Next Article in Journal
How Biological and Environmental Factors Affect the Quality of Lavender Essential Oils
Previous Article in Journal
Outdoor Detection of Plant Ultrasonic Emissions Using a Contactless Microphone
Previous Article in Special Issue
The Effect of Concurrent Resistance Training on Tethered Force, Lower Limbs Strength, Anaerobic Critical Velocity, and Swimming Performance: A Randomized Controlled Trial
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Resistance Exercise in Treating Heart Failure with Preserved Ejection Fraction (HFpEF) and Obesity: Targeting Skeletal Muscle Abnormalities and Ectopic Adipose Depots

by
Daniel J. McDonough
1,2
1
Division of Epidemiology and Community Health, School of Public Health, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
2
K99/R00 Postdoctoral Research Fellowship Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
Physiologia 2025, 5(1), 10; https://doi.org/10.3390/physiologia5010010
Submission received: 24 February 2025 / Accepted: 24 February 2025 / Published: 27 February 2025
(This article belongs to the Special Issue Resistance Training Is Medicine)

1. Introduction

Heart failure is a leading cause of morbidity and mortality worldwide [1], and with continued increases in the global prevalence of key disease drivers like physical inactivity and obesity in an aging population [2,3,4,5,6,7], heart failure with preserved ejection fraction (HFpEF; a left ventricular ejection fraction ≥50%) is now the dominant heart failure subtype [8,9,10]. Accordingly, HFpEF is one of the most urgent prevention and treatment challenges in public health today given its increasing prevalence, limited therapeutic options, and the substantial burden on global health care systems [8,9]. The majority of HFpEF patients have obesity (a body mass index ≥30 kg/m2) [11,12,13,14,15], and growing evidence suggests that obesity and excess adiposity are not merely comorbidities, but may play a central role in the pathogenesis and progression of HFpEF [12,13,16,17,18]. HFpEF with obesity is pathophysiologically distinct from HFpEF without obesity and is characterized by more adverse hemodynamics, higher risk of heart failure hospitalization, worse symptomatology (e.g., dyspnea), and more severe exercise intolerance—the primary hallmark of chronic HFpEF [11,12,15,19,20,21,22].
The obesity-driven genesis of regional ectopic adipose depots, independent of total adiposity, may particularly exacerbate exercise intolerance in HFpEF and worsen its prognosis through auto-, para-, and endocrine pathways [11,13]. Ectopic visceral adipose tissue (VAT) in the intra-abdominal and thoracic (i.e., epicardial, pericardial, and perivascular) compartments is a metabolically active secretome, which acts as an independent organ, producing, expressing, and secreting exosomes and adipokines that are proinflammatory, oxidative, vasoactive, and angiogenic [13,18,23,24,25,26,27,28]. These harmful substances exert negative downstream effects on systemic inflammation, insulin sensitivity, lipid regulation, and blood pressure [11,13,18,29,30,31]. Furthermore, the ectopic accumulation of intra-hepatic triglycerides (hepatic steatosis) produces, expresses, and secretes proinflammatory hepatokines and increases resistance in the hepatic sinusoids, which disrupts transhepatic blood flow to the heart and limits preload reserve, further exacerbating exercise intolerance in HFpEF [9,30,31,32,33,34,35,36,37,38,39,40]. In skeletal muscle, the ectopic accumulation of intra- and inter-myocellular triglycerides (myosteatosis) further contributes to exercise intolerance in HFpEF via skeletal muscle function deficit, impaired tissue perfusion (oxygen delivery), and oxygen utilization (aerobic metabolism) [13,41,42,43,44].
Exercise intolerance in HFpEF also manifests from other skeletal muscle abnormalities, including sarcopenia, lower type I (oxidative) muscle fibers and type I-to-type II fiber ratio, capillary rarefaction and reduced capillary-to-fiber ratio, and reduced mitochondrial number and size and mitochondrial dysfunction [41,42,43,45,46]. Thus, given the terminal differentiation and limited rejuvenation capacity of the heart in HFpEF, and plasticity and rejuvenation capacities of adipose and skeletal muscle tissues, there have been recent calls for therapies targeting extracardiac, cardiometabolic perturbations in the treatment of HFpEF [9,41,42,43,45,46].

2. Pharmacotherapy and Aerobic Exercise-Based Treatments in HFpEF

Historically, pharmacological trials in HFpEF have not shown benefit for improving exercise capacity (measured as peak oxygen consumption) or quality of life (QoL) in HFpEF [47,48,49,50,51]. However, recent trials of pharmacotherapy with anti-obesity medications (e.g., semaglutide, tirzepatide) have shown promise for improving peak oxygen consumption and QoL in patients with HFpEF and obesity [52,53]. However, these medications are expensive with financial and social barriers to access [54,55,56,57,58,59]; discontinuation rates are high and reinitiation rates are low with a high likelihood of weight (fat) regain following cessation [60]; there is a risk of gastrointestinal adverse events [61]; and drug-induced weight loss has been observed to result in significant loss of lean body mass [62,63,64,65,66], which may compromise long-term functional capacity and independence in an already frail patient population [41,42,43,45,46,67,68].
Exercise trials in HFpEF have also demonstrated clinically meaningful improvements in peak oxygen consumption and QoL [69,70,71,72,73,74,75,76,77,78,79,80,81]. However, exercise trials in HFpEF have been primarily aerobic-based and have had poor adherence (~50–70% complete 100% of exercise sessions) [75,80,81,82,83,84]. Traditional aerobic exercise (e.g., cycle ergometry) requires continuous movement of multiple, large leg muscles (>6 kg of muscle mass) and is, therefore, limited by the heart in HFpEF [85], which is particularly troubling for HFpEF patients with obesity who suffer from worse aerobic capacity and more severe exercise intolerance [11,12,15,19,20,21,22,43,76,86,87,88,89,90]. A meta-analysis [91] found resistance exercise, alone, vs. concurrent exercise training (aerobic + resistance), similarly improves peak oxygen consumption and QoL in patients with HF with reduced ejection fraction (HFrEF) [91]. Thus, considering that HFpEF patients are generally older, more frail, and have greater functional limitations than HFrEF patients [67,68,89], resistance exercise, alone, may be sufficient to target the cardiac and extracardiac contributors of exercise intolerance in patients with HFpEF and obesity [89,91,92]. However, there appears to be no trial to date isolating the effect of resistance exercise in this population [82,83,89].

3. Potential of Resistance Exercise in Treating HFpEF

HFpEF is a full-body disorder and, thus, may benefit most from full-body therapies. Resistance exercise, alone, can simultaneously reduce VAT [93,94,95,96], myocardial steatosis [97,98,99], hepatic steatosis [100,101,102,103], and myosteatosis [104,105], without diet-induced weight loss [106,107], while requiring less [objectively measured] exertional effort than aerobic exercise [108,109]. Unlike aerobic exercise, selectively targeting smaller muscle masses (‘small muscle exercise’), as with full body resistance exercise, is not limited by the heart, such that individual muscles can be trained, followed by periods of rest, before being repeated [85]. Furthermore, resistance (but not aerobic) exercise can selectively target all major skeletal muscles and concomitantly improve the skeletal muscle-specific contributors to exercise intolerance in HFpEF and obesity on a whole-body level (discussed below). In particular, low-load/high-repetition resistance exercise (exercising at ~30% of patients’ 1-repetition maximum [1RM] on a given exercise) has been recommended by the American Heart Association [110] as an alternative to aerobic exercise in cardiovascular disease patients with compromised aerobic capacity, and has been deemed safe and suitable for frail elderly people given its low articular stress and low risk of cardiac events compared to traditional resistance exercise at moderate and high loads [110,111,112,113,114,115,116,117,118,119,120,121].
Low-load/high-repetition resistance exercise may be particularly effective for targeting the peripheral, skeletal-specific contributors of exercise intolerance in HFpEF and obesity (Figure 1) [41,43,122,123,124,125]. When performed to sub-volitional fatigue in older adults (i.e., a rating of perceived exertion [RPE] score of ~7 out of 10), low-load/high-repetition resistance exercise confers similar benefits in skeletal muscle morphology (e.g., hypertrophy) and function (e.g., muscular strength) as traditional, higher-load resistance exercise (≥70% 1RM) [111,115,116,117,118,119,120,126]. Furthermore, low-load/high-repetition resistance exercise mimics aerobic exercise in that energy utilization rapidly shifts to oxidative energy metabolism. Accordingly, chronic adaptations include transitioning type II (glycolytic) muscle fibers (highly prevalent in HFpEF and obesity) to type I (oxidative) fibers [127], improved mitochondrial content and bioenergetics, and oxygen perfusion and utilization on a whole-body level [116,128]. Likewise, low-load/high-repetition resistance exercise increases skeletal muscle capillarity and capillary-to-fiber ratio and improves microvascular function by elevating nitric oxide bioavailability in the vascular tissue—a therapeutic target in previous HFpEF trials [129,130,131,132,133]. Low-load/high-repetition resistance exercise may also help overcome perceived barriers to traditional resistance exercise in patients with HFpEF and obesity (e.g., articular stress and fear of pain, injury, and acute cardiac events) [111,134,135,136]. Thus, older adults who are allowed to self-select load in a resistance exercise program tend to choose lower loads (~20–30% 1RM) [137] rather than moderate or heavy loads and, thus, a low-load resistance exercise intervention may further promote long-term adherence to exercise therapies in patients with HFpEF and obesity. Finally, although there was initial reluctance in applying traditional resistance exercise at moderate and higher loads to patients with heart failure, low-load resistance exercise with resistance bands or weight-stack machines has been deemed safe [110,112,113,114,121,138].

4. Future Research Directions

Despite the potential of resistance exercise to improve exercise capacity and QoL in patients with HFpEF and obesity, clinical trials of resistance exercise, as a standalone intervention, have not yet been conducted. We have developed, and are currently initiating, a pilot randomized clinical trial funded by the National Heart, Lung and Blood Institute of the National Institutes of Health (HL173668) to examine the feasibility and acceptability of a full-body, low-load/high-repetition resistance exercise intervention, as a standalone intervention, in patients with HFpEF and obesity. Following this, we will develop and implement a multi-center randomized clinical trial examining the synergistic effects of low-load/high-repetition resistance exercise with pharmacotherapy-induced weight loss on all-cause hospitalization and mortality in patients with HFpEF and obesity [52,53,139,140]. Despite the above-noted limitations of pharmacotherapy with anti-obesity medications, their effects on key clinical outcomes in patients with HFpEF and obesity are remarkable. Adding resistance exercise may further enhance these effects by targeting problematic VAT compartments and other ectopic adipose depots while simultaneously increasing muscle mass, preserving or increasing bone density, improving skeletal muscle function on a whole-body level, and helping to prevent weight (fat) regain, further improving key therapeutic targets in this population [66,141]. Remote, home-based interventions in particular may better appeal to patients with HFpEF and obesity to minimize burden and maximize intervention adherence and retention [142,143].
Akin to adipose tissue, the skeletal muscle tissue secretome produces, expresses, and secretes myokines during skeletal muscle contraction (e.g., during resistance exercise), which exert beneficial auto-, para-, and endocrine effects through muscle–organ crosstalk, and may also interact with harmful adipokines in obesity and related diseases like HFpEF [144,145,146,147,148,149,150,151,152,153,154]. Research in this area is still in its infancy, but future research should examine their potential role in mediating the beneficial effects of resistance exercise in treating HFpEF and obesity (Figure 2).

Funding

This research was funded by the National Heart, Lung and Blood Institute, National Institutes of Health, K99HL173668 (DJM) and L30HL170343 (DJM).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Conflicts of Interest

The author declares no conflicts of interest.

References

  1. Shahim, B.; Kapelios, C.J.; Savarese, G.; Lund, L.H. Global Public Health Burden of Heart Failure: An Updated Review. Card Fail Rev. 2023, 9, e11. [Google Scholar] [CrossRef] [PubMed]
  2. Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef]
  3. Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
  4. Ward, Z.J.; Bleich, S.N.; Cradock, A.L.; Barrett, J.L.; Giles, C.M.; Flax, C.; Long, M.W.; Gortmaker, S.L. Projected U.S. State-Level Prevalence of Adult Obesity and Severe Obesity. N. Engl. J. Med. 2019, 381, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
  5. World Obesity Federation. World Obesity Atlas 2023. Available online: https://www.worldobesityday.org/assets/downloads/World_Obesity_Atlas_2023_Report.pdf (accessed on 11 May 2023).
  6. Pandey, A.; LaMonte, M.; Klein, L.; Ayers, C.; Psaty, B.M.; Eaton, C.B.; Allen, N.B.; de Lemos, J.A.; Carnethon, M.; Greenland, P.; et al. Relationship Between Physical Activity, Body Mass Index, and Risk of Heart Failure. J. Am. Coll. Cardiol. 2017, 69, 1129–1142. [Google Scholar] [CrossRef]
  7. NCD Risk Factor Collaboration. Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef] [PubMed]
  8. Redfield, M.M.; Borlaug, B.A. Heart Failure With Preserved Ejection Fraction: A Review. JAMA 2023, 329, 827–838. [Google Scholar] [CrossRef] [PubMed]
  9. Borlaug, B.; Sharma, K.; Shah, S.; Ho, J. Heart Failure With Preserved Ejection Fraction: JACC Scientific Statement. J. Am. Coll. Cardiol. 2023, 81, 1810–1834. [Google Scholar] [CrossRef] [PubMed]
  10. Campbell, P.; Rutten, F.H.; Lee, M.M.; Hawkins, N.M.; Petrie, M.C. Heart failure with preserved ejection fraction: Everything the clinician needs to know. Lancet 2024, 403, 1083–1092. [Google Scholar] [CrossRef]
  11. Kitzman, D.W.; Shah, S.J. The HFpEF Obesity Phenotype: The Elephant in the Room. J. Am. Coll. Cardiol. 2016, 68, 200–203. [Google Scholar] [CrossRef] [PubMed]
  12. Borlaug, B.A.; Jensen, M.D.; Kitzman, D.W.; Lam, C.S.P.; Obokata, M.; Rider, O.J. Obesity and heart failure with preserved ejection fraction: New insights and pathophysiological targets. Cardiovasc. Res. 2023, 118, 3434–3450. [Google Scholar] [CrossRef] [PubMed]
  13. Haykowsky, M.J.; Nicklas, B.J.; Brubaker, P.H.; Hundley, W.G.; Brinkley, T.E.; Upadhya, B.; Becton, J.T.; Nelson, M.D.; Chen, H.; Kitzman, D.W. Regional Adipose Distribution and its Relationship to Exercise Intolerance in Older Obese Patients Who Have Heart Failure With Preserved Ejection Fraction. JACC Heart Fail. 2018, 6, 640–649. [Google Scholar] [CrossRef]
  14. Packer, M.; Lam, C.S.P.; Lund, L.H.; Maurer, M.S.; Borlaug, B.A. Characterization of the inflammatory-metabolic phenotype of heart failure with a preserved ejection fraction: A hypothesis to explain influence of sex on the evolution and potential treatment of the disease. Eur. J. Heart Fail. 2020, 22, 1551–1567. [Google Scholar] [CrossRef] [PubMed]
  15. Obokata, M.; Reddy, Y.N.V.; Pislaru, S.V.; Melenovsky, V.; Borlaug, B.A. Evidence Supporting the Existence of a Distinct Obese Phenotype of Heart Failure With Preserved Ejection Fraction. Circulation 2017, 136, 6–19. [Google Scholar] [CrossRef]
  16. Haass, M.; Kitzman, D.W.; Anand, I.S.; Miller, A.; Zile, M.R.; Massie, B.M.; Carson, P.E. Body mass index and adverse cardiovascular outcomes in heart failure patients with preserved ejection fraction: Results from the Irbesartan in Heart Failure with Preserved Ejection Fraction (I-PRESERVE) trial. Circ. Heart Fail. 2011, 4, 324–331. [Google Scholar] [CrossRef] [PubMed]
  17. Newman, A.B.; Lee, J.S.; Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Nevitt, M.; Harris, T.B. Weight change and the conservation of lean mass in old age: The Health, Aging and Body Composition Study. Am. J. Clin. Nutr. 2005, 82, 872–878, quiz 915-876. [Google Scholar] [CrossRef] [PubMed]
  18. Kitzman, D.W.; Nicklas, B.J. Pivotal Role of Excess Intra-Abdominal Adipose in the Pathogenesis of Metabolic/Obese HFpEF. JACC Heart Fail. 2018, 6, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
  19. Morgen, C.S.; Haase, C.L.; Oral, T.K.; Schnecke, V.; Varbo, A.; Borlaug, B.A. Obesity, Cardiorenal Comorbidities, and Risk of Hospitalization in Patients With Heart Failure With Preserved Ejection Fraction. Mayo Clin. Proc. 2023, 98, 1458–1468. [Google Scholar] [CrossRef]
  20. Dalos, D.; Mascherbauer, J.; Zotter-Tufaro, C.; Duca, F.; Kammerlander, A.A.; Aschauer, S.; Bonderman, D. Functional Status, Pulmonary Artery Pressure, and Clinical Outcomes in Heart Failure With Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2016, 68, 189–199. [Google Scholar] [CrossRef]
  21. Reddy, Y.N.V.; Lewis, G.D.; Shah, S.J.; Obokata, M.; Abou-Ezzedine, O.F.; Fudim, M.; Sun, J.L.; Chakraborty, H.; McNulty, S.; LeWinter, M.M.; et al. Characterization of the Obese Phenotype of Heart Failure With Preserved Ejection Fraction: A RELAX Trial Ancillary Study. Mayo Clin. Proc. 2019, 94, 1199–1209. [Google Scholar] [CrossRef]
  22. Reddy, Y.N.V.; Rikhi, A.; Obokata, M.; Shah, S.J.; Lewis, G.D.; AbouEzzedine, O.F.; Dunlay, S.; McNulty, S.; Chakraborty, H.; Stevenson, L.W.; et al. Quality of life in heart failure with preserved ejection fraction: Importance of obesity, functional capacity, and physical inactivity. Eur. J. Heart Fail 2020, 22, 1009–1018. [Google Scholar] [CrossRef]
  23. Iacobellis, G. Epicardial and Pericardial Fat-Separated But Under the Same Roof. JAMA Cardiol. 2024, 9, 949. [Google Scholar] [CrossRef] [PubMed]
  24. Ramo, J.T.; Kany, S.; Hou, C.R.; Friedman, S.F.; Roselli, C.; Nauffal, V.; Koyama, S.; Karjalainen, J.; Maddah, M.; Palotie, A.; et al. Cardiovascular Significance and Genetics of Epicardial and Pericardial Adiposity. JAMA Cardiol. 2024, 9, 418–427. [Google Scholar] [CrossRef] [PubMed]
  25. Packer, M. Epicardial Adipose Tissue May Mediate Deleterious Effects of Obesity and Inflammation on the Myocardium. J. Am. Coll. Cardiol. 2018, 71, 2360–2372. [Google Scholar] [CrossRef] [PubMed]
  26. van Woerden, G.; van Veldhuisen, D.J.; Manintveld, O.C.; van Empel, V.P.M.; Willems, T.P.; de Boer, R.A.; Rienstra, M.; Westenbrink, B.D.; Gorter, T.M. Epicardial Adipose Tissue and Outcome in Heart Failure With Mid-Range and Preserved Ejection Fraction. Circ. Heart Fail 2022, 15, e009238. [Google Scholar] [CrossRef] [PubMed]
  27. Goldman, S.A.; Requena-Ibanez, J.A.; Devesa, A.; Santos-Gallego, C.G.; Badimon, J.J.; Fuster, V. Uncovering the Role of Epicardial Adipose Tissue in Heart Failure With Preserved Ejection Fraction. JACC Adv. 2023, 2, 100657. [Google Scholar] [CrossRef]
  28. Antoniades, C.; Tousoulis, D.; Vavlukis, M.; Fleming, I.; Duncker, D.J.; Eringa, E.; Manfrini, O.; Antonopoulos, A.S.; Oikonomou, E.; Padro, T.; et al. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur. Heart J. 2023, 44, 3827–3844. [Google Scholar] [CrossRef] [PubMed]
  29. Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [PubMed]
  30. Fudim, M.; Sobotka, P.A.; Dunlap, M.E. Extracardiac Abnormalities of Preload Reserve: Mechanisms Underlying Exercise Limitation in Heart Failure with Preserved Ejection Fraction, Autonomic Dysfunction, and Liver Disease. Circ. Heart Fail. 2021, 14, e007308. [Google Scholar] [CrossRef]
  31. Salah, H.M.; Pandey, A.; Soloveva, A.; Abdelmalek, M.F.; Diehl, A.M.; Moylan, C.A.; Wegermann, K.; Rao, V.N.; Hernandez, A.F.; Tedford, R.J.; et al. Relationship of Nonalcoholic Fatty Liver Disease and Heart Failure with Preserved Ejection Fraction. JACC Basic Transl. Sci. 2021, 6, 918–932. [Google Scholar] [CrossRef] [PubMed]
  32. Miller, A.; McNamara, J.; Hummel, S.L.; Konerman, M.C.; Tincopa, M.A. Prevalence and staging of non-alcoholic fatty liver disease among patients with heart failure with preserved ejection fraction. Sci. Rep. 2020, 10, 12440. [Google Scholar] [CrossRef] [PubMed]
  33. Peters, A.E.; Pandey, A.; Ayers, C.; Wegermann, K.; McGarrah, R.W.; Grodin, J.L.; Abdelmalek, M.F.; Bekfani, T.; Blumer, V.; Diehl, A.M.; et al. Association of liver fibrosis risk scores with clinical outcomes in patients with heart failure with preserved ejection fraction: Findings from TOPCAT. ESC Heart Fail. 2021, 8, 842–848. [Google Scholar] [CrossRef] [PubMed]
  34. Diehl, A.M.; Day, C. Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. N. Engl. J. Med. 2017, 377, 2063–2072. [Google Scholar] [CrossRef] [PubMed]
  35. Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
  36. Pang, Q.; Zhang, J.Y.; Song, S.D.; Qu, K.; Xu, X.S.; Liu, S.S.; Liu, C. Central obesity and nonalcoholic fatty liver disease risk after adjusting for body mass index. World J. Gastroenterol. 2015, 21, 1650–1662. [Google Scholar] [CrossRef] [PubMed]
  37. Itier, R.; Guillaume, M.; Ricci, J.E.; Roubille, F.; Delarche, N.; Picard, F.; Galinier, M.; Roncalli, J. Non-alcoholic fatty liver disease and heart failure with preserved ejection fraction: From pathophysiology to practical issues. ESC Heart Fail. 2021, 8, 789–798. [Google Scholar] [CrossRef]
  38. Wang, A.; Li, Z.; Sun, Z.; Wang, Y.; Fu, S.; Zhang, D.; Ma, X. Heart failure with preserved ejection fraction and non-alcoholic fatty liver disease: New insights from bioinformatics. ESC Heart Fail. 2023, 10, 416–431. [Google Scholar] [CrossRef] [PubMed]
  39. Grant, M.G.; Pratt, C.; Wong, R.P.; Addou, E.; Desvigne-Nickens, P.; Campo, R.A.; Donze, L.F.; Barnes, V.I.; Schopfer, D.W.; Jaquish, C.E.; et al. Implementing the National Heart, Lung, and Blood Institute’s Strategic Vision in the Division of Cardiovascular Sciences-2022 Update. Circ. Res. 2022, 131, 713–724. [Google Scholar] [CrossRef]
  40. Yang, Z.; Tian, R.; Zhang, X.J.; Cai, J.; She, Z.G.; Li, H. Effects of treatment of non-alcoholic fatty liver disease on heart failure with preserved ejection fraction. Front. Cardiovasc. Med. 2022, 9, 1120085. [Google Scholar] [CrossRef]
  41. Kitzman, D.W.; Nicklas, B.; Kraus, W.E.; Lyles, M.F.; Eggebeen, J.; Morgan, T.M.; Haykowsky, M. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, H1364–H1370. [Google Scholar] [CrossRef]
  42. Haykowsky, M.J.; Kouba, E.J.; Brubaker, P.H.; Nicklas, B.J.; Eggebeen, J.; Kitzman, D.W. Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved ejection fraction. Am. J. Cardiol. 2014, 113, 1211–1216. [Google Scholar] [CrossRef]
  43. Pandey, A.; Shah, S.J.; Butler, J.; Kellogg, D.L.; Lewis, G.D.; Forman, D.E.; Mentz, R.J.; Borlaug, B.A.; Simon, M.A.; Chirinos, J.A.; et al. Exercise Intolerance in Older Adults with Heart Failure with Preserved Ejection Fraction: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 1166–1187. [Google Scholar] [CrossRef]
  44. Correa-de-Araujo, R.; Addison, O.; Miljkovic, I.; Goodpaster, B.H.; Bergman, B.C.; Clark, R.V.; Elena, J.W.; Esser, K.A.; Ferrucci, L.; Harris-Love, M.O.; et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Front. Physiol. 2020, 11, 963. [Google Scholar] [CrossRef]
  45. Molina, A.J.; Bharadwaj, M.S.; Van Horn, C.; Nicklas, B.J.; Lyles, M.F.; Eggebeen, J.; Haykowsky, M.J.; Brubaker, P.H.; Kitzman, D.W. Skeletal Muscle Mitochondrial Content, Oxidative Capacity, and Mfn2 Expression Are Reduced in Older Patients with Heart Failure and Preserved Ejection Fraction and Are Related to Exercise Intolerance. JACC Heart Fail. 2016, 4, 636–645. [Google Scholar] [CrossRef] [PubMed]
  46. Scandalis, L.; Kitzman, D.W.; Nicklas, B.J.; Lyles, M.; Brubaker, P.; Nelson, M.B.; Gordon, M.; Stone, J.; Bergstrom, J.; Neufer, P.D.; et al. Skeletal Muscle Mitochondrial Respiration and Exercise Intolerance in Patients With Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2023, 8, 575–584. [Google Scholar] [CrossRef]
  47. Upadhya, B.; Pisani, B.; Kitzman, D.W. Evolution of a Geriatric Syndrome: Pathophysiology and Treatment of Heart Failure with Preserved Ejection Fraction. J. Am. Geriatr. Soc. 2017, 65, 2431–2440. [Google Scholar] [CrossRef] [PubMed]
  48. Solomon, S.D.; McMurray, J.J.V.; Anand, I.S.; Ge, J.; Lam, C.S.P.; Maggioni, A.P.; Martinez, F.; Packer, M.; Pfeffer, M.A.; Pieske, B.; et al. Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2019, 381, 1609–1620. [Google Scholar] [CrossRef]
  49. Upadhya, B.; Hundley, W.G.; Brubaker, P.H.; Morgan, T.M.; Stewart, K.P.; Kitzman, D.W. Effect of Spironolactone on Exercise Tolerance and Arterial Function in Older Adults with Heart Failure with Preserved Ejection Fraction. J. Am. Geriatr. Soc. 2017, 65, 2374–2382. [Google Scholar] [CrossRef] [PubMed]
  50. Abraham, W.T.; Lindenfeld, J.; Ponikowski, P.; Agostoni, P.; Butler, J.; Desai, A.S.; Filippatos, G.; Gniot, J.; Fu, M.; Gullestad, L.; et al. Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes. Eur. Heart J. 2021, 42, 700–710. [Google Scholar] [CrossRef] [PubMed]
  51. Bonsu, K.O.; Arunmanakul, P.; Chaiyakunapruk, N. Pharmacological treatments for heart failure with preserved ejection fraction-a systematic review and indirect comparison. Heart Fail. Rev. 2018, 23, 147–156. [Google Scholar] [CrossRef]
  52. Kosiborod, M.N.; Abildstrøm, S.Z.; Borlaug, B.A.; Butler, J.; Rasmussen, S.; Davies, M.; Hovingh, G.K.; Kitzman, D.W.; Lindegaard, M.L.; Møller, D.V.; et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2023, 389, 1069–1084. [Google Scholar] [CrossRef] [PubMed]
  53. Packer, M.; Zile, M.R.; Kramer, C.M.; Baum, S.J.; Litwin, S.E.; Menon, V.; Ge, J.; Weerakkody, G.J.; Ou, Y.; Bunck, M.C.; et al. Tirzepatide for Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2024, 392, 427–437. [Google Scholar] [CrossRef]
  54. Lu, Y.; Liu, Y.; Krumholz, H.M. Racial and Ethnic Disparities in Financial Barriers Among Overweight and Obese Adults Eligible for Semaglutide in the United States. J. Am. Heart Assoc. 2022, 11, e025545. [Google Scholar] [CrossRef] [PubMed]
  55. Gomez, G.; Stanford, F.C. US health policy and prescription drug coverage of FDA-approved medications for the treatment of obesity. Int. J. Obes. 2018, 42, 495–500. [Google Scholar] [CrossRef] [PubMed]
  56. Wilding, J.P.H.; Batterham, R.L.; Davies, M.; Van Gaal, L.F.; Kandler, K.; Konakli, K.; Lingvay, I.; McGowan, B.M.; Oral, T.K.; Rosenstock, J.; et al. Weight regain and cardiometabolic effects after withdrawal of semaglutide: The STEP 1 trial extension. Diabetes Obes. Metab. 2022, 24, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
  57. Atlas, S.J.; Kim, K.; Nhan, E.; Touchette, D.R.; Moradi, A.; Agboola, F.; Rind, D.M.; Beaudoin, F.L.; Pearson, S.D. Medications for obesity management: Effectiveness and value. J. Manag. Care Spec. Pharm. 2023, 29, 569–575. [Google Scholar] [CrossRef] [PubMed]
  58. Eberly, L.A.; Yang, L.; Essien, U.R.; Eneanya, N.D.; Julien, H.M.; Luo, J.; Nathan, A.S.; Khatana, S.A.M.; Dayoub, E.J.; Fanaroff, A.C.; et al. Racial, Ethnic, and Socioeconomic Inequities in Glucagon-Like Peptide-1 Receptor Agonist Use Among Patients With Diabetes in the US. JAMA Health Forum 2021, 2, e214182. [Google Scholar] [CrossRef]
  59. Alhiary, R.; Kesselheim, A.S.; Gabriele, S.; Beall, R.F.; Tu, S.S.; Feldman, W.B. Patents and Regulatory Exclusivities on GLP-1 Receptor Agonists. JAMA 2023, 330, 650–657. [Google Scholar] [CrossRef]
  60. Rodriguez, P.J.; Zhang, V.; Gratzl, S.; Do, D.; Goodwin Cartwright, B.; Baker, C.; Gluckman, T.J.; Stucky, N.; Emanuel, E.J. Discontinuation and Reinitiation of Dual-Labeled GLP-1 Receptor Agonists Among US Adults with Overweight or Obesity. JAMA Netw. Open 2025, 8, e2457349. [Google Scholar] [CrossRef] [PubMed]
  61. Sodhi, M.; Rezaeianzadeh, R.; Kezouh, A.; Etminan, M. Risk of Gastrointestinal Adverse Events Associated with Glucagon-Like Peptide-1 Receptor Agonists for Weight Loss. JAMA 2023, 330, 1795–1797. [Google Scholar] [CrossRef]
  62. Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef] [PubMed]
  63. Agarwal, A.A.; Narayan, A.; Stanford, F.C. Body Composition in Anti-Obesity Medication Trials-Beyond Scales. JAMA Intern. Med. 2024, 184, 341–342. [Google Scholar] [CrossRef]
  64. Heymsfield, S.B.; Yang, S.; McCarthy, C.; Brown, J.B.; Martin, C.K.; Redman, L.M.; Ravussin, E.; Shen, W.; Müller, M.J.; Bosy-Westphal, A. Proportion of caloric restriction-induced weight loss as skeletal muscle. Obesity 2024, 32, 32–40. [Google Scholar] [CrossRef] [PubMed]
  65. Sargeant, J.A.; Henson, J.; King, J.A.; Yates, T.; Khunti, K.; Davies, M.J. A Review of the Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors on Lean Body Mass in Humans. Endocrinol. Metab. 2019, 34, 247–262. [Google Scholar] [CrossRef] [PubMed]
  66. Jensen, S.B.K.; Sorensen, V.; Sandsdal, R.M.; Lehmann, E.W.; Lundgren, J.R.; Juhl, C.R.; Janus, C.; Ternhamar, T.; Stallknecht, B.M.; Holst, J.J.; et al. Bone Health After Exercise Alone, GLP-1 Receptor Agonist Treatment, or Combination Treatment: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2416775. [Google Scholar] [CrossRef] [PubMed]
  67. Warraich, H.J.; Kitzman, D.W.; Whellan, D.J.; Duncan, P.W.; Mentz, R.J.; Pastva, A.M.; Nelson, M.B.; Upadhya, B.; Reeves, G.R. Physical Function, Frailty, Cognition, Depression, and Quality of Life in Hospitalized Adults ≥60 Years with Acute Decompensated Heart Failure with Preserved Versus Reduced Ejection Fraction. Circ. Heart Fail. 2018, 11, e005254. [Google Scholar] [CrossRef] [PubMed]
  68. Sanders, N.A.; Supiano, M.A.; Lewis, E.F.; Liu, J.; Claggett, B.; Pfeffer, M.A.; Desai, A.S.; Sweitzer, N.K.; Solomon, S.D.; Fang, J.C. The frailty syndrome and outcomes in the TOPCAT trial. Eur. J. Heart Fail. 2018, 20, 1570–1577. [Google Scholar] [CrossRef]
  69. Kitzman, D.W.; Brubaker, P.H.; Morgan, T.M.; Stewart, K.P.; Little, W.C. Exercise training in older patients with heart failure and preserved ejection fraction: A randomized, controlled, single-blind trial. Circ. Heart Fail. 2010, 3, 659–667. [Google Scholar] [CrossRef] [PubMed]
  70. Edelmann, F.; Gelbrich, G.; Düngen, H.D.; Fröhling, S.; Wachter, R.; Stahrenberg, R.; Binder, L.; Töpper, A.; Lashki, D.J.; Schwarz, S.; et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: Results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. J. Am. Coll. Cardiol. 2011, 58, 1780–1791. [Google Scholar] [CrossRef] [PubMed]
  71. Smart, N.A.; Haluska, B.; Jeffriess, L.; Leung, D. Exercise training in heart failure with preserved systolic function: A randomized controlled trial of the effects on cardiac function and functional capacity. Congest. Heart Fail. 2012, 18, 295–301. [Google Scholar] [CrossRef] [PubMed]
  72. Kitzman, D.W.; Brubaker, P.H.; Herrington, D.M.; Morgan, T.M.; Stewart, K.P.; Hundley, W.G.; Abdelhamed, A.; Haykowsky, M.J. Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: A randomized, controlled, single-blind trial. J. Am. Coll. Cardiol. 2013, 62, 584–592. [Google Scholar] [CrossRef]
  73. Kaltsatou, A.C.; Kouidi, E.I.; Anifanti, M.A.; Douka, S.I.; Deligiannis, A.P. Functional and psychosocial effects of either a traditional dancing or a formal exercising training program in patients with chronic heart failure: A comparative randomized controlled study. Clin. Rehabil. 2014, 28, 128–138. [Google Scholar] [CrossRef]
  74. Fu, T.C.; Yang, N.I.; Wang, C.H.; Cherng, W.J.; Chou, S.L.; Pan, T.L.; Wang, J.S. Aerobic Interval Training Elicits Different Hemodynamic Adaptations Between Heart Failure Patients with Preserved and Reduced Ejection Fraction. Am. J. Phys. Med. Rehabil. 2016, 95, 15–27. [Google Scholar] [CrossRef]
  75. Kitzman, D.W.; Brubaker, P.; Morgan, T.; Haykowsky, M.; Hundley, G.; Kraus, W.E.; Eggebeen, J.; Nicklas, B.J. Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients With Heart Failure With Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA 2016, 315, 36–46. [Google Scholar] [CrossRef] [PubMed]
  76. Mueller, S.; Winzer, E.B.; Duvinage, A.; Gevaert, A.B.; Edelmann, F.; Haller, B.; Pieske-Kraigher, E.; Beckers, P.; Bobenko, A.; Hommel, J.; et al. Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity Advice on Peak Oxygen Consumption in Patients With Heart Failure With Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA 2021, 325, 542–551. [Google Scholar] [CrossRef] [PubMed]
  77. Alves, A.J.; Ribeiro, F.; Goldhammer, E.; Rivlin, Y.; Rosenschein, U.; Viana, J.L.; Duarte, J.A.; Sagiv, M.; Oliveira, J. Exercise training improves diastolic function in heart failure patients. Med. Sci. Sports Exerc. 2012, 44, 776–785. [Google Scholar] [CrossRef]
  78. Angadi, S.S.; Mookadam, F.; Lee, C.D.; Tucker, W.J.; Haykowsky, M.J.; Gaesser, G.A. High-intensity interval training vs. moderate-intensity continuous exercise training in heart failure with preserved ejection fraction: A pilot study. J. Appl. Physiol. 2015, 119, 753–758. [Google Scholar] [CrossRef]
  79. Donelli da Silveira, A.; Beust de Lima, J.; da Silva Piardi, D.; Dos Santos Macedo, D.; Zanini, M.; Nery, R.; Laukkanen, J.A.; Stein, R. High-intensity interval training is effective and superior to moderate continuous training in patients with heart failure with preserved ejection fraction: A randomized clinical trial. Eur. J. Prev. Cardiol. 2020, 27, 1733–1743. [Google Scholar] [CrossRef]
  80. Kitzman, D.W.; Whellan, D.J.; Duncan, P.; Pastva, A.M.; Mentz, R.J.; Reeves, G.R.; Nelson, M.B.; Chen, H.; Upadhya, B.; Reed, S.D.; et al. Physical Rehabilitation for Older Patients Hospitalized for Heart Failure. N. Engl. J. Med. 2021, 385, 203–216. [Google Scholar] [CrossRef] [PubMed]
  81. Sachdev, V.; Sharma, K.; Keteyian, S.J.; Alcain, C.F.; Desvigne-Nickens, P.; Fleg, J.L.; Florea, V.G.; Franklin, B.A.; Guglin, M.; Halle, M.; et al. Supervised Exercise Training for Chronic Heart Failure With Preserved Ejection Fraction: A Scientific Statement From the American Heart Association and American College of Cardiology. J. Am. Coll. Cardiol. 2023, 81, 1524–1542. [Google Scholar] [CrossRef] [PubMed]
  82. Bjarnason-Wehrens, B.; Schwaab, B.; Reiss, N.; Schmidt, T. Resistance Training in Patients With Coronary Artery Disease, Heart Failure, and Valvular Heart Disease: A review with special emphasis on old age, frailty, and physical limitations. J. Cardiopulm. Rehabil. Prev. 2022, 42, 304–315. [Google Scholar] [CrossRef] [PubMed]
  83. Brubaker, P.H.; Nicklas, B.J.; Houston, D.K.; Hundley, W.G.; Chen, H.; Molina, A.J.A.; Lyles, W.M.; Nelson, B.; Upadhya, B.; Newland, R.; et al. A Randomized, Controlled Trial of Resistance Training Added to Caloric Restriction Plus Aerobic Exercise Training in Obese Heart Failure With Preserved Ejection Fraction. Circ. Heart Fail 2023, 16, e010161. [Google Scholar] [CrossRef]
  84. Crisci, G.; De Luca, M.; D’Assante, R.; Ranieri, B.; D’Agostino, A.; Valente, V.; Giardino, F.; Capone, V.; Chianese, S.; Rega, S.; et al. Effects of Exercise on Heart Failure with Preserved Ejection Fraction: An Updated Review of Literature. J. Cardiovasc. Dev. Dis. 2022, 9, 241. [Google Scholar] [CrossRef]
  85. Poole, D.C.; Richardson, R.S.; Haykowsky, M.J.; Hirai, D.M.; Musch, T.I. Exercise limitations in heart failure with reduced and preserved ejection fraction. J. Appl. Physiol. 2018, 124, 208–224. [Google Scholar] [CrossRef] [PubMed]
  86. Pandey, A.; Parashar, A.; Kumbhani, D.; Agarwal, S.; Garg, J.; Kitzman, D.; Levine, B.; Drazner, M.; Berry, J. Exercise training in patients with heart failure and preserved ejection fraction: Meta-analysis of randomized control trials. Circ. Heart Fail 2015, 8, 33–40. [Google Scholar] [CrossRef] [PubMed]
  87. Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [CrossRef] [PubMed]
  88. O’Connor, C.M.; Whellan, D.J.; Lee, K.L.; Keteyian, S.J.; Cooper, L.S.; Ellis, S.J.; Leifer, E.S.; Kraus, W.E.; Kitzman, D.W.; Blumenthal, J.A.; et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009, 301, 1439–1450. [Google Scholar] [CrossRef]
  89. Pandey, A.; Kitzman, D.W. Searching for the Optimal Exercise Training Regimen in Heart Failure with Preserved Ejection Fraction. JAMA 2021, 325, 537–539. [Google Scholar] [CrossRef] [PubMed]
  90. Fleg, J.L.; Cooper, L.S.; Borlaug, B.A.; Haykowsky, M.J.; Kraus, W.E.; Levine, B.D.; Pfeffer, M.A.; Piña, I.L.; Poole, D.C.; Reeves, G.R.; et al. Exercise training as therapy for heart failure: Current status and future directions. Circ. Heart Fail. 2015, 8, 209–220. [Google Scholar] [CrossRef]
  91. Jewiss, D.; Ostman, C.; Smart, N.A. The effect of resistance training on clinical outcomes in heart failure: A systematic review and meta-analysis. Int. J. Cardiol. 2016, 221, 674–681. [Google Scholar] [CrossRef] [PubMed]
  92. Smart, T.F.F.; Doleman, B.; Hatt, J.; Paul, M.; Toft, S.; Lund, J.N.; Phillips, B.E. The role of resistance exercise training for improving cardiorespiratory fitness in healthy older adults: A systematic review and meta-analysis. Age Ageing 2022, 51, afac143. [Google Scholar] [CrossRef]
  93. Wewege, M.A.; Desai, I.; Honey, C.; Coorie, B.; Jones, M.D.; Clifford, B.K.; Leake, H.B.; Hagstrom, A.D. The Effect of Resistance Training in Healthy Adults on Body Fat Percentage, Fat Mass and Visceral Fat: A Systematic Review and Meta-Analysis. Sports Med. 2022, 52, 287–300. [Google Scholar] [CrossRef] [PubMed]
  94. Recchia, F.; Leung, C.K.; Yu, A.P.; Leung, W.; Yu, D.J.; Fong, D.Y.; Montero, D.; Lee, C.H.; Wong, S.H.S.; Siu, P.M. Dose-response effects of exercise and caloric restriction on visceral adiposity in overweight and obese adults: A systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2023, 57, 1035–1041. [Google Scholar] [CrossRef]
  95. Chen, X.; He, H.; Xie, K.; Zhang, L.; Cao, C. Effects of various exercise types on visceral adipose tissue in individuals with overweight and obesity: A systematic review and network meta-analysis of 84 randomized controlled trials. Obes. Rev. 2024, 25, e13666. [Google Scholar] [CrossRef]
  96. Khalafi, M.; Malandish, A.; Rosenkranz, S.K.; Ravasi, A.A. Effect of resistance training with and without caloric restriction on visceral fat: A systemic review and meta-analysis. Obes. Rev. 2021, 22, e13275. [Google Scholar] [CrossRef] [PubMed]
  97. Christensen, R.H.; Wedell-Neergaard, A.S.; Lehrskov, L.L.; Legaard, G.E.; Dorph, E.; Larsen, M.K.; Launbo, N.; Fagerlind, S.R.; Seide, S.K.; Nymand, S.; et al. Effect of Aerobic and Resistance Exercise on Cardiac Adipose Tissues: Secondary Analyses From a Randomized Clinical Trial. JAMA Cardiol. 2019, 4, 778–787. [Google Scholar] [CrossRef]
  98. Colonetti, T.; Grande, A.J.; Amaral, M.C.; Colonetti, L.; Uggioni, M.L.; da Rosa, M.I.; Hernandez, A.V.; Tse, G.; Liu, T.; Nerlekar, N.; et al. Effect of exercise on epicardial adipose tissue in adults: A systematic review and meta-analyses. Heart Fail. Rev. 2021, 26, 1399–1411. [Google Scholar] [CrossRef] [PubMed]
  99. Heshmat-Ghahdarijani, K.; Modaresi, R.; Pourmasjedi, S.; Sotoudehnia Korani, S.; Rezazadeh Roudkoli, A.; Ziaei, R.; Farid, A.; Salehi, M.; Heidari, A.; Neshat, S. Reducing Cardiac Steatosis: Interventions to Improve Diastolic Function: A Narrative Review. Curr. Probl. Cardiol. 2023, 48, 101739. [Google Scholar] [CrossRef] [PubMed]
  100. Bacchi, E.; Negri, C.; Targher, G.; Faccioli, N.; Lanza, M.; Zoppini, G.; Zanolin, E.; Schena, F.; Bonora, E.; Moghetti, P. Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetic subjects with nonalcoholic fatty liver disease (the RAED2 Randomized Trial). Hepatology 2013, 58, 1287–1295. [Google Scholar] [CrossRef]
  101. Orci, L.A.; Gariani, K.; Oldani, G.; Delaune, V.; Morel, P.; Toso, C. Exercise-based Interventions for Nonalcoholic Fatty Liver Disease: A Meta-analysis and Meta-regression. Clin. Gastroenterol. Hepatol. 2016, 14, 1398–1411. [Google Scholar] [CrossRef]
  102. McDonough, D.J.; Mathew, M.; Pope, Z.C.; Schreiner, P.J.; Jacobs, D.R., Jr.; VanWagner, L.B.; Carr, J.J.; Terry, J.G.; Gabriel, K.P.; Reis, J.P.; et al. Aerobic and Muscle-Strengthening Physical Activity, Television Viewing, and Nonalcoholic Fatty Liver Disease: The CARDIA Study. J. Clin. Med. 2023, 12, 5603. [Google Scholar] [CrossRef]
  103. de Brito, J.N.; McDonough, D.J.; Mathew, M.; VanWagner, L.B.; Schreiner, P.J.; Gabriel, K.P.; Jacobs, D.R., Jr.; Terry, J.G.; Carr, J.J.; Pereira, M.A. Young Adult Physical Activity Trajectories and Midlife Nonalcoholic Fatty Liver Disease. JAMA Netw. Open 2023, 6, e2338952. [Google Scholar] [CrossRef] [PubMed]
  104. Ramírez-Vélez, R.; Ezzatvar, Y.; Izquierdo, M.; García-Hermoso, A. Effect of exercise on myosteatosis in adults: A systematic review and meta-analysis. J. Appl. Physiol. 2021, 130, 245–255. [Google Scholar] [CrossRef] [PubMed]
  105. Flor-Rufino, C.; Barrachina-Igual, J.; Pérez-Ros, P.; Pablos-Monzó, A.; Sanz-Requena, R.; Martínez-Arnau, F.M. Fat infiltration and muscle hydration improve after high-intensity resistance training in women with sarcopenia. A randomized clinical trial. Maturitas 2023, 168, 29–36. [Google Scholar] [CrossRef] [PubMed]
  106. Hallsworth, K.; Fattakhova, G.; Hollingsworth, K.G.; Thoma, C.; Moore, S.; Taylor, R.; Day, C.P.; Trenell, M.I. Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut 2011, 60, 1278–1283. [Google Scholar] [CrossRef]
  107. Johnson, N.A.; Sachinwalla, T.; Walton, D.W.; Smith, K.; Armstrong, A.; Thompson, M.W.; George, J. Aerobic exercise training reduces hepatic and visceral lipids in obese individuals without weight loss. Hepatology 2009, 50, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
  108. Hashida, R.; Kawaguchi, T.; Bekki, M.; Omoto, M.; Matsuse, H.; Nago, T.; Takano, Y.; Ueno, T.; Koga, H.; George, J.; et al. Aerobic vs. resistance exercise in non-alcoholic fatty liver disease: A systematic review. J. Hepatol. 2017, 66, 142–152. [Google Scholar] [CrossRef]
  109. Whitsett, M.; VanWagner, L.B. Physical activity as a treatment of non-alcoholic fatty liver disease: A systematic review. World J. Hepatol. 2015, 7, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
  110. Paluch, A.E.; Boyer, W.R.; Franklin, B.A.; Laddu, D.; Lobelo, F.; Lee, D.C.; McDermott, M.M.; Swift, D.L.; Webel, A.R.; Lane, A.; et al. Resistance Exercise Training in Individuals With and Without Cardiovascular Disease: 2023 Update: A Scientific Statement From the American Heart Association. Circulation 2023, 149, e217–e231. [Google Scholar] [CrossRef] [PubMed]
  111. Balachandran, A.T.; Wang, Y.; Szabo, F.; Watts-Battey, C.; Schoenfeld, B.J.; Zenko, Z.; Quiles, N. Comparison of traditional vs. lighter load strength training on fat-free mass, strength, power and affective responses in middle and older-aged adults: A pilot randomized trial. Exp. Gerontol. 2023, 178, 112219. [Google Scholar] [CrossRef] [PubMed]
  112. Fisher, S.; Smart, N.A.; Pearson, M.J. Resistance training in heart failure patients: A systematic review and meta-analysis. Heart Fail. Rev. 2022, 27, 1665–1682. [Google Scholar] [CrossRef]
  113. Maron, B.J.; Chaitman, B.R.; Ackerman, M.J.; Bayés de Luna, A.; Corrado, D.; Crosson, J.E.; Deal, B.J.; Driscoll, D.J.; Estes, N.A.; Araújo, C.G.; et al. Recommendations for physical activity and recreational sports participation for young patients with genetic cardiovascular diseases. Circulation 2004, 109, 2807–2816. [Google Scholar] [CrossRef] [PubMed]
  114. Williams, M.A.; Haskell, W.L.; Ades, P.A.; Amsterdam, E.A.; Bittner, V.; Franklin, B.A.; Gulanick, M.; Laing, S.T.; Stewart, K.J.; Cardiology, A.H.A.C.o.C.; et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: A scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2007, 116, 572–584. [Google Scholar] [CrossRef] [PubMed]
  115. Weakley, J.; Schoenfeld, B.J.; Ljungberg, J.; Halson, S.L.; Phillips, S.M. Physiological Responses and Adaptations to Lower Load Resistance Training: Implications for Health and Performance. Sports Med. Open 2023, 9, 28. [Google Scholar] [CrossRef]
  116. Burd, N.A.; Andrews, R.J.; West, D.W.; Little, J.P.; Cochran, A.J.; Hector, A.J.; Cashaback, J.G.; Gibala, M.J.; Potvin, J.R.; Baker, S.K.; et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J. Physiol. 2012, 590, 351–362. [Google Scholar] [CrossRef] [PubMed]
  117. Devries, M.C.; Breen, L.; Von Allmen, M.; MacDonald, M.J.; Moore, D.R.; Offord, E.A.; Horcajada, M.N.; Breuillé, D.; Phillips, S.M. Low-load resistance training during step-reduction attenuates declines in muscle mass and strength and enhances anabolic sensitivity in older men. Physiol. Rep. 2015, 3, e12493. [Google Scholar] [CrossRef] [PubMed]
  118. Mitchell, C.J.; Churchward-Venne, T.A.; West, D.W.; Burd, N.A.; Breen, L.; Baker, S.K.; Phillips, S.M. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J. Appl. Physiol. 2012, 113, 71–77. [Google Scholar] [CrossRef] [PubMed]
  119. Morton, R.W.; Oikawa, S.Y.; Wavell, C.G.; Mazara, N.; McGlory, C.; Quadrilatero, J.; Baechler, B.L.; Baker, S.K.; Phillips, S.M. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J. Appl. Physiol. 2016, 121, 129–138. [Google Scholar] [CrossRef]
  120. Schoenfeld, B.J.; Peterson, M.D.; Ogborn, D.; Contreras, B.; Sonmez, G.T. Effects of Low- vs. High-Load Resistance Training on Muscle Strength and Hypertrophy in Well-Trained Men. J. Strength Cond. Res. 2015, 29, 2954–2963. [Google Scholar] [CrossRef]
  121. MacDougall, J.D.; Tuxen, D.; Sale, D.G.; Moroz, J.R.; Sutton, J.R. Arterial blood pressure response to heavy resistance exercise. J. Appl. Physiol. 1985, 58, 785–790. [Google Scholar] [CrossRef] [PubMed]
  122. Shah, S.J.; Borlaug, B.A.; Kitzman, D.W.; McCulloch, A.D.; Blaxall, B.C.; Agarwal, R.; Chirinos, J.A.; Collins, S.; Deo, R.C.; Gladwin, M.T.; et al. Research Priorities for Heart Failure with Preserved Ejection Fraction: National Heart, Lung, and Blood Institute Working Group Summary. Circulation 2020, 141, 1001–1026. [Google Scholar] [CrossRef] [PubMed]
  123. Melov, S.; Tarnopolsky, M.A.; Beckman, K.; Felkey, K.; Hubbard, A. Resistance exercise reverses aging in human skeletal muscle. PLoS ONE 2007, 2, e465. [Google Scholar] [CrossRef] [PubMed]
  124. Anderson, M.; Parrott, C.F.; Haykowsky, M.J.; Brubaker, P.H.; Ye, F.; Upadhya, B. Skeletal muscle abnormalities in heart failure with preserved ejection fraction. Heart Fail. Rev. 2023, 28, 157–168. [Google Scholar] [CrossRef]
  125. Wackerhage, H.; Hinrichs, A.; Wolf, E.; Hrabě de Angelis, M. Turning fat into muscle: Can this be an alternative to anti-obesity drugs such as semaglutide? J. Physiol. 2024, 602, 1655–1658. [Google Scholar] [CrossRef]
  126. Fisher, J.P.; Steele, J.; Gentil, P.; Giessing, J.; Westcott, W.L. A minimal dose approach to resistance training for the older adult; the prophylactic for aging. Exp. Gerontol. 2017, 99, 80–86. [Google Scholar] [CrossRef] [PubMed]
  127. Plotkin, D.L.; Roberts, M.D.; Haun, C.T.; Schoenfeld, B.J. Muscle Fiber Type Transitions with Exercise Training: Shifting Perspectives. Sports 2021, 9, 127. [Google Scholar] [CrossRef]
  128. Lim, C.; Kim, H.J.; Morton, R.W.; Harris, R.; Phillips, S.M.; Jeong, T.S.; Kim, C.K. Resistance Exercise-induced Changes in Muscle Phenotype Are Load Dependent. Med. Sci. Sports Exerc. 2019, 51, 2578–2585. [Google Scholar] [CrossRef] [PubMed]
  129. Holloway, T.M.; Morton, R.W.; Oikawa, S.Y.; McKellar, S.; Baker, S.K.; Phillips, S.M. Microvascular adaptations to resistance training are independent of load in resistance-trained young men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 315, R267–R273. [Google Scholar] [CrossRef]
  130. McIntosh, M.C.; Anglin, D.A.; Robinson, A.T.; Beck, D.T.; Roberts, M.D. Making the case for resistance training in improving vascular function and skeletal muscle capillarization. Front. Physiol. 2024, 15, 1338507. [Google Scholar] [CrossRef] [PubMed]
  131. Macedo, F.N.; Mesquita, T.R.; Melo, V.U.; Mota, M.M.; Silva, T.L.; Santana, M.N.; Oliveira, L.R.; Santos, R.V.; Miguel Dos Santos, R.; Lauton-Santos, S.; et al. Increased Nitric Oxide Bioavailability and Decreased Sympathetic Modulation Are Involved in Vascular Adjustments Induced by Low-Intensity Resistance Training. Front. Physiol. 2016, 7, 265. [Google Scholar] [CrossRef]
  132. Paulus, W.J.; Tschope, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed]
  133. Borlaug, B.A.; Anstrom, K.J.; Lewis, G.D.; Shah, S.J.; Levine, J.A.; Koepp, G.A.; Givertz, M.M.; Felker, G.M.; LeWinter, M.M.; Mann, D.L.; et al. Effect of Inorganic Nitrite vs Placebo on Exercise Capacity Among Patients with Heart Failure with Preserved Ejection Fraction: The INDIE-HFpEF Randomized Clinical Trial. JAMA 2018, 320, 1764–1773. [Google Scholar] [CrossRef] [PubMed]
  134. Burton, E.; Farrier, K.; Lewin, G.; Pettigrew, S.; Hill, A.M.; Airey, P.; Bainbridge, L.; Hill, K.D. Motivators and Barriers for Older People Participating in Resistance Training: A Systematic Review. J. Aging Phys. Act. 2017, 25, 311–324. [Google Scholar] [CrossRef] [PubMed]
  135. Burton, E.; Hill, A.M.; Pettigrew, S.; Lewin, G.; Bainbridge, L.; Farrier, K.; Airey, P.; Hill, K.D. Why do seniors leave resistance training programs? Clin. Interv. Aging 2017, 12, 585–592. [Google Scholar] [CrossRef] [PubMed]
  136. Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. Resistance Training for Older Adults: Position Statement From the National Strength and Conditioning Association. J. Strength Cond. Res. 2019, 33, 2019–2052. [Google Scholar] [CrossRef]
  137. Elsangedy, H.M.; Krause, M.P.; Krinski, K.; Alves, R.C.; Hsin Nery Chao, C.; da Silva, S.G. Is the self-selected resistance exercise intensity by older women consistent with the American College of Sports Medicine guidelines to improve muscular fitness? J. Strength Cond. Res. 2013, 27, 1877–1884. [Google Scholar] [CrossRef]
  138. Kamada, M.; Shiroma, E.J.; Buring, J.E.; Miyachi, M.; Lee, I.M. Strength Training and All-Cause, Cardiovascular Disease, and Cancer Mortality in Older Women: A Cohort Study. J. Am. Heart Assoc. 2017, 6, e007677. [Google Scholar] [CrossRef] [PubMed]
  139. Kambic, T.; Lavie, C.J.; Eijsvogels, T.M.H. Seeking synergy for novel weight- and glucose-lowering pharmacotherapy and exercise training in heart failure patients with preserved ejection fraction. Eur. Heart J. 2024, 45, 861–863. [Google Scholar] [CrossRef] [PubMed]
  140. Coleman, C.J.; McDonough, D.J.; Pope, Z.C.; Pope, C.A. Dose-response association of aerobic and muscle-strengthening physical activity with mortality: A national cohort study of 416 420 US adults. Br. J. Sports Med. 2022, 56, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
  141. Mechanick, J.I.; Butsch, W.S.; Christensen, S.M.; Hamdy, O.; Li, Z.; Prado, C.M.; Heymsfield, S.B. Strategies for minimizing muscle loss during use of incretin-mimetic drugs for treatment of obesity. Obes. Rev. 2025, 26, e13841. [Google Scholar] [CrossRef]
  142. McDonough, D.J.; Helgeson, M.A.; Liu, W.; Gao, Z. Effects of a remote, YouTube-delivered exercise intervention on young adults’ physical activity, sedentary behavior, and sleep during the COVID-19 pandemic: Randomized controlled trial. J Sport Health Sci. 2022, 11, 145–156. [Google Scholar] [CrossRef]
  143. Hoerster, K.D.; Hunter-Merrill, R.; Nguyen, T.; Rise, P.; Baron, A.E.; McDowell, J.; Donovan, L.M.; Gleason, E.; Lane, A.; Plumley, R.; et al. Effect of a Remotely Delivered Self-directed Behavioral Intervention on Body Weight and Physical Health Status Among Adults with Obesity: The D-ELITE Randomized Clinical Trial. JAMA 2022, 328, 2230–2241. [Google Scholar] [CrossRef] [PubMed]
  144. Zunner, B.E.M.; Wachsmuth, N.B.; Eckstein, M.L.; Scherl, L.; Schierbauer, J.R.; Haupt, S.; Stumpf, C.; Reusch, L.; Moser, O. Myokines and Resistance Training: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 3501. [Google Scholar] [CrossRef] [PubMed]
  145. Letukiene, A.; Hendrixson, V.; Gineviciene, V. Current knowledge and scientific trends in myokines and exercise research in the context of obesity. Front. Med. 2024, 11, 1421962. [Google Scholar] [CrossRef] [PubMed]
  146. Li, F.; Li, Y.; Duan, Y.; Hu, C.A.; Tang, Y.; Yin, Y. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue. Cytokine Growth Factor Rev. 2017, 33, 73–82. [Google Scholar] [CrossRef]
  147. Lee, J.H.; Jun, H.S. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front. Physiol. 2019, 10, 42. [Google Scholar] [CrossRef]
  148. Severinsen, M.C.K.; Pedersen, B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef] [PubMed]
  149. Zhang, L.; Lv, J.; Wang, C.; Ren, Y.; Yong, M. Myokine, a key cytokine for physical exercise to alleviate sarcopenic obesity. Mol. Biol. Rep. 2023, 50, 2723–2734. [Google Scholar] [CrossRef] [PubMed]
  150. Lim, J.Y.; Kim, E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023, 13, 979. [Google Scholar] [CrossRef] [PubMed]
  151. Hamasaki, H. Effects of Exercise on Circulating Muscle-related Cytokines in Adults with Type 2 Diabetes and/or Obesity. Curr. Diabetes Rev. 2023, 19, e121222211873. [Google Scholar] [CrossRef] [PubMed]
  152. Bilski, J.; Pierzchalski, P.; Szczepanik, M.; Bonior, J.; Zoladz, J.A. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells 2022, 11, 160. [Google Scholar] [CrossRef] [PubMed]
  153. Pedersen, B.K.; Akerstrom, T.C.; Nielsen, A.R.; Fischer, C.P. Role of myokines in exercise and metabolism. J. Appl. Physiol. 2007, 103, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
  154. Steffen, B.T.; McDonough, D.J.; Pankow, J.S.; Tang, W.; Rooney, M.R.; Demmer, R.T.; Lutsey, P.L.; Guan, W.; Gabriel, K.P.; Palta, P.; et al. Plasma Neuronal Growth Regulator 1 May Link Physical Activity to Reduced Risk of Type 2 Diabetes: A Proteome-Wide Study of ARIC Participants. Diabetes 2024, 73, 318–324. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Summary of the potential for low-load/high-repetition resistance exercise to satisfy Fick’s Principle (equation) by targeting the peripheral (non-cardiac), skeletal muscle-specific contributors of exercise intolerance in patients with HFpEF and obesity to improve exercise capacity (peak oxygen consumption). Abbreviations: O2 = oxygen; V ˙ O2 = maximal oxygen consumption; a- v ¯ O2 Difference = arteriovenous oxygen difference.
Figure 1. Summary of the potential for low-load/high-repetition resistance exercise to satisfy Fick’s Principle (equation) by targeting the peripheral (non-cardiac), skeletal muscle-specific contributors of exercise intolerance in patients with HFpEF and obesity to improve exercise capacity (peak oxygen consumption). Abbreviations: O2 = oxygen; V ˙ O2 = maximal oxygen consumption; a- v ¯ O2 Difference = arteriovenous oxygen difference.
Physiologia 05 00010 g001
Figure 2. Summary of the potential (to be examined in future research) for low-load/high-repetition resistance exercise to improve the peripheral (non-cardiac), cardiometabolic perturbations (skeletal muscle abnormalities and ectopic adipose depots) in HFpEF and obesity, and the potential effect mediation of skeletal muscle-produced myokines that are secreted during muscular contractions. Abbreviations: Peak V ˙ O2 = peak oxygen consumption; a- v ¯ O2 Difference = arteriovenous oxygen difference.
Figure 2. Summary of the potential (to be examined in future research) for low-load/high-repetition resistance exercise to improve the peripheral (non-cardiac), cardiometabolic perturbations (skeletal muscle abnormalities and ectopic adipose depots) in HFpEF and obesity, and the potential effect mediation of skeletal muscle-produced myokines that are secreted during muscular contractions. Abbreviations: Peak V ˙ O2 = peak oxygen consumption; a- v ¯ O2 Difference = arteriovenous oxygen difference.
Physiologia 05 00010 g002
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

McDonough, D.J. Resistance Exercise in Treating Heart Failure with Preserved Ejection Fraction (HFpEF) and Obesity: Targeting Skeletal Muscle Abnormalities and Ectopic Adipose Depots. Physiologia 2025, 5, 10. https://doi.org/10.3390/physiologia5010010

AMA Style

McDonough DJ. Resistance Exercise in Treating Heart Failure with Preserved Ejection Fraction (HFpEF) and Obesity: Targeting Skeletal Muscle Abnormalities and Ectopic Adipose Depots. Physiologia. 2025; 5(1):10. https://doi.org/10.3390/physiologia5010010

Chicago/Turabian Style

McDonough, Daniel J. 2025. "Resistance Exercise in Treating Heart Failure with Preserved Ejection Fraction (HFpEF) and Obesity: Targeting Skeletal Muscle Abnormalities and Ectopic Adipose Depots" Physiologia 5, no. 1: 10. https://doi.org/10.3390/physiologia5010010

APA Style

McDonough, D. J. (2025). Resistance Exercise in Treating Heart Failure with Preserved Ejection Fraction (HFpEF) and Obesity: Targeting Skeletal Muscle Abnormalities and Ectopic Adipose Depots. Physiologia, 5(1), 10. https://doi.org/10.3390/physiologia5010010

Article Metrics

Back to TopTop