to prevent sports injuries: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2014, 48, 871–877. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Alvar, B.A.; Sell, K.; Deuster, P.A. NSCA’s Essentials of Tactical Strength and Conditioning, 1st ed.; Human Kinetics: Champaign, IL, USA, 2017. [Google Scholar]
- Giuliani, H.K.; Gerstner, G.R.; Mota, J.A.; Ryan, E.D. Influence of demographic characteristics and muscle strength on the occupational fatigue exhaustion recovery scale in career firefighters. J. Occup. Environ. Med. 2020, 62, 223–226. [Google Scholar] [CrossRef]
- Marciniak, R.A.; Ebersole, K.T.; Cornell, D.J. Relationships between balance and physical fitness variables in firefighter recruits. Work 2021, 68, 667–677. [Google Scholar] [CrossRef]
- Baechle, T.R.; Earle, R.W. Essentials of Strength Training and Conditioning, 3rd ed.; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Wewege, M.A.; Desai, I.; Honey, C.; Coorie, B.; Jones, M.D.; Clifford, B.K.; Leake, H.B.; Hagstrom, A.D. The effect of resistance training in healthy adults on body fat percentage, fat mass and visceral fat: A systematic review and meta-analysis. Sports Med. 2022, 52, 287–300. [Google Scholar] [CrossRef]
- Keating, S.E.; Johnson, N.A.; Mielke, G.I.; Coombes, J.S. A systematic review and meta-analysis of interval training versus moderate-intensity continuous training on body adiposity. Obes. Rev. 2017, 18, 943–964. [Google Scholar] [CrossRef]
- Benito, P.J.; Cupeiro, R.; Ramos-Campo, D.J.; Alcaraz, P.E.; Rubio-Arias, J.Á. A systematic review with meta-analysis of the effect of resistance training on whole-body muscle growth in healthy adult males. Int. J. Envir. Res. Public Health 2020, 17, 1285. [Google Scholar] [CrossRef]
- Aristizabal, J.; Freidenreich, D.; Volk, B.; Kupchak, B.R.; Saenz, C.; Maresh, C.M.; Kraemer, W.J.; Volek, J.S. Effect of resistance training on resting metabolic rate and its estimation by a dual-energy X-ray absorptiometry metabolic map. Eur. J. Clin. Nutr. 2014, 69, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.-J.; Liao, C.-D.; Tsai, M.-W.; Chen, C.-N. Effects of exercise and nutritional intervention on body composition, metabolic health, and physical performance in adults with sarcopenic obesity: A meta-analysis. Nutrients 2019, 11, 2163. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Soh, K.G.; Zaremohzzabieh, Z.; Abdullah, B.; Salleh, K.M.; Huang, D. Effects of combined upper and lower limb plyometric training interventions on physical fitness in athletes: A systematic review with meta-analysis. Int. J. Environ. Res. Public Health 2022, 20, 482. [Google Scholar] [CrossRef] [PubMed]
- Manouras, N.; Papanikolaou, Z.; Karatrantou, K.; Kouvarakis, P.; Gerodimos, V. The efficacy of vertical vs. horizontal plyometric training on speed, jumping performance and agility in soccer players. Int. J. Sports Sci. Coach. 2016, 11, 702–709. [Google Scholar] [CrossRef]
- Moran, J.; Ramirez-Campillo, R.; Liew, B.; Chaabene, H.; Behm, D.G.; García-Hermoso, A.; Izquierdo, M.; Granacher, U. Effects of vertically and horizontally orientated plyometric training on physical performance: A meta-analytical comparison. Sports Med. 2021, 51, 65–79. [Google Scholar] [CrossRef]
- Padulo, J.; Tabben, M.; Attene, G.; Ardigò, L.P.; Dhahbi, W.; Chamari, K. The impact of jumping during recovery on repeated sprint ability in young soccer players. Res. Sports Med. 2015, 23, 240–252. [Google Scholar] [CrossRef]
- Yanci, J.; Los Arcos, A.; Camara, J.; Castillo, D.; García, A.; Castagna, C. Effects of horizontal plyometric training volume on soccer players’ performance. Res. Sports Med. 2016, 24, 308–319. [Google Scholar] [CrossRef]
- de Villarreal, E.S.; González-Badillo, J.J.; Izquierdo, M. Low and moderate plyometric training frequency produces greater jumping and sprinting gains compared with high frequency. J. Strength Cond. Res. 2008, 22, 715–725. [Google Scholar] [CrossRef]
- Beneka, A.G.; Malliou, P.K.; Missailidou, V.; Chatzinikolaou, A.; Fatouros, I.; Gourgoulis, V.; Georgiadis, E. Muscle performance following an acute bout of plyometric training combined with low or high intensity weight exercise. J. Sports Sci. 2013, 31, 335–343. [Google Scholar] [CrossRef]
- Bedoya, A.A.; Miltenberger, M.R.; Lopez, R.M. Plyometric training effects on athletic performance in youth soccer athletes: A systematic review. J. Strength Cond. Res. 2015, 29, 2351–2360. [Google Scholar] [CrossRef]
- Potach, D.H.; Chu, D.A. Program design and technique for plyometric training. In Essentials of Strength Training and Conditioning, 3rd ed.; Baechle, T.R., Earle, R.W., Eds.; Human Kinetics: Champaign, IL, USA, 2016; pp. 471–520. [Google Scholar]
- Davies, G.; Riemann, B.L.; Manske, R. Current Concepts of Plyometric Exercise. Int. J. Sports Phys. Ther. 2015, 10, 760–786. [Google Scholar] [PubMed]
- Bogdanis, G.C.; Tsoukos, A.; Kaloheri, O.; Terzis, G.; Veligekas, P.; Brown, L.E. Comparison between unilateral and bilateral plyometric training on single- and double-leg jumping performance and strength. J. Strength Cond. Res. 2019, 33, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Staniszewski, M.; Tkaczyk, J.; Kęska, A.; Zybko, P.; Mróz, A. Effect of rest duration between sets on fatigue and recovery after short intense plyometric exercise. Sci. Rep. 2024, 14, 15080. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine Position Stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 2009, 41, 687–708. [Google Scholar] [CrossRef] [PubMed]
- Simao, R.; De Salles, B.F.; Figueiredo, T.; Dias, I.; Willardson, J.M. Exercise order in resistance training. Sports Med. 2012, 42, 251–265. [Google Scholar] [CrossRef]
- Fleck, S.J.; Kraemer, W.J. Designing Resistance Training Programs, 4th ed.; Human Kinestics: Champaign, IL, USA, 2014. [Google Scholar]
- Tan, B. Manipulating resistance training program variables to optimize maximum strength in men. J. Strength Cond. Res. 1999, 13, 289–304. [Google Scholar] [CrossRef]
- Baechle, T.R.; Earle, R.W. Essentials of Strength Training and Conditioning, 4th ed.; Human Kinetics: Champaign, IL, USA, 2021. [Google Scholar]
- Krieger, J.W. Single versus multiple sets of resistance exercise: A meta-regression. J. Strength Cond. Res. 2009, 23, 1890–1901. [Google Scholar] [CrossRef]
- Radaelli, R.; Fleck, S.J.; Leite, T.; Leite, R.D.; Pinto, R.S.; Fernandes, L.; Simão, R. Dose-response of 1, 3, and 5 sets of resistance exercise on strength, local muscular endurance, and hypertrophy. J. Strength Cond. Res. 2015, 29, 1349–1358. [Google Scholar] [CrossRef]
- Hackett, D.A.; Davies, T.B.; Sabag, A. Effect of 10 sets versus 5 sets of resistance training on muscular endurance. J. Sports Med. Phys. Fit. 2022, 62, 778–787. [Google Scholar] [CrossRef]
- Hackett, D.A.; Amirthalingam, T.; Mitchell, L.; Mavros, Y.; Wilson, G.C.; Halaki, M. Effects of a 12-Week modified German Volume Training program on muscle strength and hypertrophy—A pilot study. Sports 2018, 6, 7. [Google Scholar] [CrossRef]
- Tharion, W.J.; Harman, E.A.; Kraemer, W.J.; Rauch, T.M. Effects of different weight training routines on mood states. J. Strength Cond. Res. 1991, 5, 60–65. [Google Scholar]
- Graham, T.; Cleather, D.J. Autoregulation by “repetitions in reserve” leads to greater improvements in strength over a 12-week training program than fixed loading. J. Strength Cond. Res. 2021, 35, 2451–2456. [Google Scholar] [CrossRef] [PubMed]
- NFPA 1582: Standard on Comprehensive Occupational Medical Program for Fire Departments, 2022 Edition; NFPA National Fire Codes Online: Quincy, MA, USA. 2022. Available online: https://www.nfpa.org/codes-and-standards/nfpa-1582-standard-development/1582 (accessed on 15 July 2024).
- NFPA 1583: Standard on Health-Related Fitness Programs for Fire Department Members, 2022 Edition; NFPA National Fire Codes Online: Quincy, MA, USA. 2022. Available online: https://www.nfpa.org/codes-and-standards/nfpa-1583-standard-development/1583 (accessed on 15 July 2024).
Heavy | Rest | Light | Rest | Heavy | Rest | Rest | |
---|---|---|---|---|---|---|---|
Push + Pull | Push Back squat Bench press Shoulder press | Push + Pull Back squat Deadlift Bench press Bent-over row | Pull Deadlift Bent-over row | ||||
Combination | Back squat Deadlift Bench press Bent-over row | Back squat Deadlift Bench press Bent-over row | Back squat Deadlift Bench press Bent-over row | ||||
Upper body + Lower body | Upper body Bench press Bent-over row Shoulder press | Upper + Lower body Back squat Deadlift Bench press Bent-over row | Lower body Back squat Deadlift Lunges |
Training Characteristic | Resistance Training (Training Goal) a | Lower-Body Plyometric Training | Upper-Body Plyometric Training |
---|---|---|---|
Sets | Beginners: 2–3 sets/exercise Advanced: 2–5 sets/exercise | 3–5 sets/exercise b | Beginners: 1 set/exercise Athletes: 3 sets/exercise |
Repetitions | Muscular endurance: >12/set Hypertrophy: 6–12/set Strength: ≤6/set Power: ≤5/set | 10–20 contacts/set | 5–10 throws or catches/set |
Intensity | Muscular endurance: ≤67% 1RM Hypertrophy: 67–85% 1RM Strength: ≥85% 1RM Power: 75–90% 1RM | 80–100% maximal voluntary contraction | 80–100% maximal voluntary contraction |
Inter-set rest period | Muscular endurance: ≤30 s2 Hypertrophy: 30–90 s Strength: 2–5 min Power: 2–5 min | 1:2–1:3 work-to-rest ratio | 60 s |
Frequency (sessions/week) c | 2–3 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohler, A.A.; Moore, A.R.; Holland-Winkler, A.M. The Role of Resistance and Plyometric Training in Firefighter Safety and Performance: A Narrative Review. Physiologia 2024, 4, 327-340. https://doi.org/10.3390/physiologia4040020
Kohler AA, Moore AR, Holland-Winkler AM. The Role of Resistance and Plyometric Training in Firefighter Safety and Performance: A Narrative Review. Physiologia. 2024; 4(4):327-340. https://doi.org/10.3390/physiologia4040020
Chicago/Turabian StyleKohler, Austin A., Andrew R. Moore, and Angelia M. Holland-Winkler. 2024. "The Role of Resistance and Plyometric Training in Firefighter Safety and Performance: A Narrative Review" Physiologia 4, no. 4: 327-340. https://doi.org/10.3390/physiologia4040020
APA StyleKohler, A. A., Moore, A. R., & Holland-Winkler, A. M. (2024). The Role of Resistance and Plyometric Training in Firefighter Safety and Performance: A Narrative Review. Physiologia, 4(4), 327-340. https://doi.org/10.3390/physiologia4040020